7 research outputs found

    ELFENN: A Generalized Platform for Modeling Ephaptic Coupling in Spiking Neuron Models

    Get PDF
    The transmembrane ionic currents that underlie changes in a cell's membrane potential give rise to electric fields in the extracellular space. In the context of brain activity, these electric fields form the basis for extracellularly recorded signals, such as multiunit activity, local field potentials and electroencephalograms. Understanding the underlying neuronal dynamics and localizing current sources using these signals is often challenging, and therefore effective computational modeling approaches are critical. Typically, the electric fields from neural activity are modeled in a post-hoc form, i.e., a traditional neuronal model is used to first generate the membrane currents, which in turn are then used to calculate the electric fields. When the conductivity of the extracellular space is high, the electric fields are weak, and therefore treating membrane currents and electric fields separately is justified. However, in brain regions of lower conductivity, extracellular fields can feed back and significantly influence the underlying transmembrane currents and dynamics of nearby neurons—this is often referred to as ephaptic coupling. The closed-loop nature of ephaptic coupling cannot be modeled using the post-hoc approaches implemented by existing software tools; instead, electric fields and neuronal dynamics must be solved simultaneously. To this end, we have developed a generalized modeling toolbox for studying ephaptic coupling in compartmental neuron models: ELFENN (ELectric Field Effects in Neural Networks). In open loop conditions, we validate the separate components of ELFENN for modeling membrane dynamics and associated field potentials against standard approaches (NEURON and LFPy). Unlike standard approaches however, ELFENN enables the closed-loop condition to be modeled as well, in that the field potentials can feed back and influence membrane dynamics. As an example closed-loop case, we use ELFENN to study phase-locking of action potentials generated by a population of axons running parallel in a bundle. Being able to efficiently explore ephaptic coupling from a computational perspective using tools, such as ELFENN will allow us to better understand the physical basis of electric fields in the brain, as well as the conditions in which these fields may influence neuronal dynamics in general

    Understanding Cerebellum Granular Layer Network Computations through Mathematical Reconstructions of Evoked Local Field Potentials

    Get PDF
    Background: The cerebellar granular layer input stage of cerebellum receives information from tactile and sensory re- gions of the body. The somatosensory activity in the cerebellar granular layer corresponds to sensory and tactile input has been observed by recording Local Field Potential (LFP) from the Crus-IIa regions of cerebellum in brain slices and in anesthetized animals. Purpose: In this paper, a detailed biophysical model of Wistar rat cerebellum granular layer net- work model and LFP modelling schemas were used to simulate circuit\u2019s evoked response. Methods: Point Source Ap- proximation and Line Source Approximation were used to reconstruct the network LFP. The LFP mechanism in in vitro was validated in network model and generated the in vivo LFP using the same mechanism. Results: The network simulations distinctly displayed the Trigeminal and Cortical (TC) wave components generated by 2 independent bursts implicating the generation of TC waves by 2 independent granule neuron populations. Induced plasticity was simulated to estimate granule neuron activation related population responses. As a prediction, cerebellar dysfunction (ataxia) was also studied using the model. Dysfunction at individual neurons in the network was affected by the population response. Conclusion: Our present study utilizes available knowledge on known mechanisms in a single cell and associates network function to population responses

    NetPyNE, a tool for data-driven multiscale modeling of brain circuits.

    Full text link
    Biophysical modeling of neuronal networks helps to integrate and interpret rapidly growing and disparate experimental datasets at multiple scales. The NetPyNE tool (www.netpyne.org) provides both programmatic and graphical interfaces to develop data-driven multiscale network models in NEURON. NetPyNE clearly separates model parameters from implementation code. Users provide specifications at a high level via a standardized declarative language, for example connectivity rules, to create millions of cell-to-cell connections. NetPyNE then enables users to generate the NEURON network, run efficiently parallelized simulations, optimize and explore network parameters through automated batch runs, and use built-in functions for visualization and analysis - connectivity matrices, voltage traces, spike raster plots, local field potentials, and information theoretic measures. NetPyNE also facilitates model sharing by exporting and importing standardized formats (NeuroML and SONATA). NetPyNE is already being used to teach computational neuroscience students and by modelers to investigate brain regions and phenomena

    NetPyNE, a tool for data-driven multiscale modeling of brain circuits

    Get PDF
    Biophysical modeling of neuronal networks helps to integrate and interpret rapidly growing and disparate experimental datasets at multiple scales. The NetPyNE tool (www.netpyne.org) provides both programmatic and graphical interfaces to develop data-driven multiscale network models in NEURON. NetPyNE clearly separates model parameters from implementation code. Users provide specifications at a high level via a standardized declarative language, for example connectivity rules, to create millions of cell-to-cell connections. NetPyNE then enables users to generate the NEURON network, run efficiently parallelized simulations, optimize and explore network parameters through automated batch runs, and use built-in functions for visualization and analysis – connectivity matrices, voltage traces, spike raster plots, local field potentials, and information theoretic measures. NetPyNE also facilitates model sharing by exporting and importing standardized formats (NeuroML and SONATA). NetPyNE is already being used to teach computational neuroscience students and by modelers to investigate brain regions and phenomena

    Towards Brains in the Cloud: A Biophysically Realistic Computational Model of Olfactory Bulb

    Get PDF
    abstract: The increasing availability of experimental data and computational power have resulted in increasingly detailed and sophisticated models of brain structures. Biophysically realistic models allow detailed investigations of the mechanisms that operate within those structures. In this work, published mouse experimental data were synthesized to develop an extensible, open-source platform for modeling the mouse main olfactory bulb and other brain regions. A “virtual slice” model of a main olfactory bulb glomerular column that includes detailed models of tufted, mitral, and granule cells was created to investigate the underlying mechanisms of a gamma frequency oscillation pattern (“gamma fingerprint”) often observed in rodent bulbar local field potential recordings. The gamma fingerprint was reproduced by the model and a mechanistic hypothesis to explain aspects of the fingerprint was developed. A series of computational experiments tested the hypothesis. The results demonstrate the importance of interactions between electrical synapses, principal cell synaptic input strength differences, and granule cell inhibition in the formation of the gamma fingerprint. The model, data, results, and reproduction materials are accessible at https://github.com/justasb/olfactorybulb. The discussion includes a detailed description of mechanisms underlying the gamma fingerprint and how the model predictions can be tested experimentally. In summary, the modeling platform can be extended to include other types of cells, mechanisms and brain regions and can be used to investigate a wide range of experimentally testable hypotheses.Dissertation/ThesisDoctoral Dissertation Neuroscience 201

    Computational modeling of single neuron extracellular electric potentials and network local field potentials using LFPsim

    Get PDF
    Local Field Potentials (LFPs) are population signals generated by complex spatiotemporal interaction of current sources and dipoles. Mathematical computations of LFPs allow the study of circuit functions and dysfunctions via simulations. This paper introduces LFPsim, a NEURON-based tool for computing population LFP activity and single neuron extracellular potentials. LFPsim was developed to be used on existing cable compartmental neuron and network models. Point source, line source, and RC based filter approximations can be used to compute extracellular activity. As a demonstration of efficient implementation, we showcase LFPs from mathematical models of electrotonically compact cerebellum granule neurons and morphologically complex neurons of the neocortical column. LFPsim reproduced neocortical LFP at 8, 32, and 56 Hz via current injection, in vitro post-synaptic N-2a, N-2b waves and in vivo T-C waves in cerebellum granular layer. LFPsim also includes a simulation of multi-electrode array of LFPs in network populations to aid computational inference between biophysical activity in neural networks and corresponding multi-unit activity resulting in extracellular and evoked LFP signal
    corecore