1,667 research outputs found

    Stabilized Benders methods for large-scale combinatorial optimization, with appllication to data privacy

    Get PDF
    The Cell Suppression Problem (CSP) is a challenging Mixed-Integer Linear Problem arising in statistical tabular data protection. Medium sized instances of CSP involve thousands of binary variables and million of continuous variables and constraints. However, CSP has the typical structure that allows application of the renowned Benders’ decomposition method: once the “complicating” binary variables are fixed, the problem decomposes into a large set of linear subproblems on the “easy” continuous ones. This allows to project away the easy variables, reducing to a master problem in the complicating ones where the value functions of the subproblems are approximated with the standard cutting-plane approach. Hence, Benders’ decomposition suffers from the same drawbacks of the cutting-plane method, i.e., oscillation and slow convergence, compounded with the fact that the master problem is combinatorial. To overcome this drawback we present a stabilized Benders decomposition whose master is restricted to a neighborhood of successful candidates by local branching constraints, which are dynamically adjusted, and even dropped, during the iterations. Our experiments with randomly generated and real-world CSP instances with up to 3600 binary variables, 90M continuous variables and 15M inequality constraints show that our approach is competitive with both the current state-of-the-art (cutting-plane-based) code for cell suppression, and the Benders implementation in CPLEX 12.7. In some instances, stabilized Benders is able to quickly provide a very good solution in less than one minute, while the other approaches were not able to find any feasible solution in one hour.Peer ReviewedPreprin

    Using the primal-dual interior point algorithm within the branch-price-and-cut method

    Get PDF
    AbstractBranch-price-and-cut has proven to be a powerful method for solving integer programming problems. It combines decomposition techniques with the generation of both columns and valid inequalities and relies on strong bounds to guide the search in the branch-and-bound tree. In this paper, we present how to improve the performance of a branch-price-and-cut method by using the primal-dual interior point algorithm. We discuss in detail how to deal with the challenges of using the interior point algorithm with the core components of the branch-price-and-cut method. The effort to overcome the difficulties pays off in a number of advantageous features offered by the new approach. We present the computational results of solving well-known instances of the vehicle routing problem with time windows, a challenging integer programming problem. The results indicate that the proposed approach delivers the best overall performance when compared with a similar branch-price-and-cut method which is based on the simplex algorithm

    Measure transformation and efficient quadrature in reduced-dimensional stochastic modeling of coupled problems

    Full text link
    Coupled problems with various combinations of multiple physics, scales, and domains are found in numerous areas of science and engineering. A key challenge in the formulation and implementation of corresponding coupled numerical models is to facilitate the communication of information across physics, scale, and domain interfaces, as well as between the iterations of solvers used for response computations. In a probabilistic context, any information that is to be communicated between subproblems or iterations should be characterized by an appropriate probabilistic representation. Although the number of sources of uncertainty can be expected to be large in most coupled problems, our contention is that exchanged probabilistic information often resides in a considerably lower dimensional space than the sources themselves. In this work, we thus use a dimension-reduction technique for obtaining the representation of the exchanged information. The main subject of this work is the investigation of a measure-transformation technique that allows implementations to exploit this dimension reduction to achieve computational gains. The effectiveness of the proposed dimension-reduction and measure-transformation methodology is demonstrated through a multiphysics problem relevant to nuclear engineering

    A New Dantzig-Wolfe Reformulation And Branch-And-Price Algorithm For The Capacitated Lot Sizing Problem With Set Up Times

    Get PDF
    The textbook Dantzig-Wolfe decomposition for the Capacitated LotSizing Problem (CLSP),as already proposed by Manne in 1958, has animportant structural deficiency. Imposingintegrality constraints onthe variables in the full blown master will not necessarily givetheoptimal IP solution as only production plans which satisfy theWagner-Whitin condition canbe selected. It is well known that theoptimal solution to a capacitated lot sizing problem willnotnecessarily have this Wagner-Whitin property. The columns of thetraditionaldecomposition model include both the integer set up andcontinuous production quantitydecisions. Choosing a specific set upschedule implies also taking the associated Wagner-Whitin productionquantities. We propose the correct Dantzig-Wolfedecompositionreformulation separating the set up and productiondecisions. This formulation gives the samelower bound as Manne'sreformulation and allows for branch-and-price. We use theCapacitatedLot Sizing Problem with Set Up Times to illustrate our approach.Computationalexperiments are presented on data sets available from theliterature. Column generation isspeeded up by a combination of simplexand subgradient optimization for finding the dualprices. The resultsshow that branch-and-price is computationally tractable andcompetitivewith other approaches. Finally, we briefly discuss how thisnew Dantzig-Wolfe reformulationcan be generalized to other mixedinteger programming problems, whereas in theliterature,branch-and-price algorithms are almost exclusivelydeveloped for pure integer programmingproblems.branch-and-price;Lagrange relaxation;Dantzig-Wolfe decomposition;lot sizing;mixed-integer programming
    • 

    corecore