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Abstract

It is reasonable to assume that quantum computations take place under the control of the classi-
cal world. For modelling this standard situation, we introduce a Classically-controlled Quantum
Turing Machine (CQTM) which is a Turing machine with a quantum tape for acting on quantum
data, and a classical transition function for a formalized classical control. In CQTM, unitary trans-
formations and quantum measurements are allowed. We show that any classical Turing machine
is simulated by a CQTM without loss of efficiency. Furthermore, we show that any k-tape CQTM
is simulated by a 2-tape CQTM with a quadratic loss of efficiency. The gap between classical and
quantum computations which was already pointed out in the framework of measurement-based
quantum computation (see [14]) is confirmed in the general case of classically-controlled quantum
computation. In order to appreciate the similarity between programming classical Turing machines
and programming CQTM, some examples of CQTM will be given in the full version of the paper.
Proofs of lemmas and theorems are omitted in this extended abstract.
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1 Introduction

Quantum computations operate in the quantum world. For their results to be
useful in any way, by means of measurements for example, they operate under
the control of the classical world. Quantum teleportation [1] illustrates the im-
portance of classical control: the correcting Pauli operation applied at the end
is classically controlled by the outcome of a previous measurement. Another
example of the importance of classical control is measurement-based quantum
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computation [10,12,15,14,16,5], where classical conditional structures are re-
quired for controlling the computation. This classical control may be described
as follows: “if the classical outcome of measurement number i is λ, then mea-
surement number i + 1 is on qubit qa according to observable Oa, otherwise
measurement number i + 1 is on qubit qb according to observable Ob”. A par-
ticularly elegant formalization of measurement-based quantum computation
is the measurement calculus [5].

The necessity of integrating the classical control in the description of quan-
tum computations is a now well understood requirement in the design of high
level languages for quantum programming [7,17]. There are also some proposi-
tions of lower level models of computation integrating classical control, like the
quantum random access machines (QRAM[9,2]). However there exist no for-
mal and abstract model of quantum computation integrating classical control
explicitly. This paper aims at defining such an abstract model of classically-
controlled quantum computation.

One of the main existing abstract models of quantum computation is the
Quantum Turing Machine (QTM) introduced by Deutsch [4], which is an
analogue of the classical Turing machine (TM). It has been extensively studied
by Bernstein and Vazirani [3]: a quantum Turing machine is an abstract
model of quantum computers, which expands the classical model of a Turing
machine by allowing a quantum transition function. In a QTM, superpositions
and interferences of configurations are allowed, but the classical control of
computation is not formalized and inputs and outputs of the machine are
still classical. This second point means that the model of QTM explores the
computational power of quantum mechanics for solving classical problems,
without considering quantum problems, i.e. quantum input/output.

While models dealing with quantum states like quantum circuits [8,19] and
QRAM, are mainly used for describing specific algorithms, the development
of complexity classes, like QMA [18], which deal with quantum states, points
out the necessity of theoretical models of quantum computation acting on
quantum data.

The recently introduced model of Linear Quantum Turing Machine (LQTM)
by S. Iriyama, M. Ohya, and I. Volovich [6] is a generalization of QTM dealing
with mixed states and allowing irreversible transition functions which allow
the representation of quantum measurements without classical outcomes. As
a consequence of this lack of classical outcome, the classical control is not
formalized in LQTM, and, among others, schemes like teleportation cannot
be expressed. Moreover, like QTM, LQTM deals with classical input/output
only.

We introduce here a Classically-controlled Quantum Turing Machine (CQTM)

S. Perdrix, P. Jorrand / Electronic Notes in Theoretical Computer Science 135 (2006) 119–128120



which is a TM with a quantum tape for acting on quantum data, and a clas-
sical transition function for a formalized classical control. In CQTM, unitary
transformations and quantum measurements are allowed. Notice that the
model of CQTM restricted to projective measurements is equivalent to the
model of measurement-based quantum Turing machines (MQTM) introduced
in [14]. Theorem 2.1 shows that any TM is simulated by a CQTM with-
out loss of efficiency. In section 3, CQTM with multiple tapes is introduced.
Theorem 3.1 shows that any k-tape CQTM is simulated by a 2-tape CQTM
with a quadratic loss of efficiency. Moreover, the gap between classical and
quantum computations which was already pointed out in the framework of
measurement-based quantum computation (see [14]) is confirmed in the gen-
eral case of classically-controlled quantum computation. A perspective is to
make the CQTM not only a well defined theoretical model but also a bridge
to practical models of quantum computations like QRAM, by relying on the
fact that natural models of quantum computations are classically controlled.

2 Classically-controlled Quantum Turing Machines

2.1 Quantum states and admissible transformations

The quantum memory of a CQTM is composed of quantum cells. A quantum
cell is a d-level quantum system [11], its state is a normalized vector in a
d-dimensional Hilbert space. A basis of this Hilbert space is described by a
finite alphabet of symbols ΣQ such that |ΣQ| = d. The state |φ〉 ∈ HΣQ

of a
quantum cell is

|φ〉 =
∑

τ∈ΣQ

ατ |τ〉 ,

with
∑

τ∈ΣQ
|ατ |2 = 1.

General quantum measurements operate according to the corresponding
postulate of quantum mechanics: quantum measurements are described by a
collection {Mτ1 , . . . , Mτk

} of measurement operators acting on the state space
of the system being measured. The index τ refers to the measurement out-
comes that may occur in the experiment. If the state of the quantum system
is |ψ〉 immediately before the measurement then the probability that the clas-
sical result τ occurs is given by

p(τ) = 〈ψ|M †
τMτ |ψ〉 ,

and the state of the system after the measurement is

Mτ |ψ〉√
p(τ)

.
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The measurement operators satisfy the completness equation,

∑

τ

M †
τ Mτ = I.

General quantum measurements are also called admissible transformations.
Notice that admissible transformations which are composed of only one op-
erator Mτ are nothing but unitary transformations since p(τ) = 1, the state
after the transformation is Mτ |ψ〉 and the completeness equation reduces to
M †

τ Mτ = I. Conversely, any unitary transformation A is an admissible trans-
formation.

For a given Hilbert space HΣQ
, we exhibit some admissible transformations

with classical results belonging to a finite set ΣC = ΣQ ∪ ΣQ ∪ {λ}, where
ΣQ = {τ : τ ∈ ΣQ} and λ /∈ ΣQ:

• Std = {Mτ}τ∈ΣQ
is a projective measurement in the standard basis: ∀τ ∈

ΣQ, Mτ = |τ〉 〈τ |,
• Tτ = {Mτ , Mτ} is a test for the symbol τ : Mτ = |τ〉 〈τ | and Mτ = I−|τ〉 〈τ |,
• P[τa,τb] = {Mλ} is a unitary transformation with outcome λ, and Mλ =

(
∑

τ∈ΣQ−{τa,τb} |τ〉 〈τ |) + |τa〉 〈τb| + |τb〉 〈τa| is a permutation of the symbols
τa and τb.

• UV = {Mλ} is the unitary transformation Mλ = V , with classical outcome
λ.

• OO = {Pk}k, is a projective measurement according to the observable O =
ΣkPk.

2.2 Defining a CQTM

For completeness, definition 2.1 is the definition of a deterministic TM [13].
A classically-controlled quantum Turing machine (definition 2.2) is composed
of a quantum tape of quantum cells, a set of classical internal states and a
head for applying admissible transformations to cells on the tape. The role of
the head is crucial because it implements the interaction across the boundary
between the quantum and the classical parts of the machine.

Definition 2.1 A deterministic (classical) Turing Machine is defined by a
triplet M = (K, Σ, δ), where K is a finite set of states with an identified
initial state s, Σ is a finite alphabet with an identified “blank” symbol #, and
δ is a deterministic transition:

δ : K × Σ → (K ∪ {“yes”, “no”, h})× Σ × {←,→,−}.
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We assume that h (the halting state), “yes” (the accepting state) and “no”
(the rejecting state) are not in K.

Definition 2.2 A Classically-controlled Quantum Turing Machine is a quin-
tuple M = (K, ΣC , ΣQ,A, δ). Here K is a finite set of classical states with
an identified initial state s, ΣQ is a finite alphabet which denotes basis states
of quantum cells, ΣC is a finite alphabet of classical outcomes, A is a set of
one-quantum cell admissible transformations, and δ is a classical transition
function:

δ : K × ΣC → (K ∪ {“yes”, “no”, h})× {←,→,−}× A.

We assume that h (the halting state), “yes” (the accepting state) and “no”
(the rejecting state) are not in K, and that all possible classical outcomes
of each measurement of A are in ΣC . Moreover we assume that ΣQ always
contains a “blank” symbol #, ΣC always contains a “blank” symbol # and
a “non-blank” symbol #, and A always contains the admissible “blank test”
transformation T#.

The function δ is a formalization of the classical control of the quantum
computation and can also be viewed as the “program” of the machine. It spec-
ifies, for each combination of current state q ∈ K and last obtained classical
outcome τ ∈ ΣC , a triplet δ(q, τ) = (p, D, A), where p is the next classi-
cal state, D ∈ {←,→,−} is the direction in which the head will move, and
A ∈ A is the admissible transformation to be performed next. The blank test
admissible transformation {M#, M#} establishes a correspondence between
the quantum blank symbol (#) and the classical blank (#) and non-blank
(#) symbols: if the state |φ〉 of the measured quantum cell is |#〉, the out-
come of the measurement is # whereas if |φ〉 is orthogonal to |#〉 (〈φ |#〉 = 0)
then the outcome is #.

How does the program start? The quantum input of the computation |φ〉 =∑
τ∈(ΣQ−{#})n ατ |τ〉, which is in general unknown, is placed on n adjacent cells

of the tape, while the state of all other quantum cells of the tape is |#〉. The
head is pointing at the blank cell immediately located on the left of the input.
Initially, the classical state of the machine is s and # is considered as the last
classical outcome, thus the first transition is always δ(s, #).

How does the program halt? The transition function δ is total on K ×ΣC

(irrelevant transitions will be omitted from its description). There is only one
reason why the machine cannot continue: one of the three halting states h,
“yes”, and “no” has been reached. If a machine M halts on input |φin〉, the
output M(|φin〉) of the machine M on |φin〉 is defined. If states “yes” or “no”
are reached, then M(|φin〉) = “yes” or “no” respectively. Otherwise, if halting
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state h is reached then the output is the state |φout〉 of the tape of M at the
time of halting. Since the computation has gone on for finitely many steps,
only a finite number of cells are not in the state |#〉. The output state |φout〉 is
the state of the finite register composed of the quantum cells from the leftmost
cell in a state which is not |#〉 to the rightmost cell in a state which is not
|#〉. Naturally, it is possible that M never halts on input |φin〉. If this is the
case we write M(|φin〉) =↗.

A configuration of a CQTM M is intuitively a complete description of
the current state of the computation. Formally, a configuration is a triplet
(q, τ, |ψ〉), where q ∈ K ∪ {h, “yes”, “no”} is the internal state of M , τ ∈ ΣC

is the last obtained outcome, and |ψ〉 ∈ HΣ′

Q
represents the state of the tape

and the position of the head. Here Σ′
Q = ΣQ ∪ ΣQ, where ΣQ = {τ : τ ∈ ΣQ}

is a set of pointed versions of the symbols in ΣQ. From a state |φ〉 ∈ HΣQ
of

the tape, the state |ψ〉 ∈ HΣ′

Q
is obtained by replacing the symbol of ΣQ by

the corresponding symbol of ΣQ for the quantum cell pointed at by the head.

For instance, if K = {q1, q2}, ΣC = {#, #, t, u, v} and ΣQ = {#, a, b}, the
configuration

(q1, u,
1√
2
(|a#bb〉 + |b#ab〉))

means that the internal state of the machine is q1, the last outcome is u, the
state of the tape is 1√

2
(|a#bb〉+ |b#ab〉), and the head is pointing at the third

cell from the right.

3 CQTM and TM

The following theorem shows that any TM is simulated by a CQTM without
loss of efficiency.

Theorem 3.1 Given any TM MC operating in time f(n), where n is the
input size, there exists a CQTM MQ operating in time O(f(n)) and such that
for any input x, MC(x) = MQ(|x〉)

Since any TM is simulated by a CQTM without loss of efficiency, the
model of CQTM is classically universal (see [14] for definitions of classical
and quantum universalities), but, as will be shown in Lemma 4.4, CQTM
with one tape are not quantum universal, because only one-cell admissible
transformations are allowed. In order to allow transformations on more than
one cell, we introduce multiple tapes CQTMs. Intuitively, with k heads, k-cell
admissible transformations can be performed.
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4 CQTM with multiple tapes

We introduce a generalization of the CQTM, the classically-controlled Turing
machine with multiple tapes. We show that any k-tape CQTM is simulated
by a 2-tape CQTM with an inconsequential loss of efficiency. Moreover, by
showing that 1- and 2-tape CQTM are not equivalent, we point out a gap
between classical and quantum computations.

Definition 4.1 A k-tape Classically-controlled Quantum Turing Machine where
k > 0, is a quintuple M = (K, ΣC , ΣQ,A, δ), where K is a finite set of classical
states with an identified initial state s, ΣQ is a finite alphabet which denotes
basis states of each quantum cell. A is a set of k-cell admissible transfor-
mations, ΣC is a finite alphabet of classical outcomes of k-cell admissible
transformations and δ is a classical transition function

δ : K × ΣC → (K ∪ {“yes”, “no”, h})× ({←,→,−})k ×A.

We assume that all possible classical outcomes of each measurement of A are in
ΣC and that A always contains the k admissible “blank test” transformations,
one for each tape of the machine.

Intuitively, δ(q, τ) = (q′, (D1, . . .Dk), A) means that, if M is in state q and
the last classical outcome is τ , then the next state will be q′, the k heads of
the machine will move according to D1, . . . , Dk and the next k-quantum cell
admissible transformation will be A. This admissible transformation will be
performed on the k quantum cells pointed at by the heads of the machine
after they have moved. A k-cell admissible transformation A can be defined
directly, for instance by use of a k-cell unitary transformation V (A = UV ). A
can also be defined as a composition of two admissible transformations A1, A2

respectively on j and l cells such that j + l = k, then A = [A1, A2] means that
the first j heads apply A1 and, simultaneously, the last l heads apply A2. The
classical outcome is the concatenation of the outcomes of A1 and A2, where λ
is the unit element of the concatenation (i.e. τ.λ = τ).

A k-tape CQTM starts with an input state |φ〉 on a specified tape T1, and
if the halting state h is reached, the machine halts and the output is the state
of the specified tape T1.

Theorem 4.2 Given any k-tape CQTM M operating in time f(n), where n
is the input size, there exists a 2-tape CQTM M ′ operating in time O(f(n)2)
and such that for any input |ψ〉 , M(|ψ〉) = M ′(|ψ〉).

Theorem 4.1 is a strong evidence of the power and stability of CQTMs:
adding a bounded number of tapes to a 2-tape CQTM does not increase
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their computational capabilities, and impacts their efficiency polynomially
only. This stability makes 2-tape CQTMs a good candidate for quantum
universality, i.e. the ability to simulate any quantum computation. This
ability is proved with the following two lemmas:

Lemma 4.3 Any pattern of the measurement calculus [5] can be simulated in
a time polynomial in the size of the pattern by a 2-tape CQTM.

Lemma 4.4 Any quantum circuit can be simulated by a 2-tape CQTM in
polynomial time.

The following lemma shows that some 2-tape CQTMs cannot be simulated
by 1-tape CQTMs:

Lemma 4.5 There exists a 2-tape CQTM M such that no 1-tape CQTM
simulates M .

To sum up, two tapes are enough for quantum computation (Lemma 4.3 ),
whereas one tape is enough for classical computation (Theorem 3.1 ) but not
for quantum computation (Lemma 4.4 ). Thus a gap between classical and
quantum computations appears. Notice that this result does not contradict
the equivalence, in terms of decidability, between classical and quantum com-
putations: the gap appears iff quantum data are considered.

One may wonder why 1-tape CQTMs are not quantum universal whereas
Briegel and Raussendorf have proved, with their One-way quantum computer,
that one-qubit measurements are universal [16]. The proof by Briegel and
Raussendorf is given with a strong assumption which is that there exists a
grid of auxiliary qubits which have been initially prepared, by some unspeci-
fied external device, in a globally entangled state (the cluster state), whereas
creation of entanglement is a crucial point in the proof of Lemma 4.4. More-
over, another strong assumption of one-way quantum computation is that the
input state |ϕ〉 has to be classically known (i.e. a mathematical description of
|ϕ〉 is needed), whereas the manipulation of unknown states (i.e. manipulation
of qubits in an unknown state) is usual in quantum computation (e.g. tele-
portation [1]). Since none of these assumptions are verified by 1-tape CQTM,
the previous results do not contradict the results of Briegel and Raussendorf.

5 Conclusion

This paper introduces a new abstract model for quantum computations, the
model of classically-controlled quantum Turing machines (CQTM). This model
allows a rigorous formalization of the inherent interactions between the quan-
tum world and the classical world during a quantum computation. Any clas-
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sical Turing machine is simulated by a CQTM without loss of efficiency, more-
over any k-tape CQTM is simulated by a 2-tape CQTM affecting the execution
time only polynomially.

Moreover the gap between classical and quantum computations which was
already pointed out in the framework of measurement-based quantum com-
putation (see [14]) is confirmed in the general case of classically-controlled
quantum computation.

The classically-controlled quantum Turing machine is a good candidate
for establishing a bridge between, on one side, theoretical models like QTM,
CQTM, MQTM [14] and on the other side practical models of quantum com-
putation like quantum random access machines.
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