6,008 research outputs found

    Chemical information matters: an e-Research perspective on information and data sharing in the chemical sciences

    No full text
    Recently, a number of organisations have called for open access to scientific information and especially to the data obtained from publicly funded research, among which the Royal Society report and the European Commission press release are particularly notable. It has long been accepted that building research on the foundations laid by other scientists is both effective and efficient. Regrettably, some disciplines, chemistry being one, have been slow to recognise the value of sharing and have thus been reluctant to curate their data and information in preparation for exchanging it. The very significant increases in both the volume and the complexity of the datasets produced has encouraged the expansion of e-Research, and stimulated the development of methodologies for managing, organising, and analysing "big data". We review the evolution of cheminformatics, the amalgam of chemistry, computer science, and information technology, and assess the wider e-Science and e-Research perspective. Chemical information does matter, as do matters of communicating data and collaborating with data. For chemistry, unique identifiers, structure representations, and property descriptors are essential to the activities of sharing and exchange. Open science entails the sharing of more than mere facts: for example, the publication of negative outcomes can facilitate better understanding of which synthetic routes to choose, an aspiration of the Dial-a-Molecule Grand Challenge. The protagonists of open notebook science go even further and exchange their thoughts and plans. We consider the concepts of preservation, curation, provenance, discovery, and access in the context of the research lifecycle, and then focus on the role of metadata, particularly the ontologies on which the emerging chemical Semantic Web will depend. Among our conclusions, we present our choice of the "grand challenges" for the preservation and sharing of chemical information

    Collaborative Toolkit for Crashworthiness Research

    Get PDF

    RootJS: Node.js Bindings for ROOT 6

    Get PDF
    We present rootJS, an interface making it possible to seamlessly integrate ROOT 6 into applications written for Node.js, the JavaScript runtime platform increasingly commonly used to create high-performance Web applications. ROOT features can be called both directly from Node.js code and by JIT-compiling C++ macros. All rootJS methods are invoked asynchronously and support callback functions, allowing non-blocking operation of Node.js applications using them. Last but not least, our bindings have been designed to platform-independent and should therefore work on all systems supporting both ROOT 6 and Node.js. Thanks to rootJS it is now possible to create ROOT-aware Web applications taking full advantage of the high performance and extensive capabilities of Node.js. Examples include platforms for the quality assurance of acquired, reconstructed or simulated data, book-keeping and e-log systems, and even Web browser-based data visualisation and analysis.Comment: 7 pages, 1 figure. To appear in the Proceedings of the 22nd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2016

    Head in the clouds: Re-imagining the experimental laboratory record for the web-based networked world

    Get PDF
    The means we use to record the process of carrying out research remains tied to the concept of a paginated paper notebook despite the advances over the past decade in web based communication and publication tools. The development of these tools offers an opportunity to re-imagine what the laboratory record would look like if it were re-built in a web-native form. In this paper I describe a distributed approach to the laboratory record based which uses the most appropriate tool available to house and publish each specific object created during the research process, whether they be a physical sample, a digital data object, or the record of how one was created from another. I propose that the web-native laboratory record would act as a feed of relationships between these items. This approach can be seen as complementary to, rather than competitive with, integrative approaches that aim to aggregate relevant objects together to describe knowledge. The potential for the recent announcement of the Google Wave protocol to have a significant impact on realizing this vision is discussed along with the issues of security and provenance that are raised by such an approach

    Protecting and sharing of semantically-enabled, user-orientated electronic laboratory notebook focusing on a case study in the e-science domain

    Get PDF
    We discuss the addition to an existing Electronic Laboratory Notebook (ELN) system, a means to permit the sharing of modelling data. One advantage is that sharing of such data is a means of assisting the publication process. This is done by presenting the modelling data and the reasoning behind its creation. This sharing of data is managed in a user sensitive fashion by restricting the release of data based upon the role someone performs. Further sensitivity is shown by fine-grained access control, which permits only part of the ELN to be shown. The performance of the solution presented is reviewed via quantitative analysis that showed a reasonable degree of end-user acceptance of the proposed approach
    • …
    corecore