2,648 research outputs found

    Perfect Computational Equivalence between Quantum Turing Machines and Finitely Generated Uniform Quantum Circuit Families

    Get PDF
    In order to establish the computational equivalence between quantum Turing machines (QTMs) and quantum circuit families (QCFs) using Yao's quantum circuit simulation of QTMs, we previously introduced the class of uniform QCFs based on an infinite set of elementary gates, which has been shown to be computationally equivalent to the polynomial-time QTMs (with appropriate restriction of amplitudes) up to bounded error simulation. This result implies that the complexity class BQP introduced by Bernstein and Vazirani for QTMs equals its counterpart for uniform QCFs. However, the complexity classes ZQP and EQP for QTMs do not appear to equal their counterparts for uniform QCFs. In this paper, we introduce a subclass of uniform QCFs, the finitely generated uniform QCFs, based on finite number of elementary gates and show that the class of finitely generated uniform QCFs is perfectly equivalent to the class of polynomial-time QTMs; they can exactly simulate each other. This naturally implies that BQP as well as ZQP and EQP equal the corresponding complexity classes of the finitely generated uniform QCFs.Comment: 11page

    Uniform Diagonalization Theorem for Complexity Classes of Promise Problems including Randomized and Quantum Classes

    Full text link
    Diagonalization in the spirit of Cantor's diagonal arguments is a widely used tool in theoretical computer sciences to obtain structural results about computational problems and complexity classes by indirect proofs. The Uniform Diagonalization Theorem allows the construction of problems outside complexity classes while still being reducible to a specific decision problem. This paper provides a generalization of the Uniform Diagonalization Theorem by extending it to promise problems and the complexity classes they form, e.g. randomized and quantum complexity classes. The theorem requires from the underlying computing model not only the decidability of its acceptance and rejection behaviour but also of its promise-contradicting indifferent behaviour - a property that we will introduce as "total decidability" of promise problems. Implications of the Uniform Diagonalization Theorem are mainly of two kinds: 1. Existence of intermediate problems (e.g. between BQP and QMA) - also known as Ladner's Theorem - and 2. Undecidability if a problem of a complexity class is contained in a subclass (e.g. membership of a QMA-problem in BQP). Like the original Uniform Diagonalization Theorem the extension applies besides BQP and QMA to a large variety of complexity class pairs, including combinations from deterministic, randomized and quantum classes.Comment: 15 page

    Classically-Controlled Quantum Computation

    Get PDF
    Quantum computations usually take place under the control of the classical world. We introduce a Classically-controlled Quantum Turing Machine (CQTM) which is a Turing Machine (TM) with a quantum tape for acting on quantum data, and a classical transition function for a formalized classical control. In CQTM, unitary transformations and measurements are allowed. We show that any classical TM is simulated by a CQTM without loss of efficiency. The gap between classical and quantum computations, already pointed out in the framework of measurement-based quantum computation is confirmed. To appreciate the similarity of programming classical TM and CQTM, examples are given.Comment: 20 page

    Polynomial time quantum computation with advice

    Full text link
    Advice is supplementary information that enhances the computational power of an underlying computation. This paper focuses on advice that is given in the form of a pure quantum state and examines the influence of such advice on the behaviors of an underlying polynomial-time quantum computation with bounded-error probability.Comment: 9 page

    An Introduction to Quantum Complexity Theory

    Get PDF
    We give a basic overview of computational complexity, query complexity, and communication complexity, with quantum information incorporated into each of these scenarios. The aim is to provide simple but clear definitions, and to highlight the interplay between the three scenarios and currently-known quantum algorithms.Comment: 28 pages, LaTeX, 11 figures within the text, to appear in "Collected Papers on Quantum Computation and Quantum Information Theory", edited by C. Macchiavello, G.M. Palma, and A. Zeilinger (World Scientific
    • …
    corecore