
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Chancellor’s Honors Program Projects Supervised Undergraduate Student Research
and Creative Work

Spring 5-2002

Collaborative Toolkit for Crashworthiness Research Collaborative Toolkit for Crashworthiness Research

Aleksander Bobrek
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_chanhonoproj

Recommended Citation Recommended Citation
Bobrek, Aleksander, "Collaborative Toolkit for Crashworthiness Research" (2002). Chancellor’s Honors
Program Projects.
https://trace.tennessee.edu/utk_chanhonoproj/514

This is brought to you for free and open access by the Supervised Undergraduate Student Research and Creative
Work at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Chancellor’s
Honors Program Projects by an authorized administrator of TRACE: Tennessee Research and Creative Exchange.
For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_chanhonoproj
https://trace.tennessee.edu/utk_supug
https://trace.tennessee.edu/utk_supug
https://trace.tennessee.edu/utk_chanhonoproj?utm_source=trace.tennessee.edu%2Futk_chanhonoproj%2F514&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

UNIVERSITY HONORS PROGRAM

SENIOR PROJECT - APPROVAL

Name: If L--~X: 606l~tL

College: e'A2QIVcZl;(L f/\.JC Department: ' g, 0"L-~C-Trt' C--4L

I have reviewed this completed senior honors thesis with this student and certify that it is a
project commensurate with nOli$ level undergraduate research in this field .

Signed: _ {~ l ~ Faculty Mentor
-J

Date: S/8 (D 1...--

Comments (Optional):

Collaborative Toolkit for Crashworthiness
Research

Senior Honors Project

Alex Bobrek
Dept. of Electrical and Computer Engineering

The University of Tennessee

Mentor:
Dr. Srdan Simunovic

Computational Materials Science Group
Computer Science and Mathematics Division

Oak Ridge National Laboratory

Abstract

Safety of today's cars and trucks is of the foremost importance during their design
process. To ensure the safety of vehicle's occupants during a crash, many expensive and
time consuming tests must be conducted. Computer modeling of crashworthiness
decreases the design cost and empowers the designers to explore new concepts with
much more confidence that their final product would be feasible and performing to the
design specifications. To capture the complexity of vehicle deformations in computer
simulations, detailed models with complex geometric, functional, and material features
are necessary, and in general require full utilization of available supercomputing
resources. Crash simulation research has been an early user of the supercomputing
technology, and has followed its development by increasing the complexity and size of
the models in order to achieve the maximum possible fidelity. Since the supercomputing
resources are available only at limited number of locations in the United States,
development of collaborative methods for crashworthiness research would allow for
effective utilization of the computational and human resources. In addition, development
of a collaborative problem-solving environment (CPSE) using the computer networking
infrastructure would permit researchers with different backgrounds, interests, and roles in
the design and production system to actively participate in crashworthiness research and,
therefore, ensure improved performance of the final product. The main obstacle for
providing efficient collaboration tools for automobile crashworthiness is the complexity
and the size of the simulation results. Collaboration that would distribute full-size models
between the participants would easily surpass current Internet bandwidths.

Organizing and visualizing simulation data in a manner that is understandable and
useful to researchers with different backgrounds and working on different aspects of a
design, are the key components of an effective CPSE. Several emerging Web-based
technologies have matured enough to be combined into a practical and effective
infrastructure for collaborative problem-solving environment. Development of the CPSE
for the ongoing crashworthiness research at Oak Ridge National Laboratory is presented
in this paper.

1 Introduction

Perhaps the most drastic automotive design verification comes from vehicle collision

tests. Not only do they bring perspective to everyday driving but also make one more

appreciative of challenges facing vehicle designers. The amounts of energy and

deformation involved in collision are significant, and must be well understood to be

harnessed into mechanisms that will protect vehicle occupants. In recent years

2

considerable effort has been directed towards development of computational

methodologies for simulating the mechanical response of automotive structures in

collisions. It has become a standard practice in vehicle design to evaluate new and

existing vehicles using computational simulations using large and complex models based

on finite Element Method (FEM) [1 I].

Computational vehicle models have to capture complex deformation and interaction

of vehicle parts and subsystems occurring during impact. The accuracy with which the

crash behavior of the vehicle is simulated can be related in part to the density of the

computational cells (finite elements) employed in the vehicle regions that experience

significant permanent deformations. Therefore, a single vehicle crash model that would

accurately simulate a wide range of impact conditions (frontal, side, offset, oblique

impact, roll-over) would require high density of finite elements over the entire vehicle.

High finite element density is not the only requirement for an accurate model: the finite

elements must join in a physically and computationally feasible way and materials

properties of the vehicle must be approximated correctly. The problem then becomes one

of generating a modeling environment that can be used for rapid generation and analysis

of accurate crash situation-specific models. Creation of modeling environment and other

tools for generation of crashworthiness models is ongoing research at the Oak Ridge

National Laboratory.

A Problem Solving Environment is a set of tools dedicated to solving a target class of

problems [1]. A PSE brings together computational resources, virtual libraries,

visualization environments, databases, and expert systems in order to allow a scientist to

concentrate on the science instead of the tools. To accomplish this task, PSE needs to

3

provide the expert assistance and software tools to the researcher in an user-friendly

environment [2] . Recent developments in Internet networking technology have given rise

to collaborative problem-solving environments (CPSEs) that allow geographically

separated researchers to share knowledge and ideas while solving a specific class of

problems. In this paper, we will describe the development of the Collaborative Toolkit

for Crashworthiness Research (CTCR), a CPSE that aims to meet the needs of

crashworthiness model generation. The CTCR was created using well-established

Internet technologies reducing development time and providing the user with a familiar

user interface.

2 Requirements for crashworthiness CPSEs

When considering implementation of a Collaborative Problem Solving

Environment (CPSE) in relation to crashworthiness, there are several important issues to

be taken into account. Some of these issues are unique to the field of crashworthiness

and material modeling, where some are common to all CPSEs. However, all these issues

must be considered when designing a CPSE to be used in this area of research. Some of

these considerations include:

1. Size and complexity of the crashworthiness models

2. Size and complexity of the data produced from the models

3. Need for visualization of the models, simulation results, and experimental data

4. Unifying computing and human resources

5. Meeting the needs of users with different backgrounds and skill levels

4

Next four subsections will aim to address these issues and illustrate how they affect the

design of CPSEs.

2.1 Size and Complexity of the Crashworthiness Models

Although crashworthiness tests have been conducted since 1930s, it was not until

the 1970s and 1980s that the tests were analytically modeled using the FEM. Modeling

beginnings were humble, simulating structural collapse of individual components whose

properties were well known. As the computing power available to conduct these

experiments increased, so did the complexity of the models. Where in 1988 a state-of

the-art FEM vehicle model would have about 10,000 elements, in 1998 a similar model

would be composed of up to 160,000 elements. For the detailed description of the FEM,

reader is referred to a standard FEM textbook such as [11] . Vehicle components may be

represented within the model by several different techniques. FEM modeling

abstractions are assemblies of solid, shell, or beam finite elements. For example, a solid

bar-shaped object such as a suspension link can be represented as one-dimensional

object, i.e. beam. However, complex objects that are too irregular to be modeled as a

one-dimensional beam, must be modeled as three-dimensional objects. This usually

involves tediously generating a Computer Aided Drafting (CAD) representation of the

object and then "shrink wrapping" a FEM around it. Most of the vehicle model is

represented as an assembly of shells that are two-dimensional computational entities.

Shell elements are used extensively because of their computational efficiency and

because a large amount of the vehicle is made of sheet metal. Shells are generated much

5

in the same way as solids: CAD representation of a vehicle part must be first generated,

and then FEM mesh projected onto the surface [4].

Properly applying these modeling techniques can significantly impact the

performance of the model. For example, care must be taken that the objects do not

penetrate each other because that would result in an incorrect FEM representation.

Additionally, the individual parts must fit together in exact relation as in the real vehicle

to simulate the crash time conditions. As a result, crashworthiness CPSE must be able to

successfully handle models of high complexity and large size. Large model size makes

sharing a full size model across current Internet bandwidths impractical. The

collaborative aspect of a CPSE should allow for multiple users to be able to work on the

vehicle model at the same time in order to share their expertise.

2.2 Size and Complexity of Data Produced from the Models

To monitor the vehicle's behavior during a crash test, many sensors are placed

throughout the vehicle. This is true whether the test is conducted in a test facility or

modeled computationally. Data from these sensors, such as acceleration, force, and

displacement is essential to understand the behavior of the vehicle in a crash. In order to

get an accurate idea of the events during a crash, a crashworthiness engineer may use 20

or more of such sensors per vehicle model. To complicate the picture, each model may

be simulated using different material models, computational algorithms and crash test

scenarios. This can lead to thousands of data sets that often need to be compared to each

other. Figure 1 illustrates the potential amount of data that a problem-solving

environment has to deal with. CPSE should be able to provide its users with a powerful

6

and easy to use database system that can handle such large amount of diverse data.

Accessibility is also an issue: the researchers with different backgrounds need to easily

retrieve any combination of test data as well as view the deformation of the vehicle and

its components as the crash progresses.

2.3 Need for Visualization of Models and Experimental Data

As seen above, large vehicle

models for crashworthiness

research can generate large amount

of data. Another problem that any

proposed CPSE would face is the

need to effectively visualize the

model and the data generated from

it. During an analysis of a crash, it

is very important to properly view

the state of the vehicle before,

during, and after the crash. When

visualizing a finite element based

vehicle model, each shell finite

element is generally represented by

one polygon. Therefore, for a

model with 160,000 finite elements,

the computer will need to render

Need for database capability

Model
My of the hundreds of vehdes in Ihe US
ca neel may be moreled

II
J.

Material Model
For f!>Iery morel, differenl maleria models
are Lt3ed for simuaion Examples elastic, II
elasto- ~astic ..

J
Type of Crash

For each maerial model, many crash
srtuatlCflS may be lested· fror/fI, Sire
impact, vehcletoveticle

- 1
Data Points

For each crash siluati on, between 50 and
1CO da a points may be selected.
depending Cflthe reseacher's WIShes

J,
Type of Oat a

Finaly, each of the data pOints may cary
different type of data sLCh as acceienaion,
focee, or displacement.

Total amount of data graphs
that a CPSE must be able to
keep track of per vehicle
model.

II

Possibilities:

1
vetr.cle modeled

- 30
of d,fferenl rna BI rno:Jels

per vehiCle

-10
crash siluaions per malenal

model

- 50

-10
dee types per dala pOlnl

tens of thousands

Figure 1 Amount of data potentially generated by
crashworthiness research

7

160,000 polygons. If a user wishes to smoothly move or rotate this model, the computer

will need to render about 20 frames per second or 3.2 million polygons per second. With

backface culling (rendering both sides of every polygon), this number would double

again. It is easy to see how a crashworthiness model may present a significant drain on a

workstation's rendering resources.

The data generated by the model also presents visualization challenges. Much of

the data can depend on multiple factors requiring graphing in three or more dimensions.

Additionally, the data for the simulation is stored in time intervals of 1 ms for duration of

lOO-150ms. In the case of displacement data, this would create up to 150 different

representations of a vehicle as it proceeds through the crash simulation. Providing such

support for every user regardless of what his or her computing platform is would be one

of the major challenges for any problem solving environment.

2.4 Unifying computer and human resources

Due to their complexity, crashworthiness models require significant computing

resources for development and simulation. Resources necessary for crashworthiness

research as well as the researchers themselves are geographically separated. To allow

researchers to pursue crashworthiness research from different geographic location, a

crashworthiness problem-solving environment must take advantage of the computer

networking superstructure already in place (Internet or Internet2). A networked PSE will

also have the effect of allowing researchers with different backgrounds and interests to

participate in research, as well as allowing the industry leaders to easily collaborate on

their accomplishments. Additionally, using the already established networking

8

infrastructure would permit access to modeling data from a testing laboratory or a real

crash site. A CPSE aimed at crashworthiness research should allow the researcher to

access the computing resources and data he or she needs remotely.

3 Collaborative Toolkit for Crashworthiness Research

Collaborative Toolkit for Crashworthiness Research (CTCR) is a problem solving

environment that aims to provide a researcher with a set of tools to solve crashworthiness

specific problems. CTCR uses a web-based interface to bring together many useful tools

for crashworthiness modeling. Web-based interface provides for easy remote access as

well as for collaboration between researchers using well established protocols and

familiar user interfaces. Functions of the CTCR can be divided into five separate areas:

1. Visualization of the model

2. Visualization of the simulation and test results

3. Collaboration and record keeping

4. Building Modeling Data

5. User Interface

Separate modules deal with each of the above needs. Web interface used already

established Internet technologies for file transfer, security, visualization and collaboration

allowing the design team to concentrate on developing the problem solving environment

instead of the supporting technologies. Technologies like Virtual Reality Markup

Language (VRML) [5] and lava3D [14] allowed for visualization of the models and the

three-dimensional test results using the Internet. The Common Gateway Interface (CGI)

9

[15] used in conjunction with Perl programming language provided for the

communication between the user and the data server. Flash technology from

Macromedia [16] allowed for test results to be requested by the user in a clear and

attractive manner. Finally, Java and specifically its Swing GUI package [17], allowed for

convenient internet-based user interface to be developed for the modeling data builder.

All of these technologies are tied together using Hyper Text Markup Language (HTML)

in a convenient and easy to use web page. Using such widespread teclmologies allow for

the user to interact with the CTCR using a standard Internet browser. Additionally, this

type of struchlre allows for mirroring of the CTCR web site to allow handling large

number of users.

In the following sections, each of the modules will be discussed in detail, as well

as their role in the CTCR and how they meet the needs of crashworthiness research.

3.1 VRML Model Visualization Module

Because the researcher has to work with a detailed vehicle model, it is necessary

to provide him or her with a good visualization tool. CTCR's Model Visualization

Module visualizes the model, empowering the user to gather information and collaborate

on the model. Additionally, CTCR's Model Visualization Module allows for easy access

of other tools within the CTCR package.

To effectively view the vehicle models through a network infrastructure, CTCR

uses the Virtual Reality Modeling Language (VRML). VRML is a file format for

describing interactive 3D objects and worlds [5]. VRML is especially well suited for a

distributed environment like the World Wide Web by allowing hyperlinking to other files

10

and supporting other Internet file formats. Due to VRML's ability to interact with the

user, the network environment, and other tools within the CTCR, it was a good choice for

CTCR's Visualization Module. The visualization tool had to provide certain basic

services to the user through the VRML interface. User should be able to :

1. View the model remotely

2. Effectively gather information about the model

3. Provide feedback on the model

VRML, with the assistance of other web-based technologies such as JavaScript [8] and

HTML was able to cover these requirements in the following ways:

3.1.1 Viewing the model

A VRML file format is a plain text format that describes the shapes and their

properties within a 3D world. This file only specifies objects and shapes within a virtual

environment; it does not handle any of the navigation. Moving through the world,

rotating objects, and similar functions are handled through a VRML player, an

application that displays the VRML file . Therefore, to represent a vehicle model in

VRML, CTCR only has to include objects to be viewed and not an implementation to

view them. Each object (or vehicle part in this case) is described in a node, an

encapsulated entity containing information that defines that object. To define object

shape, color, position, and other properties, other nodes containing that information are

added to the original object node. For example, to create a sphere in a VRML world, user

would first create a parent node named "Sphere". Then he or she would attach a shape

("child") node that contains sphere's geometrical information. To complete the task,

II

other children can be attached specifying color, material, position, or rotation. However,

the real strength of VRML lies in its ability to attach behavior nodes to objects. Using

JavaScript, another well-established web-based technology, it is easy to describe simple

behaviors for every object. For example, the before mentioned sphere can be made to

light up every time it receives focus from a mouse pointer or to bring up a specific web

page when clicked upon.

Vehicle geometry is converted into a VRML file by a Perl script that sorts the

parts, assigns them positions and rotations, colors them, and assigns them appropriate

behaviors. Due to this automated process it is possible to quickly export new versions of

the vehicle model to VRML format and post them for viewing and collaboration on the

web. The vehicle can then be viewed by VRML players such as Cosmo Software's

Cosmo Player [12] or Sony' s Community Place from multitude of Internet browsers and

computing platforms.

3.1.2 Gathering information about the model

In order to add interactivity to the model, CTCR creates a virtual control panel

that constantly follows the user inside the VRML world. The panel allows the user to

select individual vehicle parts, examine their mesh makeup, move, rotate, and eventually

call up an information page about the part. The "explode" feature separates the

individual parts, allowing the user to get a good idea about the interconnectivity of the

vehicle. The control panel also displays the name of the part and the subsystem it

belongs to (Figure 2).

12

By using this control panel, the user can easily navigate through the vehicle and

gather information about it. The delete function allows the user to remove any parts that

are obstructing the area of interest. This is a common occurrence, especially if wanting

to examine a cramped area, such as the engine compartment. Additionally, the user is

able to examine part's mesh composition by selecting it. Best of all, these behaviors are

easy to add, delete, or alter, due to the object-oriented design of the VRML interface.

Figure 2 VRML control panel interface within Cosmo Player and Netscape 4.7

3.1.3 Providing feedback on the model

By selecting a part and the "info" button on the control panel, the user will bring

up an information page about that specific vehicle part. Here, one will have an

opportunity to read comments of other researchers about the part, or even enter one. This

\3

type of interface has several advantages. First, it allows the comments to be sorted by the

area of interest. Additionally, by linking VRML to an HTML page, all the other tools

that make up CTCR become available. In other words, the toolkit will provide the

appropriate tools when a user needs them.

For example, the user may select one of the vehicle fenders, and bring up an

information page about it. Here, user can read the comments left by his colleagues about

the finite element model of the part and make some comments of his own. He will be

provided with a link to the image server, in case he wishes to view the actual photographs

of the part. Or he may bring up a graph containing the forces acting on the part during a

crash. He may decide that this particular part's response is not satisfactory due to the

selected material modeling technology and decide to pick another one using the Material

Model Builder. CTCR can increase productivity by placing all the other tools in the

package within the easy reach ofthe researcher.

3.2 Visualization of Simulation and Test Results

Crashworthiness research generates a large amount of data that a researcher needs

to analyze. This data can be classified into two areas : vehicle deformation data, and the

data collected by sensors placed throughout the vehicle. Vehicle deformation is viewed

and analyzed through a multitude of crash movies (Figure 3). These movies are sorted

and served so that the user may easily access and compare them. Sensor data is handled

by the Graph Server Module (GSM). With GSM, CTCR provides the researcher with a

tool that can access crashworthiness graph data in an easy-to-use and flexible fashion.

The GSM is based on two internet technologies: Flash and CGI scripting.

14

Figure 3 Deformation data of 1997 Ford Explorer

3.2.1 Macromedia Flash technology within the GSM

Macromedia's Flash technology has been on the market since 1995, but has only

recently (with release of Version 4 in 1999) been expanded to allow the amount of

interactivity necessary to be a part of the CTCR. Flash is authoring software for creating

scalable and interactive animation for the web [6]. It can be used to create everything

from animated logos to complex Internet commerce applications. Flash's vector graphics

make intricate animations compact, reducing transfer times over the network. Complex

behavior can be incorporated into Flash applications, making it a perfect choice for easy

and quick GUIon the web. Additionally, Flash can communicate with CGI, allowing

server-side scripts to be incorporated with Flash applications. To operate, Flash requires

a free browser plug-in that comes bundled with some versions of Netscape

Communicator and Microsoft Internet Explorer.

15

To serve crashworthiness data graphs, Flash application displays a rendering of

the vehicle with each data point clearly marked (Figure 4). If a user moves the mouse

pointer over the data point, he or she will receive information about that data point. If a

user selects the data point, then a menu with all the data sets attached to that particular

data point is shown. Within the menu, data sets are sorted by the type of test they

represent or by the material model or simulation technique that was used when generating

the data. User can then proceed to select the data set(s) he or she wishes to graph and

plot them. This type of arrangement allows the user to view the data graphs for each data

," Inl"Io'I<:IIYQ Graph Sr.'YGI tlcts&apl'l - - - - PlIi3~

CSfI\ oml , - . . . , PIOI H"lp

Figure 4 Flash Implementation of the Graph Server Module

point as well as graphing multiple graphs onto one plotting area so that performances of

different parts, material models, or simulation techniques can be compared.

The data served by the GSM is also very flexible and easily revisable. The Flash

application has been designed to use a set of templates detailing which data sets should

16

be displayed in the menu. Updates and changes to the system can be accomplished by

template modification.

3.2.2 Common Gateway Interface (CGI) and server side scripting

Once the user decides which data sets to plot, the request is passed from the Flash

interface through the Common Gateway Interface (CGI) to the server. This request is

then processed by the

Perl script, which fetches

the desired data sets from

the database and creates

the desired plot (Figure

5).

Both CGI and

Perl have been used to

add interactivity to the

World Wide Web since

its early days. CGI,

which IS the gateway

Graph Server for ULSAB Crash Simulations

'0000 f--I--f--f--+--+--I--1--+--jf-------1

20~OO I '- ,- '-"'- - --

0'- -=
z ·~1 dJ ~ I _ [..... / -._ j 20",~ - ri 1// - --~J'>f".c~ --~-t

,,"00 r
&·X1~u . 1 -

-!j000u f--+---1f------+---+-+--+-t---t--f--i

- froot-nkkl-qo-r-6 -- front-nkk.l--Q1.ii-f-? -front-u!JP:l-q~-+'-6

front ··ssp2··qs···f---7

LabdSynt=

(impact 5Csnaria)-(mat.ena1 mocbiO-(strain ratG)-(daia typ9)-(IU1m)

Impact Scenario:

1 frolll- NeAP
2 o~ .. 500/0 Frontal offset ttnpad

Material Model:

between a user's browser Figure 5 Plot generated by GSM's server side Perl script

and any program running on the server, has been most commonly used for applications

like counters and guest books on web pages. However, Perl, which runs a script on the

server side of the CGI, is a very powerful programming environment. Because the

libraries for generating image files and data graphs were already developed, GSM was

17

fairly easy to implement. This met our goal to combine existing technologies providing a

practical environment for collaboration on crashworthiness projects.

3.3 Electronic Notebook

Documentation is an essential component of every research endeavor. Due to the

collaborative and web-based nature of CTCR, one of its essential components is an

"electronic notebook", a tool which allows scientists to share their ideas, data, and events

of their joint research. To fulfill this need, we chose the product of DOE 2000 Electronic

Notebook Project.

The Electronic Notebook was developed in 1996 by Al Geist and Noel Nachtigal

of the Oak Ridge National Laboratory [13]. It is now used by more than 100 research

groups all over the world. By using CGl scripting, JavaScript and Java applets, the

Electronic Notebook is an equivalent of a paper notebook allowing the researcher to write

to its pages, add tables and sketches, and (digitally) sign and date all entries (Figure 6).

The Electronic Notebook is also more capable than its paper equivalent: it can store audio

and video files as well as spreadsheet data. Other advantages of the Electronic Notebook

include ease of use, security, and expandability.

18

The Electronic Notebook is designed to be used from a regular Internet browser

which made it easy to integrate with CTCR. Unlike its paper equivalent, the Electronic

·Date and·Au1hor(.) I Not,riud Tue Oct 19 19:22;491999 (GMT) by NlA il J
tJr.- "t.t4~~";lIr~ (.«*oIpwW

\Potyester I>.-oJeci X I
Be nzene a pPIC4I::J - to be ~ "good solvent for uibi ~"te , u).

L-lnd. Doe D.t_c : Frl"Y 21 '1 1' : 17:4& 1'" (GIlT)

I

Figure 6 Example of a Electronic Notebook page

Notebook can be searched with its built-in search engine. Sketches can be scanned in and

imported as an image file, or made quickly by using the Java applet that allows sketching

(Figure 7).

The Notebook integrates several security mechanisms. It is possible to digitally

sign (notarize) the Notebook pages, making sure that no one can alter the information

after it is entered. A password access can be specified for different groups of users. For

example, some users may be allowed only to enter new information, where others could

19

edit or delete pages. Data security on the network can be assured with SSL encryption, a

feature supported by many web browsers.

By changing the MIME types of the files that the Notebook can accept, the user

can expand the Electronic Notebook to fit any uses. Additionally, third party plug-ins

can be used within the

Notebook to further expand its

functionality.

The Electronic

Notebook was included in the

CTCR to provide a medium for

discussion between the

researchers who are often
Figure 7 Electronic Notebook's Java sketchpad.

separated geographically.

HTML make-up of the Notebook allowed for easy integration into CTCR, putting it

within easy reach of the researcher while he or she is using any of the other tools within

the CTCR.

3.4 Material Model Builder

Even the FEM models with large numbers of elements will not be able to produce

realistic results without a realistically modeled material behavior. The understanding of

material behavior is far from complete. Even widely-used engineering materials (e.g.,

mild steel) lack reliable data for crashworthiness modeling. The CTCR should contain a

set of tools that guide the user through a material models selection process, helping select

20

the model that is most appropriate for the current situation. The CTCR also provides the

user with a database of commonly used materials models. Here the collaborative aspect

of the CPSE would be of extreme significance: researchers could share material models

that have worked for them in the past, and thus save on development time. CTCR

addresses above needs with its Material Model Builder (MMB).

The objective of MMB is to provide interactive, user-friendly procedures for

development of computational material models for engineering simulations. Addition of

MMB to CTCR allows for engineers with less experience in materials modeling to be as

effective in crashworthiness research as those with more experience in the field. MMB

does not need to be applied to crashworthiness only, it can be used in any field where

selection of an appropriate model for a material is necessary. MMB can be divided into

several building blocks:

1. User interface module

2. Data fitting module

3. Model evaluation module

4. Visualization module

5. Model flow chart builder

6. Advisor module

7. Model formatter

8. Materials database

9. Material documentation module

10. System Help

Their integration in the system is shown in Figure 8.

21

The Advisor Module is

the key to guiding the user

through a material model

selection process. The purpose

of Advisor Module is to provide

guidelines for the specification

of required data, model types,

and sequence of procedures that

must be followed for material

model development. The advisor

defines material-option flow

charts (the Model Flow Module)

and leads the user through series

Data Fitting
Module

Material

\
Model \ ~ Materials

E~=~,------.:.----" ;;~"
~ Visualization /

Module

To all modules

'\1/

l-m""J Model
Formatter

Figure 8 MMB System Organization Graph

of procedures in order to develop a material model that suits the user's requirements. By

pressing on the boxes of the flowchart, the user is taken to the model building subroutine

associated with the box. Flow chart representation also visualizes the entire process in the

user's mind, helping him or her to understand the formal theory behind the procedure, as

well as providing a guide for the entire material model building process and thus reducing

potential mistakes. The flowchart can be as long as the most complex material model

available. However, user can end the model building at the level of complexity suited for

the simulation.

Throughout the material model selection process, the Data Fitting Module fits the

information acquired from the user to the material model formulation. The main data

22

fitting technique is based on Levenberg-Marquardt method [10], which has become de

facto standard of non-linear least square data fitting routines. Model Evaluation Module

uses measure levels from the fitting algorithms to evaluate the data fit to the specific

formulation. Where appropriate, confidence intervals based on predetermined or user

specified confidence levels are calculated and presented to the user in a graphical form so

that a decision can be made on potential modification or restriction of data sets in order to

develop a robust model estimate. In order to further increase user confidence in the

model, data from Material Database is continuously presented and updated so that the

user can compare their models with characteristic properties of the similar materials.

Material Documentation Module serves dynamic hypertext documents built from its own

database that provide background information about the material and material model

formulations, as well as hyperlinks and references to the key literature on the subject.

The Visualization Module continuously performs the visualization of the material

model as the model building progresses. Visualization of the data sets, data fits, model

formulations, error distributions, confidence intervals, and other entities for 1 dimension

is performed in a bar graph form (picture), 2D data is displayed in a line graph form

(picture), 3D data is presented as a surface (using VRML or Java3D), and higher

dimensional data is reduced to sets of lower dimensional objects as appropriate following

the standard procedure in the literature and engineering practice. The continuously

updated visualization helps the user to understand the nature and the effect of the

parameters as they are being added following the Advisor Module's procedure.

Additionally, on-the-fly model visualization will illustrate the gains and drawbacks

stemming from adding complexity to the model and assist the user in making a decision

23

about when is the model "good enough". After a satisfactory model is reached, the user

can use the Model Formatter to export the model into common formats used by

simulation software.

These modules are tied together through the User Interface Module. Access to the

information stored within the system can be easily accessible in a way that seems natural

to the users. This module must recognize that there a numerous ways that a user would

want to use the system. The data input can be verified by the system, and inconsistencies

in the trends and values, confidence intervals, and data scatter characteristics, signaled to

the user. Since Java is easily distributed, secure over networks, compatible with multiple

platforms, and contains good GUI capabilities, it presents a good programming

environment for the MMB. [9] Areas of the MMB which require performance that Java

can not provide (such as the Data Fitting Module), can be implemented in C and

integrated into Java using the Java Native Interface (JNI). Finally, the object oriented

implementation of Java allows for additional modules to easily be added as they become

available.

4 Conclusions

CTCR has been developed over a period of two years with constant communication

between the users and the CTCR designers. It has been used by mechanical engineers,

design engineers, material scientists, program managers, and others whose comments and

suggestions resulted in creation of a CPSE that can cater to the needs of users with

different backgrounds and levels of knowledge. Because CTCR was used by variety of

users, it was possible to identify problems within the modules early, and correct them

24

while CTCR was still in development. Other lessons learned in the design of the CTCR

can also be easily extended to other CPSE systems. CTCR's use of existing Internet

technologies is a good example. By using well-established Internet technologies such as

HTTP, JavaScript, or CGI, complex CPSE can be built quickly and economically. These

technologies also increase expandability of a software package because new tools for the

Internet are becoming readily available. CTCR serves as a good example of how

multiple tools, which differ greatly in implementation, can be brought together

seamlessly using an ordinary Internet browser. Because most users are already familiar

with how to use their Web browsers, using these technologies can decrease the learning

curve users must face when using a new CPSE. Modules of the CTCR can be accessed

through the web pages of the Computational Materials Science Group, Oak Ridge

National Laboratory located at http://www-cms.ornl.gov.

The problem of crashworthiness modeling environments is still in early stages of

being solved. Although CTCR presents a significant help to a crashworthiness

researcher, there are other improvements that can increase effectiveness. As computing

power increases and becomes more accessible, designers may be able to generate models

and get the results within a few minutes. Today it takes many hours just to simulate

deformation of one subsystem in detail. Additionally, as Internet bandwidths and

supporting technology continue to evolve, many other tools will become more commonly

used within CPSEs. Collaboration technologies can be expected to break the

geographical boundaries between researchers, making collaborative long-distance

research practical and commonplace.

25

10 Acknowledgements

Research sponsored by the U.S. Department of Energy, Assistant Secretary for Energy

Efficiency and Renewable Energy, Office of Transportation Technologies, Lightweight

Materials Program and by the American Iron and Steel Institute under Project Number

ERD-97-XMOOI with the U.S. Department of Energy. Work was performed at the Oak

Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S.

Department of Energy under contract DE-AC05-000R22725.

References

[I] E. Gallopoulos, E.N. Houstis, and J.R. Rice, "Computer as Thinker/Doer: Problem

Solving Environments for Computational Science," IEEE Computational Science &

Eng., Vol I, No.2, Summer 1994, pp. 11-23.

[2] D. W. Walker, M. Li, O. F. Rana, M. S. Shields, and Y. Huang. "The software

architecture of a distributed problem-solving environment." Technical Report

TMIORNL-1999/321, Oak Ridge National Laboratory, Oak Ridge TN 37831, USA.

February 2000.

[3] A. Paluszny, "State-of-the-art review of automobile structural crashworthiness."

Technical Report, American Iron and Steel Institute, June 1992.

[4] J.G. Thacker, S.W. Reagan, J.A. Pellettiere, W.D. Pilkey, 1.R. Crandall, and E.M

Sieveka. "Experiences during development of a dynamic crash response automobile

model." Finite Elements in Analysis and DeSign, 30:279-295, 1998.

[5] The VRML Consortium. VRML International Standard ISO/IEC 14772-1: 1997.

Available at http://www.vrml.org

26

[6] A. Ames, D. Nadeau, and J. Moreland. VRML 2.0 Sourcebook, Second Edition.

John Wiley & Sons, Inc., New York, 1997.

[7] D. Emberton and J. Hamlin. Flash 4 Magic. New Riders, Indianapolis, 2000.

[8] Y. Shiran and T. Shiran. Advanced JavaScript Programming. Wordware Publishing,

Plano, TX, 1998.

[9] D. Flanagan. Java in a Nutshell, Second Edition. O'Reilly & Associates, Inc.,

Sebastopol, CA, 1997.

[10] W. Press, S. Teuko1sky, W. Vetterling, B. Flannery. Numerical Recipes in C: The

Art of Scientific Computing, Second Edition. Cambridge University Press, 1993.

[11] T. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element

Analysis. Prentice-Hall, Inc., Englewood Cliffs, 1987.

[12] Silicon Graphics, Inc. Cosmo Player 2.1 Release Notes. Mountain View, CA, May

1998. Available at http://www.cosmosoftware.com

[13] Oak Ridge National Laboratory. DOE 2000 Electronic Notebook Project. Oak

Ridge, TN, 1996. Available at http://www.epm.ornl.gov/enote

[14] Sun Microsystems, Inc. Java 3D 1.1 API Specification. Mountain View, CA,

December 1998. Available at http://www.javasoft.comlproducts/java-

medial3 Dlindex .htm 1

[15] National Center for Supercomputing Applications. The Common Gateway

Interface. University of Illinois, Urbana-Champaign. Available at:

http://hoohoo.ncsa.uiuc.edulcgi

[16] Macromedia, Inc. Flash Software Documentation. Available at:

http://www.macromedia.comlflash

27

[17] Sun Microsystems, Inc. Java 1.2.2 API Specification. Mountain View, CA,

October, 1999.

28

	Collaborative Toolkit for Crashworthiness Research
	Recommended Citation

	tmp.1281626643.pdf.YEkD5

