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Abstract 

Safety of today's cars and trucks is of the foremost importance during their design 
process. To ensure the safety of vehicle's occupants during a crash, many expensive and 
time consuming tests must be conducted. Computer modeling of crashworthiness 
decreases the design cost and empowers the designers to explore new concepts with 
much more confidence that their final product would be feasible and performing to the 
design specifications. To capture the complexity of vehicle deformations in computer 
simulations, detailed models with complex geometric, functional, and material features 
are necessary, and in general require full utilization of available supercomputing 
resources. Crash simulation research has been an early user of the supercomputing 
technology, and has followed its development by increasing the complexity and size of 
the models in order to achieve the maximum possible fidelity. Since the supercomputing 
resources are available only at limited number of locations in the United States, 
development of collaborative methods for crashworthiness research would allow for 
effective utilization of the computational and human resources. In addition, development 
of a collaborative problem-solving environment (CPSE) using the computer networking 
infrastructure would permit researchers with different backgrounds, interests, and roles in 
the design and production system to actively participate in crashworthiness research and, 
therefore, ensure improved performance of the final product. The main obstacle for 
providing efficient collaboration tools for automobile crashworthiness is the complexity 
and the size of the simulation results. Collaboration that would distribute full-size models 
between the participants would easily surpass current Internet bandwidths. 

Organizing and visualizing simulation data in a manner that is understandable and 
useful to researchers with different backgrounds and working on different aspects of a 
design, are the key components of an effective CPSE. Several emerging Web-based 
technologies have matured enough to be combined into a practical and effective 
infrastructure for collaborative problem-solving environment. Development of the CPSE 
for the ongoing crashworthiness research at Oak Ridge National Laboratory is presented 
in this paper. 

1 Introduction 

Perhaps the most drastic automotive design verification comes from vehicle collision 

tests. Not only do they bring perspective to everyday driving but also make one more 

appreciative of challenges facing vehicle designers. The amounts of energy and 

deformation involved in collision are significant, and must be well understood to be 

harnessed into mechanisms that will protect vehicle occupants. In recent years 
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considerable effort has been directed towards development of computational 

methodologies for simulating the mechanical response of automotive structures in 

collisions. It has become a standard practice in vehicle design to evaluate new and 

existing vehicles using computational simulations using large and complex models based 

on finite Element Method (FEM) [1 I]. 

Computational vehicle models have to capture complex deformation and interaction 

of vehicle parts and subsystems occurring during impact. The accuracy with which the 

crash behavior of the vehicle is simulated can be related in part to the density of the 

computational cells (finite elements) employed in the vehicle regions that experience 

significant permanent deformations. Therefore, a single vehicle crash model that would 

accurately simulate a wide range of impact conditions (frontal, side, offset, oblique 

impact, roll-over) would require high density of finite elements over the entire vehicle. 

High finite element density is not the only requirement for an accurate model: the finite 

elements must join in a physically and computationally feasible way and materials 

properties of the vehicle must be approximated correctly. The problem then becomes one 

of generating a modeling environment that can be used for rapid generation and analysis 

of accurate crash situation-specific models. Creation of modeling environment and other 

tools for generation of crashworthiness models is ongoing research at the Oak Ridge 

National Laboratory. 

A Problem Solving Environment is a set of tools dedicated to solving a target class of 

problems [1]. A PSE brings together computational resources, virtual libraries, 

visualization environments, databases, and expert systems in order to allow a scientist to 

concentrate on the science instead of the tools. To accomplish this task, PSE needs to 
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provide the expert assistance and software tools to the researcher in an user-friendly 

environment [2] . Recent developments in Internet networking technology have given rise 

to collaborative problem-solving environments (CPSEs) that allow geographically 

separated researchers to share knowledge and ideas while solving a specific class of 

problems. In this paper, we will describe the development of the Collaborative Toolkit 

for Crashworthiness Research (CTCR), a CPSE that aims to meet the needs of 

crashworthiness model generation. The CTCR was created using well-established 

Internet technologies reducing development time and providing the user with a familiar 

user interface. 

2 Requirements for crashworthiness CPSEs 

When considering implementation of a Collaborative Problem Solving 

Environment (CPSE) in relation to crashworthiness, there are several important issues to 

be taken into account. Some of these issues are unique to the field of crashworthiness 

and material modeling, where some are common to all CPSEs. However, all these issues 

must be considered when designing a CPSE to be used in this area of research. Some of 

these considerations include: 

1. Size and complexity of the crashworthiness models 

2. Size and complexity of the data produced from the models 

3. Need for visualization of the models, simulation results, and experimental data 

4. Unifying computing and human resources 

5. Meeting the needs of users with different backgrounds and skill levels 
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Next four subsections will aim to address these issues and illustrate how they affect the 

design of CPSEs. 

2.1 Size and Complexity of the Crashworthiness Models 

Although crashworthiness tests have been conducted since 1930s, it was not until 

the 1970s and 1980s that the tests were analytically modeled using the FEM. Modeling 

beginnings were humble, simulating structural collapse of individual components whose 

properties were well known. As the computing power available to conduct these 

experiments increased, so did the complexity of the models. Where in 1988 a state-of

the-art FEM vehicle model would have about 10,000 elements, in 1998 a similar model 

would be composed of up to 160,000 elements. For the detailed description of the FEM, 

reader is referred to a standard FEM textbook such as [11] . Vehicle components may be 

represented within the model by several different techniques. FEM modeling 

abstractions are assemblies of solid, shell, or beam finite elements. For example, a solid 

bar-shaped object such as a suspension link can be represented as one-dimensional 

object, i.e. beam. However, complex objects that are too irregular to be modeled as a 

one-dimensional beam, must be modeled as three-dimensional objects. This usually 

involves tediously generating a Computer Aided Drafting (CAD) representation of the 

object and then "shrink wrapping" a FEM around it. Most of the vehicle model is 

represented as an assembly of shells that are two-dimensional computational entities. 

Shell elements are used extensively because of their computational efficiency and 

because a large amount of the vehicle is made of sheet metal. Shells are generated much 
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in the same way as solids: CAD representation of a vehicle part must be first generated, 

and then FEM mesh projected onto the surface [4]. 

Properly applying these modeling techniques can significantly impact the 

performance of the model. For example, care must be taken that the objects do not 

penetrate each other because that would result in an incorrect FEM representation. 

Additionally, the individual parts must fit together in exact relation as in the real vehicle 

to simulate the crash time conditions. As a result, crashworthiness CPSE must be able to 

successfully handle models of high complexity and large size. Large model size makes 

sharing a full size model across current Internet bandwidths impractical. The 

collaborative aspect of a CPSE should allow for multiple users to be able to work on the 

vehicle model at the same time in order to share their expertise. 

2.2 Size and Complexity of Data Produced from the Models 

To monitor the vehicle's behavior during a crash test, many sensors are placed 

throughout the vehicle. This is true whether the test is conducted in a test facility or 

modeled computationally. Data from these sensors, such as acceleration, force, and 

displacement is essential to understand the behavior of the vehicle in a crash. In order to 

get an accurate idea of the events during a crash, a crashworthiness engineer may use 20 

or more of such sensors per vehicle model. To complicate the picture, each model may 

be simulated using different material models, computational algorithms and crash test 

scenarios. This can lead to thousands of data sets that often need to be compared to each 

other. Figure 1 illustrates the potential amount of data that a problem-solving 

environment has to deal with. CPSE should be able to provide its users with a powerful 
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and easy to use database system that can handle such large amount of diverse data. 

Accessibility is also an issue: the researchers with different backgrounds need to easily 

retrieve any combination of test data as well as view the deformation of the vehicle and 

its components as the crash progresses. 

2.3 Need for Visualization of Models and Experimental Data 

As seen above, large vehicle 

models for crashworthiness 

research can generate large amount 

of data. Another problem that any 

proposed CPSE would face is the 

need to effectively visualize the 

model and the data generated from 

it. During an analysis of a crash, it 

is very important to properly view 

the state of the vehicle before, 

during, and after the crash. When 

visualizing a finite element based 

vehicle model, each shell finite 

element is generally represented by 

one polygon. Therefore, for a 

model with 160,000 finite elements, 

the computer will need to render 

Need for database capability 
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160,000 polygons. If a user wishes to smoothly move or rotate this model, the computer 

will need to render about 20 frames per second or 3.2 million polygons per second. With 

backface culling (rendering both sides of every polygon), this number would double 

again. It is easy to see how a crashworthiness model may present a significant drain on a 

workstation's rendering resources. 

The data generated by the model also presents visualization challenges. Much of 

the data can depend on multiple factors requiring graphing in three or more dimensions. 

Additionally, the data for the simulation is stored in time intervals of 1 ms for duration of 

lOO-150ms. In the case of displacement data, this would create up to 150 different 

representations of a vehicle as it proceeds through the crash simulation. Providing such 

support for every user regardless of what his or her computing platform is would be one 

of the major challenges for any problem solving environment. 

2.4 Unifying computer and human resources 

Due to their complexity, crashworthiness models require significant computing 

resources for development and simulation. Resources necessary for crashworthiness 

research as well as the researchers themselves are geographically separated. To allow 

researchers to pursue crashworthiness research from different geographic location, a 

crashworthiness problem-solving environment must take advantage of the computer 

networking superstructure already in place (Internet or Internet2). A networked PSE will 

also have the effect of allowing researchers with different backgrounds and interests to 

participate in research, as well as allowing the industry leaders to easily collaborate on 

their accomplishments. Additionally, using the already established networking 
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infrastructure would permit access to modeling data from a testing laboratory or a real 

crash site. A CPSE aimed at crashworthiness research should allow the researcher to 

access the computing resources and data he or she needs remotely. 

3 Collaborative Toolkit for Crashworthiness Research 

Collaborative Toolkit for Crashworthiness Research (CTCR) is a problem solving 

environment that aims to provide a researcher with a set of tools to solve crashworthiness 

specific problems. CTCR uses a web-based interface to bring together many useful tools 

for crashworthiness modeling. Web-based interface provides for easy remote access as 

well as for collaboration between researchers using well established protocols and 

familiar user interfaces. Functions of the CTCR can be divided into five separate areas: 

1. Visualization of the model 

2. Visualization of the simulation and test results 

3. Collaboration and record keeping 

4. Building Modeling Data 

5. User Interface 

Separate modules deal with each of the above needs. Web interface used already 

established Internet technologies for file transfer, security, visualization and collaboration 

allowing the design team to concentrate on developing the problem solving environment 

instead of the supporting technologies. Technologies like Virtual Reality Markup 

Language (VRML) [5] and lava3D [14] allowed for visualization of the models and the 

three-dimensional test results using the Internet. The Common Gateway Interface (CGI) 
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[15] used in conjunction with Perl programming language provided for the 

communication between the user and the data server. Flash technology from 

Macromedia [16] allowed for test results to be requested by the user in a clear and 

attractive manner. Finally, Java and specifically its Swing GUI package [17], allowed for 

convenient internet-based user interface to be developed for the modeling data builder. 

All of these technologies are tied together using Hyper Text Markup Language (HTML) 

in a convenient and easy to use web page. Using such widespread teclmologies allow for 

the user to interact with the CTCR using a standard Internet browser. Additionally, this 

type of struchlre allows for mirroring of the CTCR web site to allow handling large 

number of users. 

In the following sections, each of the modules will be discussed in detail, as well 

as their role in the CTCR and how they meet the needs of crashworthiness research. 

3.1 VRML Model Visualization Module 

Because the researcher has to work with a detailed vehicle model, it is necessary 

to provide him or her with a good visualization tool. CTCR's Model Visualization 

Module visualizes the model, empowering the user to gather information and collaborate 

on the model. Additionally, CTCR's Model Visualization Module allows for easy access 

of other tools within the CTCR package. 

To effectively view the vehicle models through a network infrastructure, CTCR 

uses the Virtual Reality Modeling Language (VRML). VRML is a file format for 

describing interactive 3D objects and worlds [5]. VRML is especially well suited for a 

distributed environment like the World Wide Web by allowing hyperlinking to other files 
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and supporting other Internet file formats. Due to VRML's ability to interact with the 

user, the network environment, and other tools within the CTCR, it was a good choice for 

CTCR's Visualization Module. The visualization tool had to provide certain basic 

services to the user through the VRML interface. User should be able to : 

1. View the model remotely 

2. Effectively gather information about the model 

3. Provide feedback on the model 

VRML, with the assistance of other web-based technologies such as JavaScript [8] and 

HTML was able to cover these requirements in the following ways: 

3.1.1 Viewing the model 

A VRML file format is a plain text format that describes the shapes and their 

properties within a 3D world. This file only specifies objects and shapes within a virtual 

environment; it does not handle any of the navigation. Moving through the world, 

rotating objects, and similar functions are handled through a VRML player, an 

application that displays the VRML file . Therefore, to represent a vehicle model in 

VRML, CTCR only has to include objects to be viewed and not an implementation to 

view them. Each object (or vehicle part in this case) is described in a node, an 

encapsulated entity containing information that defines that object. To define object 

shape, color, position, and other properties, other nodes containing that information are 

added to the original object node. For example, to create a sphere in a VRML world, user 

would first create a parent node named "Sphere". Then he or she would attach a shape 

("child") node that contains sphere's geometrical information. To complete the task, 
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other children can be attached specifying color, material, position, or rotation. However, 

the real strength of VRML lies in its ability to attach behavior nodes to objects. Using 

JavaScript, another well-established web-based technology, it is easy to describe simple 

behaviors for every object. For example, the before mentioned sphere can be made to 

light up every time it receives focus from a mouse pointer or to bring up a specific web 

page when clicked upon. 

Vehicle geometry is converted into a VRML file by a Perl script that sorts the 

parts, assigns them positions and rotations, colors them, and assigns them appropriate 

behaviors. Due to this automated process it is possible to quickly export new versions of 

the vehicle model to VRML format and post them for viewing and collaboration on the 

web. The vehicle can then be viewed by VRML players such as Cosmo Software's 

Cosmo Player [12] or Sony' s Community Place from multitude of Internet browsers and 

computing platforms. 

3.1.2 Gathering information about the model 

In order to add interactivity to the model, CTCR creates a virtual control panel 

that constantly follows the user inside the VRML world. The panel allows the user to 

select individual vehicle parts, examine their mesh makeup, move, rotate, and eventually 

call up an information page about the part. The "explode" feature separates the 

individual parts, allowing the user to get a good idea about the interconnectivity of the 

vehicle. The control panel also displays the name of the part and the subsystem it 

belongs to (Figure 2). 
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By using this control panel, the user can easily navigate through the vehicle and 

gather information about it. The delete function allows the user to remove any parts that 

are obstructing the area of interest. This is a common occurrence, especially if wanting 

to examine a cramped area, such as the engine compartment. Additionally, the user is 

able to examine part's mesh composition by selecting it. Best of all, these behaviors are 

easy to add, delete, or alter, due to the object-oriented design of the VRML interface. 

Figure 2 VRML control panel interface within Cosmo Player and Netscape 4.7 

3.1.3 Providing feedback on the model 

By selecting a part and the "info" button on the control panel, the user will bring 

up an information page about that specific vehicle part. Here, one will have an 

opportunity to read comments of other researchers about the part, or even enter one. This 
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type of interface has several advantages. First, it allows the comments to be sorted by the 

area of interest. Additionally, by linking VRML to an HTML page, all the other tools 

that make up CTCR become available. In other words, the toolkit will provide the 

appropriate tools when a user needs them. 

For example, the user may select one of the vehicle fenders, and bring up an 

information page about it. Here, user can read the comments left by his colleagues about 

the finite element model of the part and make some comments of his own. He will be 

provided with a link to the image server, in case he wishes to view the actual photographs 

of the part. Or he may bring up a graph containing the forces acting on the part during a 

crash. He may decide that this particular part's response is not satisfactory due to the 

selected material modeling technology and decide to pick another one using the Material 

Model Builder. CTCR can increase productivity by placing all the other tools in the 

package within the easy reach ofthe researcher. 

3.2 Visualization of Simulation and Test Results 

Crashworthiness research generates a large amount of data that a researcher needs 

to analyze. This data can be classified into two areas : vehicle deformation data, and the 

data collected by sensors placed throughout the vehicle. Vehicle deformation is viewed 

and analyzed through a multitude of crash movies (Figure 3). These movies are sorted 

and served so that the user may easily access and compare them. Sensor data is handled 

by the Graph Server Module (GSM). With GSM, CTCR provides the researcher with a 

tool that can access crashworthiness graph data in an easy-to-use and flexible fashion. 

The GSM is based on two internet technologies: Flash and CGI scripting. 
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Figure 3 Deformation data of 1997 Ford Explorer 

3.2.1 Macromedia Flash technology within the GSM 

Macromedia's Flash technology has been on the market since 1995, but has only 

recently (with release of Version 4 in 1999) been expanded to allow the amount of 

interactivity necessary to be a part of the CTCR. Flash is authoring software for creating 

scalable and interactive animation for the web [6]. It can be used to create everything 

from animated logos to complex Internet commerce applications. Flash's vector graphics 

make intricate animations compact, reducing transfer times over the network. Complex 

behavior can be incorporated into Flash applications, making it a perfect choice for easy 

and quick GUIon the web. Additionally, Flash can communicate with CGI, allowing 

server-side scripts to be incorporated with Flash applications. To operate, Flash requires 

a free browser plug-in that comes bundled with some versions of Netscape 

Communicator and Microsoft Internet Explorer. 
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To serve crashworthiness data graphs, Flash application displays a rendering of 

the vehicle with each data point clearly marked (Figure 4). If a user moves the mouse 

pointer over the data point, he or she will receive information about that data point. If a 

user selects the data point, then a menu with all the data sets attached to that particular 

data point is shown. Within the menu, data sets are sorted by the type of test they 

represent or by the material model or simulation technique that was used when generating 

the data. User can then proceed to select the data set(s) he or she wishes to graph and 

plot them. This type of arrangement allows the user to view the data graphs for each data 

," Inl"Io'I<:IIYQ Graph Sr.'YGI tlcts&apl'l - - - - PlIi3~ 

CSfI\ oml , - . . . , PIOI H"lp 

Figure 4 Flash Implementation of the Graph Server Module 

point as well as graphing multiple graphs onto one plotting area so that performances of 

different parts, material models, or simulation techniques can be compared. 

The data served by the GSM is also very flexible and easily revisable. The Flash 

application has been designed to use a set of templates detailing which data sets should 
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be displayed in the menu. Updates and changes to the system can be accomplished by 

template modification. 

3.2.2 Common Gateway Interface (CGI) and server side scripting 

Once the user decides which data sets to plot, the request is passed from the Flash 

interface through the Common Gateway Interface (CGI) to the server. This request is 

then processed by the 

Perl script, which fetches 

the desired data sets from 

the database and creates 

the desired plot (Figure 

5). 

Both CGI and 

Perl have been used to 

add interactivity to the 

World Wide Web since 

its early days. CGI, 

which IS the gateway 

Graph Server for ULSAB Crash Simulations 
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Material Model: 

between a user's browser Figure 5 Plot generated by GSM's server side Perl script 

and any program running on the server, has been most commonly used for applications 

like counters and guest books on web pages. However, Perl, which runs a script on the 

server side of the CGI, is a very powerful programming environment. Because the 

libraries for generating image files and data graphs were already developed, GSM was 
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fairly easy to implement. This met our goal to combine existing technologies providing a 

practical environment for collaboration on crashworthiness projects. 

3.3 Electronic Notebook 

Documentation is an essential component of every research endeavor. Due to the 

collaborative and web-based nature of CTCR, one of its essential components is an 

"electronic notebook", a tool which allows scientists to share their ideas, data, and events 

of their joint research. To fulfill this need, we chose the product of DOE 2000 Electronic 

Notebook Project. 

The Electronic Notebook was developed in 1996 by Al Geist and Noel Nachtigal 

of the Oak Ridge National Laboratory [13]. It is now used by more than 100 research 

groups all over the world. By using CGl scripting, JavaScript and Java applets, the 

Electronic Notebook is an equivalent of a paper notebook allowing the researcher to write 

to its pages, add tables and sketches, and (digitally) sign and date all entries (Figure 6). 

The Electronic Notebook is also more capable than its paper equivalent: it can store audio 

and video files as well as spreadsheet data. Other advantages of the Electronic Notebook 

include ease of use, security, and expandability. 
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The Electronic Notebook is designed to be used from a regular Internet browser 

which made it easy to integrate with CTCR. Unlike its paper equivalent, the Electronic 

·Date and·Au1hor(.) I Not,riud Tue Oct 19 19:22;491999 (GMT) by NlA il J 
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Figure 6 Example of a Electronic Notebook page 

Notebook can be searched with its built-in search engine. Sketches can be scanned in and 

imported as an image file, or made quickly by using the Java applet that allows sketching 

(Figure 7). 

The Notebook integrates several security mechanisms. It is possible to digitally 

sign (notarize) the Notebook pages, making sure that no one can alter the information 

after it is entered. A password access can be specified for different groups of users. For 

example, some users may be allowed only to enter new information, where others could 
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edit or delete pages. Data security on the network can be assured with SSL encryption, a 

feature supported by many web browsers. 

By changing the MIME types of the files that the Notebook can accept, the user 

can expand the Electronic Notebook to fit any uses. Additionally, third party plug-ins 

can be used within the 

Notebook to further expand its 

functionality. 

The Electronic 

Notebook was included in the 

CTCR to provide a medium for 

discussion between the 

researchers who are often 
Figure 7 Electronic Notebook's Java sketchpad. 

separated geographically. 

HTML make-up of the Notebook allowed for easy integration into CTCR, putting it 

within easy reach of the researcher while he or she is using any of the other tools within 

the CTCR. 

3.4 Material Model Builder 

Even the FEM models with large numbers of elements will not be able to produce 

realistic results without a realistically modeled material behavior. The understanding of 

material behavior is far from complete. Even widely-used engineering materials (e.g., 

mild steel) lack reliable data for crashworthiness modeling. The CTCR should contain a 

set of tools that guide the user through a material models selection process, helping select 
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the model that is most appropriate for the current situation. The CTCR also provides the 

user with a database of commonly used materials models. Here the collaborative aspect 

of the CPSE would be of extreme significance: researchers could share material models 

that have worked for them in the past, and thus save on development time. CTCR 

addresses above needs with its Material Model Builder (MMB). 

The objective of MMB is to provide interactive, user-friendly procedures for 

development of computational material models for engineering simulations. Addition of 

MMB to CTCR allows for engineers with less experience in materials modeling to be as 

effective in crashworthiness research as those with more experience in the field. MMB 

does not need to be applied to crashworthiness only, it can be used in any field where 

selection of an appropriate model for a material is necessary. MMB can be divided into 

several building blocks: 

1. User interface module 

2. Data fitting module 

3. Model evaluation module 

4. Visualization module 

5. Model flow chart builder 

6. Advisor module 

7. Model formatter 

8. Materials database 

9. Material documentation module 

10. System Help 

Their integration in the system is shown in Figure 8. 
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The Advisor Module is 

the key to guiding the user 

through a material model 

selection process. The purpose 

of Advisor Module is to provide 

guidelines for the specification 

of required data, model types, 

and sequence of procedures that 

must be followed for material 

model development. The advisor 

defines material-option flow 

charts (the Model Flow Module) 

and leads the user through series 

Data Fitting 
Module 

Material 

\ 
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l-m""J Model 
Formatter 

Figure 8 MMB System Organization Graph 

of procedures in order to develop a material model that suits the user's requirements. By 

pressing on the boxes of the flowchart, the user is taken to the model building subroutine 

associated with the box. Flow chart representation also visualizes the entire process in the 

user's mind, helping him or her to understand the formal theory behind the procedure, as 

well as providing a guide for the entire material model building process and thus reducing 

potential mistakes. The flowchart can be as long as the most complex material model 

available. However, user can end the model building at the level of complexity suited for 

the simulation. 

Throughout the material model selection process, the Data Fitting Module fits the 

information acquired from the user to the material model formulation. The main data 
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fitting technique is based on Levenberg-Marquardt method [10], which has become de

facto standard of non-linear least square data fitting routines. Model Evaluation Module 

uses measure levels from the fitting algorithms to evaluate the data fit to the specific 

formulation. Where appropriate, confidence intervals based on predetermined or user 

specified confidence levels are calculated and presented to the user in a graphical form so 

that a decision can be made on potential modification or restriction of data sets in order to 

develop a robust model estimate. In order to further increase user confidence in the 

model, data from Material Database is continuously presented and updated so that the 

user can compare their models with characteristic properties of the similar materials. 

Material Documentation Module serves dynamic hypertext documents built from its own 

database that provide background information about the material and material model 

formulations, as well as hyperlinks and references to the key literature on the subject. 

The Visualization Module continuously performs the visualization of the material 

model as the model building progresses. Visualization of the data sets, data fits, model 

formulations, error distributions, confidence intervals, and other entities for 1 dimension 

is performed in a bar graph form (picture), 2D data is displayed in a line graph form 

(picture), 3D data is presented as a surface (using VRML or Java3D), and higher 

dimensional data is reduced to sets of lower dimensional objects as appropriate following 

the standard procedure in the literature and engineering practice. The continuously 

updated visualization helps the user to understand the nature and the effect of the 

parameters as they are being added following the Advisor Module's procedure. 

Additionally, on-the-fly model visualization will illustrate the gains and drawbacks 

stemming from adding complexity to the model and assist the user in making a decision 
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about when is the model "good enough". After a satisfactory model is reached, the user 

can use the Model Formatter to export the model into common formats used by 

simulation software. 

These modules are tied together through the User Interface Module. Access to the 

information stored within the system can be easily accessible in a way that seems natural 

to the users. This module must recognize that there a numerous ways that a user would 

want to use the system. The data input can be verified by the system, and inconsistencies 

in the trends and values, confidence intervals, and data scatter characteristics, signaled to 

the user. Since Java is easily distributed, secure over networks, compatible with multiple 

platforms, and contains good GUI capabilities, it presents a good programming 

environment for the MMB. [9] Areas of the MMB which require performance that Java 

can not provide (such as the Data Fitting Module), can be implemented in C and 

integrated into Java using the Java Native Interface (JNI). Finally, the object oriented 

implementation of Java allows for additional modules to easily be added as they become 

available. 

4 Conclusions 

CTCR has been developed over a period of two years with constant communication 

between the users and the CTCR designers. It has been used by mechanical engineers, 

design engineers, material scientists, program managers, and others whose comments and 

suggestions resulted in creation of a CPSE that can cater to the needs of users with 

different backgrounds and levels of knowledge. Because CTCR was used by variety of 

users, it was possible to identify problems within the modules early, and correct them 
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while CTCR was still in development. Other lessons learned in the design of the CTCR 

can also be easily extended to other CPSE systems. CTCR's use of existing Internet 

technologies is a good example. By using well-established Internet technologies such as 

HTTP, JavaScript, or CGI, complex CPSE can be built quickly and economically. These 

technologies also increase expandability of a software package because new tools for the 

Internet are becoming readily available. CTCR serves as a good example of how 

multiple tools, which differ greatly in implementation, can be brought together 

seamlessly using an ordinary Internet browser. Because most users are already familiar 

with how to use their Web browsers, using these technologies can decrease the learning 

curve users must face when using a new CPSE. Modules of the CTCR can be accessed 

through the web pages of the Computational Materials Science Group, Oak Ridge 

National Laboratory located at http://www-cms.ornl.gov. 

The problem of crashworthiness modeling environments is still in early stages of 

being solved. Although CTCR presents a significant help to a crashworthiness 

researcher, there are other improvements that can increase effectiveness. As computing 

power increases and becomes more accessible, designers may be able to generate models 

and get the results within a few minutes. Today it takes many hours just to simulate 

deformation of one subsystem in detail. Additionally, as Internet bandwidths and 

supporting technology continue to evolve, many other tools will become more commonly 

used within CPSEs. Collaboration technologies can be expected to break the 

geographical boundaries between researchers, making collaborative long-distance 

research practical and commonplace. 
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