The notion of creativity, as opposed to related concepts such as beauty or
interestingness, has not been studied from the perspective of automatic
analysis of multimedia content. Meanwhile, short online videos shared on social
media platforms, or micro-videos, have arisen as a new medium for creative
expression. In this paper we study creative micro-videos in an effort to
understand the features that make a video creative, and to address the problem
of automatic detection of creative content. Defining creative videos as those
that are novel and have aesthetic value, we conduct a crowdsourcing experiment
to create a dataset of over 3,800 micro-videos labelled as creative and
non-creative. We propose a set of computational features that we map to the
components of our definition of creativity, and conduct an analysis to
determine which of these features correlate most with creative video. Finally,
we evaluate a supervised approach to automatically detect creative video, with
promising results, showing that it is necessary to model both aesthetic value
and novelty to achieve optimal classification accuracy.Comment: 8 pages, 1 figures, conference IEEE CVPR 201