142,611 research outputs found

    Detecting Sarcasm in Multimodal Social Platforms

    Full text link
    Sarcasm is a peculiar form of sentiment expression, where the surface sentiment differs from the implied sentiment. The detection of sarcasm in social media platforms has been applied in the past mainly to textual utterances where lexical indicators (such as interjections and intensifiers), linguistic markers, and contextual information (such as user profiles, or past conversations) were used to detect the sarcastic tone. However, modern social media platforms allow to create multimodal messages where audiovisual content is integrated with the text, making the analysis of a mode in isolation partial. In our work, we first study the relationship between the textual and visual aspects in multimodal posts from three major social media platforms, i.e., Instagram, Tumblr and Twitter, and we run a crowdsourcing task to quantify the extent to which images are perceived as necessary by human annotators. Moreover, we propose two different computational frameworks to detect sarcasm that integrate the textual and visual modalities. The first approach exploits visual semantics trained on an external dataset, and concatenates the semantics features with state-of-the-art textual features. The second method adapts a visual neural network initialized with parameters trained on ImageNet to multimodal sarcastic posts. Results show the positive effect of combining modalities for the detection of sarcasm across platforms and methods.Comment: 10 pages, 3 figures, final version published in the Proceedings of ACM Multimedia 201

    Neurophysiological Profile of Antismoking Campaigns

    Get PDF
    Over the past few decades, antismoking public service announcements (PSAs) have been used by governments to promote healthy behaviours in citizens, for instance, against drinking before the drive and against smoke. Effectiveness of such PSAs has been suggested especially for young persons. By now, PSAs efficacy is still mainly assessed through traditional methods (questionnaires and metrics) and could be performed only after the PSAs broadcasting, leading to waste of economic resources and time in the case of Ineffective PSAs. One possible countermeasure to such ineffective use of PSAs could be promoted by the evaluation of the cerebral reaction to the PSA of particular segments of population (e.g., old, young, and heavy smokers). In addition, it is crucial to gather such cerebral activity in front of PSAs that have been assessed to be effective against smoke (Effective PSAs), comparing results to the cerebral reactions to PSAs that have been certified to be not effective (Ineffective PSAs). &e eventual differences between the cerebral responses toward the two PSA groups will provide crucial information about the possible outcome of new PSAs before to its broadcasting. &is study focused on adult population, by investigating the cerebral reaction to the vision of different PSA images, which have already been shown to be Effective and Ineffective for the promotion of an antismoking behaviour. Results showed how variables as gender and smoking habits can influence the perception of PSA images, and how different communication styles of the antismoking campaigns could facilitate the comprehension of PSA’s message and then enhance the related impac

    Uncertainties in the Algorithmic Image

    Get PDF
    The incorporation of algorithmic procedures into the automation of image production has been gradual, but has reached critical mass over the past century, especially with the advent of photography, the introduction of digital computers and the use of artificial intelligence (AI) and machine learning (ML). Due to the increasingly significant influence algorithmic processes have on visual media, there has been an expansion of the possibilities as to how images may behave, and a consequent struggle to define them. This algorithmic turnhighlights inner tensions within existing notions of the image, namely raising questions regarding the autonomy of machines, author- and viewer- ship, and the veracity of representations. In this sense, algorithmic images hover uncertainly between human and machine as producers and interpreters of visual information, between representational and non-representational, and between visible surface and the processes behind it. This paper gives an introduction to fundamental internal discrepancies which arise within algorithmically produced images, examined through a selection of relevant artistic examples. Focusing on the theme of uncertainty, this investigation considers how algorithmic images contain aspects which conflict with the certitude of computation, and how this contributes to a difficulty in defining images

    6 Seconds of Sound and Vision: Creativity in Micro-Videos

    Full text link
    The notion of creativity, as opposed to related concepts such as beauty or interestingness, has not been studied from the perspective of automatic analysis of multimedia content. Meanwhile, short online videos shared on social media platforms, or micro-videos, have arisen as a new medium for creative expression. In this paper we study creative micro-videos in an effort to understand the features that make a video creative, and to address the problem of automatic detection of creative content. Defining creative videos as those that are novel and have aesthetic value, we conduct a crowdsourcing experiment to create a dataset of over 3,800 micro-videos labelled as creative and non-creative. We propose a set of computational features that we map to the components of our definition of creativity, and conduct an analysis to determine which of these features correlate most with creative video. Finally, we evaluate a supervised approach to automatically detect creative video, with promising results, showing that it is necessary to model both aesthetic value and novelty to achieve optimal classification accuracy.Comment: 8 pages, 1 figures, conference IEEE CVPR 201

    Exploring narrative presentation for large multimodal lifelog collections through card sorting

    Get PDF
    Using lifelogging tools, personal digital artifacts are collected continuously and passively throughout each day. The wealth of information such an archive contains on our life history provides novel opportunities for the creation of digital life narratives. However, the complexity, volume and multimodal nature of such collections create barriers to achieving this. Nine participants engaged in a card-sorting activity designed to explore practices of content reduction and presentation for narrative composition. We found the visual modalities to be most fluent in communicating experience with other modalities serving to support them and that the users employed the salient themes of the story to organise, arrange and facilitate filtering of the content

    A Wireless Future: performance art, interaction and the brain-computer interfaces

    Get PDF
    Although the use of Brain-Computer Interfaces (BCIs) in the arts originates in the 1960s, there is a limited number of known applications in the context of real-time audio-visual and mixed-media performances and accordingly the knowledge base of this area has not been developed sufficiently. Among the reasons are the difficulties and the unknown parameters involved in the design and implementation of the BCIs. However today, with the dissemination of the new wireless devices, the field is rapidly growing and changing. In this frame, we examine a selection of representative works and artists, in comparison to the current scientific evidence. We identify important performative and neuroscientific aspects, issues and challenges. A model of possible interactions between the performers and the audience is discussed and future trends regarding liveness and interconnectivity are suggested

    Scalable Privacy-Compliant Virality Prediction on Twitter

    Get PDF
    The digital town hall of Twitter becomes a preferred medium of communication for individuals and organizations across the globe. Some of them reach audiences of millions, while others struggle to get noticed. Given the impact of social media, the question remains more relevant than ever: how to model the dynamics of attention in Twitter. Researchers around the world turn to machine learning to predict the most influential tweets and authors, navigating the volume, velocity, and variety of social big data, with many compromises. In this paper, we revisit content popularity prediction on Twitter. We argue that strict alignment of data acquisition, storage and analysis algorithms is necessary to avoid the common trade-offs between scalability, accuracy and privacy compliance. We propose a new framework for the rapid acquisition of large-scale datasets, high accuracy supervisory signal and multilanguage sentiment prediction while respecting every privacy request applicable. We then apply a novel gradient boosting framework to achieve state-of-the-art results in virality ranking, already before including tweet's visual or propagation features. Our Gradient Boosted Regression Tree is the first to offer explainable, strong ranking performance on benchmark datasets. Since the analysis focused on features available early, the model is immediately applicable to incoming tweets in 18 languages.Comment: AffCon@AAAI-19 Best Paper Award; Presented at AAAI-19 W1: Affective Content Analysi
    corecore