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ABSTRACT 

The increasing availability of experimental data and increases in computational 

power have resulted in increasingly detailed and sophisticated models of brain 

structures. Biophysically realistic models allow detailed investigations of the 

mechanisms that operate within those structures. In this work, published mouse 

experimental data were synthesized to develop an extensible, open-source platform 

for modeling the mouse main olfactory bulb and other brain regions. A “virtual slice” 

model of a main olfactory bulb glomerular column that includes detailed models of 

tufted, mitral, and granule cells was created to investigate the underlying mechanisms 

of a gamma frequency oscillation pattern (“gamma fingerprint”) often observed in 

rodent bulbar local field potential recordings. The gamma fingerprint was reproduced 

by the model and a mechanistic hypothesis to explain aspects of the fingerprint was 

developed. A series of computational experiments tested the hypothesis. The results 

demonstrate the importance of interactions between electrical synapses, principal cell 

synaptic input strength differences, and granule cell inhibition in the formation of the 

gamma fingerprint. The model, data, results, and reproduction materials are accessible 

at https://olfactorybulb.org. The discussion includes a detailed description of 

mechanisms underlying the gamma fingerprint and how the model predictions can be 

tested experimentally. In summary, the modeling platform can be extended to include 

other types of cells, mechanisms and brain regions and can be used to investigate a 

wide range of experimentally testable hypotheses.   
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1 INTRODUCTION 

1.1 Value of Studying the Olfactory Bulb 

The mammalian main olfactory bulb is involved in neurodegenerative, mood, 

and substance abuse disorders. For example, olfactory impairment is predictive of 

future Parkinson’s disease onset before the onset of motor symptoms (Ansari & 

Johnson, 1975; Haehner et al., 2009). While the sense of smell in humans is subtler 

and more underestimated than vision or hearing (McGann, 2017), its impairment can 

have a profound effect on well-being. Anosmia, the loss of the ability to smell, is 

associated with depression in humans and animal models (Gopinath, Anstey, Sue, 

Kifley, & Mitchell, 2011; Kelly, Wrynn, & Leonard, 1997; Negoias et al., 2010). 

Depression, in turn, is associated with increased likelihood of substance abuse (Kenny, 

2011; Markou, Kosten, & Koob, 1998; Weiss, Griffin, & Mirin, 1992). Thus, 

understanding how the olfactory system functions will lead to a better understanding 

and treatments of these disorders. 

The olfactory system is also interesting from a machine learning perspective. 

Each olfactory receptor can be thought as a molecular feature detector. Since animals 

can have thousands of different olfactory receptor types (Fleischer et al., 2009; 

Shepherd, 2011), the output of olfactory receptor neurons can be viewed as a high 

dimensional vector that encodes odor information. How these high-dimensional odor 

vectors, which vary with time, odor concentration, and odor mixtures, are decoded by 

the brain as stable odor experiences, and how such decoding could be replicated with 

machine learning algorithms is an interesting and open research problem. If solved, 

such algorithms would have important implications for diagnostic, agricultural, national 

security, and defense applications (Fitzgerald, Bui, Simon, & Fenniri, 2017; Pobkrut, 

Eamsa-ard, & Kerdcharoen, 2016; Wang, Zhuang, Zou, & Hsia, 2015). 
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1.2 Role of the Olfactory Bulb in Odor Processing 

The main and the accessory olfactory bulbs are the first regions of the brain 

that process olfactory information from olfactory receptor neurons in the nasal 

epithelium and transmit it to regions of the cortex for further downstream processing 

(Shepherd, 2011). Here I focus on the main olfactory bulb.   

 

Figure 1: Overview of the Olfactory System. Odor molecules (a) enter through the 

nose and bind to receptors on olfactory receptor neurons (b) in the olfactory 

epithelium, exciting them (c). Receptor neuron axons (d) converge onto glomeruli (e) 

located in the outer layer of the olfactory bulb. A given glomerulus receives input from 

receptor neurons that express the same type of olfactory receptor. Information from 

the glomeruli is processed by principal projection neurons (f) in the olfactory bulb. The 

projection neurons relay odor information via their axons (g) to downstream brain 

regions for further processing.  

Volatile odors enter the nasal cavity (Figure 1) and bind to antibody-like 

olfactory receptors that are expressed by the olfactory receptor neurons in the 

epithelium located in the dorsal interior nasal passage (Fleischer et al., 2009). 

Receptor neurons specialize in expressing a single type of olfactory receptor (Fleischer 

et al., 2009). The axons of receptor neurons expressing a given receptor type will 

converge onto one or two glomeruli, which are spherical bundles of neuropil located 

throughout the glomerular layer close to the surface of the olfactory bulb (Maresh, Gil, 

Whitman, & Greer, 2008). Mice have approximately 1,800 glomeruli, which is 

approximately twice the number of olfactory receptor types (Maresh et al., 2008). 
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The olfactory bulb is organized into a hemisphere-like concentric laminar 

structure (Golgi, 1875; Shepherd, 2011). The most superficial glomerular layer is 

followed by the deeper external plexiform layer. Next are the mitral, internal plexiform, 

and granule cell layers. 

Within a glomerulus (Figure 2), sensory receptor neuron axons excite the apical 

dendrites of two main types of neurons: mitral and tufted cells (Shepherd, 2011). The 

somas of tufted and mitral cells are located in the external plexiform and mitral cell 

layers respectively (Mori, Kishi, & Ojima, 1983; Shepherd, 2011). Both tufted and 

mitral cells have secondary dendrites that project laterally to the surrounding portions 

of the external plexiform layer.  

 

Figure 2: Morphology Differences Between Mitral and Tufted Cells. Mitral cell somas 

(a) are larger than tufted cell somas (b). For every mitral cell, there are 2-3 tufted 

cells  (Benson, Ryugo, & Hinds, 1984; Purves et al., 2001; Shepherd, 1972). The 

extent of mitral cell lateral dendrites (c) is larger than the extent of tufted cell lateral 

dendrites (d). Mitral cell lateral dendrites tend to be confined to the deeper portion (e) 

of the external plexiform layer (EPL), while the tufted cell lateral dendrites tend to be 

confined to the superficial portion (f) of the EPL. 

Lateral dendrites of tufted and mitral cells interact with another type of cell: 

the granule cell. Granule cell somas are located within the granule cell layer (Shepherd, 

2011). Granule cells do not have axons, but instead they project dendrites into the 
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external plexiform layer where they form synapses with mitral and tufted cell dendrites 

(Mori et al., 1983, p. 198; Orona, Scott, & Rainer, 1983). The granule-mitral/tufted 

cell synapses are special dendro-dendritic reciprocal synapses (Rall, Shepherd, Reese, 

& Brightman, 1966). The mitral/tufted cells release excitatory glutamate onto the 

granule cells, while the granule cells release inhibitory γ-aminobutyric acid (GABA) 

back onto the mitral/tufted cells (Shepherd, 2011). Granule cells can form synapses 

with one or more mitral and/or tufted cells. Depending on where their apical dendrites 

terminate within the external plexiform layer, granule cells will preferentially form 

synapses with either tufted, mitral, or both cell types (Christie, Schoppa, & Westbrook, 

2001; Mori et al., 1983; Shepherd, 2011).  

Mitral and tufted are the only cells that project axons to the cortex (Shepherd, 

2011). Both cell types project to the olfactory cortex via the lateral olfactory tract (Mori 

& Manabe, 2014). Top-down feedback connections from the olfactory cortex also exist. 

For example, the pyramidal cells in the olfactory cortex project axons into the granule 

cell and glomerular layers of the olfactory bulb and indirectly modulate mitral and 

tufted cell activity (Boyd, Kato, Komiyama, & Isaacson, 2015; Mori, 2014). 

1.3 Odor Processing Parallelism 

Parallel processing is a common motif in neural sensory systems. For example, 

the visual system divides information into color and motion pathways (Maunsell, 

Nealey, & DePriest, 1990), the auditory system into sound identity and location 

(Arnott, Binns, Grady, & Alain, 2004), and the spinal cord into touch (Brown, 1973) 

and pain (Jr, 1985).  

The olfactory system has two pathways as well – tufted and mitral cells form 

two parallel pathways for relaying stimulus information from olfactory glomeruli to 

downstream cortical regions (Burton & Urban, 2014; Christie et al., 2001; Fukunaga, 

Herb, Kollo, Boyden, & Schaefer, 2014; Igarashi et al., 2012; Kishi, Mori, & Ojima, 
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1984; Manabe & Mori, 2013; Mori et al., 1983; Nagayama, Homma, & Imamura, 2014; 

Nagayama, Igarashi, Manabe, & Mori, 2014; Nagayama, Takahashi, Yoshihara, & Mori, 

2004; Shao, Puche, Liu, & Shipley, 2012).  

The nature and functional significance of information processing performed by 

each pathway is not well understood. However, cell- and network-level differences 

have been found between the two pathways, which provide hints for how the two sub-

systems process odor information.  

1.4 Mitral and Tufted Cell Sub-networks 

1.4.1 Glomerular Organization Differences  

The receptor neuron axons that terminate in the glomeruli release glutamate 

and excite the primary apical dendrites of mitral and tufted cells (Shepherd, 2011). 

Additionally, small, GABAergic periglomerular cells (Najac, Jan, Reguero, Grandes, & 

Charpak, 2011; Shao et al., 2012), and superficially located, bursting, glutamatergic 

external tufted cells (Nagayama et al., 2004) are excited by the receptor neurons. The 

periglomerular cells and the external tufted cells differentially inhibit and excite mitral 

and tufted cell apical tufted dendrites (Kikuta, Fletcher, Homma, Yamasoba, & 

Nagayama, 2013; Shao et al., 2012). Higher inhibition by periglomerular cells of mitral 

cells than tufted cells is thought to reduce mitral cell synaptic input and contribute to 

the differences in mitral and tufted cell spiking onsets within the sniff cycle (Fukunaga, 

Berning, Kollo, Schmaltz, & Schaefer, 2012).  

Additionally, electrical synapses have been identified between the dendritic 

tufts of mitral cells within a glomerulus (Bourne & Schoppa, 2016; Najac et al., 2011), 

likely contributing to increased synchronization of mitral cells that project dendrites to 

the same glomerulus (O’Connor, Angelo, & Jacob, 2012). It is not clear whether tufted 

cell dendritic tufts are connected by similar electrical synapses. 



6 

1.4.2 Morphology Differences  

Mitral cells are the largest cells in the olfactory bulb (Shepherd, 2011). They 

project secondary lateral dendrites to the deeper portions of the more superficially 

located external plexiform layer. These dendrites have a disk-like projection pattern 

and can span up to half-way across the bulb (Orona et al., 1983). On the other hand, 

the smaller tufted cells are found more superficially in the external plexiform layer 

(Orona et al., 1983). Similar to the mitral cells, tufted cells also have secondary lateral 

dendrites that project in the external plexiform layer. Deeper tufted cells tend to have 

more extensive lateral dendrites and project to the deeper portions of the external 

plexiform layer, while the more superficial tufted cells have smaller lateral dendrite 

extents and project more superficially within the external plexiform layer (Christie et 

al., 2001; Orona et al., 1983). Overall, tufted cells appear like more compact and more 

superficially located versions of the mitral cells. 

1.4.3 Differences of Granule Cell Interactions  

The mitral, tufted, and granule cells project their dendrites into the external 

plexiform layer where they interact via dendro-dendritic synapses (Mori et al., 1983; 

Rall et al., 1966; Shepherd, 2011). Mitral/tufted cells excite granule cells, which in 

turn inhibit mitral/tufted cell dendrites.  

Granule cell somas are located throughout the granule cell layer and form three 

types of projection patterns (Mori et al., 1983). Some granule cells project to the 

superficial portion of the external plexiform layer where they form synapses with tufted 

cells. The somas of such granule cells tend to be located in the superficial portions of 

the granule layer. Other granule cells, which are distributed throughout the depths of 

the granule layer, project their dendrites either to the deep portions of the external 

plexiform layer (and thus synapse with mitral cells) or throughout the depths of the 

external plexiform layer (and thus synapse with both mitral and tufted cells). This 
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results in granule cells that preferentially interact with either mitral or tufted cells, 

forming parallel, mostly-separate projection networks within the olfactory bulb (Burton 

& Urban, 2014; Nagayama, Igarashi, et al., 2014). Granule cells that connect to both 

mitral and tufted cells provide means for the two pathways to interact. About 23% of 

granule cells mostly synapse with tufted cells, about 29% with mostly mitral cells, and 

about 48% synapse with both types (Mori et al., 1983). 

1.4.4 Cortical Projection Differences 

Mitral and tufted cells project their axons through the lateral olfactory tract into 

the olfactory cortex (Shepherd, 2011). However, tufted cells tend to project into the 

anterior part of the olfactory cortex, while the mitral cells project to the remaining 

areas (Nagayama, Igarashi, et al., 2014). The anterior olfactory cortex projects to the 

orbitofrontal cortex (Ekstrand et al., 2001; Mori, 2014; Shepherd, 2011). Thus, the 

tufted/mitral cell signal segregation begins in the glomerular layer and continues to be 

segregated in the cortex. 

1.4.5 Excitability Differences 

Both tufted and mitral cells fire synchronized action potentials within each 

sniffing cycle (Phillips, Sachdev, Willhite, & Shepherd, 2012). However, tufted cells are 

intrinsically more excitable (Burton & Urban, 2014; Phillips et al., 2012), respond to 

lower concentration odors (Fukunaga et al., 2012; Igarashi et al., 2012), and during 

sniffing fire in a higher gamma range (100-120 Hz) than mitral cells (40-50 Hz) 

(Igarashi et al., 2012; Phillips et al., 2012). Tufted cells also respond earlier in the 

sniff cycle than mitral cells (Igarashi et al., 2012; Phillips et al., 2012). Furthermore, 

mitral cell response shifts forward in the sniff cycle when the odor concentration is 

high (Fukunaga et al., 2012).  
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1.4.6 Synaptic Input Differences 

Within glomeruli, both mitral and tufted cells are excited by axons of olfactory 

receptor neurons (Pinching & Powell, 1971; Shepherd, 2011; White, 1973), however 

tufted cells receive greater effective input than mitral cells. For example, in response 

to olfactory nerve stimulation, glomerular synapses deposit 2-3 times more charge 

onto tufted cells than onto mitral cells, eliciting 3-4 times more spikes in tufted than 

mitral cells (Burton & Urban, 2014; Gire et al., 2012). This may be due to differences 

in synaptic input or due to greater intra-glomerular glutamate spillover (Christie & 

Westbrook, 2006). Together with excitability differences between tufted and mitral 

cells, greater effective input is believed to cause earlier spiking onset and greater firing 

rates of tufted cells (Burton & Urban, 2014; Igarashi et al., 2012).  

Also within glomeruli, electrical coupling and electrical synapses have been 

observed between pairs of mitral cells (Christie et al., 2005; Maher, McGinley, & 

Westbrook, 2009). Electrical synapses might exist between pairs of tufted cells 

(Kosaka & Kosaka, 2005); however in that study, tufted and mitral cells were not 

differentiated, and it is not clear if the synapses were between pairs of mitral-mitral, 

tufted-mitral, or tufted-tufted cells. More recently, electrical coupling has been 

reported between pairs of tufted cells (Ma & Lowe, 2010), suggesting the existence of 

electrical synapses between pairs of tufted cells. The existence of electrical synapses 

between tufted cells could help synchronize their spike times (Migliore, Hines, & 

Shepherd, 2005). 

1.5 The Gamma Fingerprint 

When an extracellular electrode is implanted in a rodent olfactory bulb, the 

resulting voltage waveform shows a stereotypical response in the gamma frequency 

(30-130 Hz) range. The response starts at approximately the same time relative to 

the onset of each sniff and contains two clusters: the early cluster oscillates at high-
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gamma frequency, while the later cluster oscillates at lower gamma frequency 

(Fourcaud-Trocmé, Courtiol, & Buonviso, 2014; Fukunaga et al., 2014; Manabe & Mori, 

2013; Zhuang, Zhang, Qin, & Wang, 2019). Here, these clusters are referred to as the 

“gamma fingerprint” (see Figure 2C of Manabe & Mori (2013) and Figure 2A of Zhuang 

et. al. (2019) for examples). 

Because synaptically isolated tufted cells are more excitable than mitral cells 

and mostly interact with different populations of granule cells, the first cluster is 

attributed to activity in the tufted cell network, while the second cluster is attributed 

to activity of the mitral cell network. Granule cell involvement was confirmed when 

optogenetically silencing granule cells reduced the gamma clusters (Fukunaga et al., 

2014). Similarly, multi-electrode analysis showed that gamma oscillations originate in 

the superficial halves of external plexiform and granule cell layers (Fourcaud-Trocmé 

et al., 2014), consistent with synchronized tufted and granule cell activity. 

These descriptions can be further improved with a detailed, mechanistic 

computational model that could be used to explicitly explore the cellular and network-

level mechanisms underlying the gamma fingerprint. 

1.5.1 A Mechanistic Hypothesis 

Experimentally observed fingerprints consist of two clusters, separated by 

approximately 50 ms (Manabe & Mori, 2013). The second cluster is attributed to 

synchronized activity in the mitral-granule cell network. However, the delay of the 

second cluster presents a puzzle: if mitral and tufted cells receive their inputs from a 

glomerulus, what causes a 50 ms delay in synchronized mitral cell activity? The 

combination of lower mitral cell excitability and reduced glomerular activation of mitral 

cells (relative to tufted cells) could result in a spike onset delay on the order of a few 

milliseconds, but would not be sufficient to cause a 50 ms delay. In experiments 

described in sections that follow, I test the hypothesis that the second cluster delay is 
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caused by early inhibition of mitral cells by shared granule cells activated by the more 

excitable and more strongly activated tufted cells. When a sufficient number of input 

odor spikes accumulate to offset the early inhibition, mitral cells, synchronized by 

electrical synapses, start spiking, resulting in the second cluster. In this hypothesis, 

the following components play key roles: 

1) Electrical synapses between tufted dendrites of mitral and tufted cells cause 

independent synchronization of tufted and mitral cell populations, which is 

observable as distinct gamma clusters. 

2) Reduced mitral cell input strength relative to tufted cells results in mitral cells 

requiring more time to accumulate enough excitation to start spiking. 

3) Once tufted cells spike before mitral cells, they activate granule cell inhibition 

of mitral cell spikes. Only after granule cell inhibition starts subsiding do mitral 

cells receive enough glomerular excitation to spike. 

1.6 Computational Modeling 

1.6.1 Biophysically Realistic Models 

Biophysically realistic models of neural systems describe cells and synapses 

between them as systems of coupled differential equations. These types of models 

explicitly model cell morphology by subdividing dendritic sections into series of 

cylindrical compartments (frusta) and model the ionic channel currents (e.g. Na+, K+, 

Ca2+) that enter and leave the compartments (Dudani, Ray, George, & Bhalla, 2009; 

Hines & Carnevale, 1997; Rall et al., 1966, p. 196; Wilson, Bhalla, Uhley, & Bower, 

1989). The formalism for modeling the gating of the ion channels typically follows the 

conductance based approach of the well-known Hodgkin-Huxley model of the giant 

axon of the squid (Hodgkin & Huxley, 1952). The sophistication and complexity of such 

models has grown with increased availability of experimental data and computing 

power. By utilizing supercomputers, some of these models have been used to model 
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entire brain regions (Bezaire, Raikov, Burk, Vyas, & Soltesz, 2016; Markram et al., 

2015). 

Simulations of biophysically realistic models are ideally suited for replicating 

common experimental interventions. Such simulations of these models allow for the 

simultaneous observation of the activity of modeled cells at micron and millisecond 

precision (Hines & Carnevale, 1997; Wilson et al., 1989). Arbitrary, deterministically 

reproducible simulation experiments can be performed to test mechanistic hypotheses.  

For example, the effects of chemical compounds that either block or agonize 

ion channels or synapses can be simulated by programmatically changing ion channel 

or synapse model conductance parameters. The effects of opto- or chemogenetic 

methods that target specific cell types can be modeled by programmatically altering 

the properties of specific cell type models. Lesions can be simulated by 

programmatically excluding cells from a region of a model and truncating dendritic 

trees. Similarly, patch clamp, extra-cellular, and electroencephalogram recordings can 

be simulated by modeling the physics of the recording electrode and the propagation 

of electrical signals through brain tissue and bone (Dura-Bernal et al., 2016; Hines & 

Carnevale, 1997; Lindén et al., 2014; Parasuram et al., 2016). Overall, such models 

are only limited by the resources available to collect, program, and simulate the 

necessary level of detail (Birgiolas, Gerkin, & Crook, 2018).  

1.6.2 Current Model 

Extending previous modeling studies (Gilra & Bhalla, 2015a; Li & Cleland, 2013; 

Migliore, Cavarretta, Hines, & Shepherd, 2014; O’Connor et al., 2012; Short, Morse, 

McTavish, Shepherd, & Verhagen, 2016) and my group’s work on validating 

biophysically realistic models (Birgiolas, Gerkin, & Crook, 2016; Gleeson et al., 2019), 

I created a biophysically detailed network model of the mouse olfactory bulb that 
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includes the tufted and mitral cell pathways and is validated against publicly available 

experimental data. 

In this work, I surveyed previous olfactory bulb modeling literature to 

understand the progress towards understanding the components of the local field 

potential gamma fingerprint. This review identified several areas needing improvement 

within existing models. The current model builds upon the strengths of the previous 

models and includes modifications as described below to advance the mechanistic 

understanding of the dynamics of the gamma fingerprint. 

1.6.2.1 Inclusion of Detailed Tufted, Mitral, and Granule Cell Models 

Earlier models of the olfactory bulb do not model the tufted cells explicitly 

(Davison, Feng, & Brown, 2003; Li & Cleland, 2013; Migliore et al., 2015; Yu et al., 

2013). Most often tufted cells are excluded or modeled as part of the same population 

as the mitral cells. One model does include tufted cells, but considers them as abstract 

point cells (Polese, Martinelli, Marco, Natale, & Gutierrez-Galvez, 2014). Because 

mitral and tufted cells have different electrophysiological and morphological features, 

which are hypothesized to contribute to the gamma fingerprint, modeling the tufted 

cell population separately is necessary. Similarly, different sub-populations of granule 

cells preferentially form synapses with the tufted or mitral cells. Thus, including 

detailed, morphologically realistic granule cells increases the accuracy of local field 

potential simulations. One model that does include detailed tufted cells (Cavarretta et 

al., 2018), uses reduced granule cell models consisting of few compartments. In this 

project, reconstructed cell morphologies were used to implement the morphology of 

mitral, tufted, and granule cells. 

1.6.2.2 Cell Models are Rigorously Validated 

Measurement error and natural and inter-species heterogeneities make it 

difficult to evaluate whether a cell model accurately models a neuron type. Here, I 
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utilized a multi-dimensional statistical validation framework implemented using the 

NeuronUnit package (Gerkin, Birgiolas, Jarvis, Omar, & Crook, 2019; Omar, Aldrich, & 

Gerkin, 2014) to evaluate how well previously-published cell models reproduce neuron 

behaviors. To do this, I first reviewed the olfactory bulb literature and assembled a 

database of adult mouse mitral, tufted, and granule cell electrophysiological and 

morphological measurements. Then, I assembled all previously developed mitral, 

tufted, and granule cell models and used NeuronUnit to subject them to the same 

experimental protocols that were used to obtain the assembled measurements. Finally, 

I evaluated how the responses of the previous models corresponded to the 

experimentally obtained measurements. 

This approach is in contrast to other modeling studies, because here, all 

validation data were collected from a single species (adult mice) and protocols of each 

study (e.g. temperature, current injection waveform) were replicated computationally 

to obtain the model response to the same protocol via a simulation study. One result 

of the approach is a set of novel cell models that recapitulates experimental data (see 

“Validation of Cell Model Electrophysiology and Morphology” section). 

1.6.2.3 Reconstructed Anatomical Laminar Structure  

The laminar structure of the olfactory bulb does not follow a simple geometrical 

pattern. However, earlier models used simplified geometry. For example, one model 

used a linear approximation (Polese et al., 2014) of glomeruli location, which is useful 

in an abstract sense. Another model (Davison et al., 2003) used a planar 

approximation, which is accurate on a local, few-glomeruli scale. Depending on the 

cross-sectional orientation, the bulb is approximately spherical or ellipsoidal. A few 

models used this approximation (Cavarretta et al., 2018; Migliore et al., 2015; Yu et 

al., 2013). Because local field potentials are greatly influenced by distances to current 

sources, using reconstructed layer boundaries for cell placement and orientation is 
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expected to increase the accuracy of the simulated local field potential, which is a goal 

of this model. 

Here, I used reconstructed mouse olfactory bulb layers from the Allen Mouse 

Brain Atlas (“Interactive Atlas Viewer: Atlas Viewer,” 2019; Oh et al., 2014) and known 

mouse cell densities (Benson et al., 1984; Breton-Provencher, Lemasson, Peralta, & 

Saghatelyan, 2009; Gheusi et al., 2000; Pomeroy, LaMantia, & Purves, 1990; Purves 

et al., 2001; Royet, Souchier, Jourdan, & Ploye, 1988; Shepherd, 1972; Shepherd, 

Migliore, & Willhite, 2010) to populate and orient cells in the network. Additionally, the 

3D layer information was used to confine mitral and tufted cell lateral dendrites to the 

appropriate regions within the layers. This is similar to the forcing function applied in 

one ellipsoidal model (Migliore et al., 2014); however, here it was made suitable for 

arbitrarily shaped layers. Finally, because reconstructed mouse bulb layers and cell 

densities were used, a proximity rule between cell dendrites (Peters & Feldman, 1976) 

could be used to form synapses. 

1.6.2.4 An Open Olfactory Bulb Modeling Platform 

In this model, significant effort was made to make the model and the new 

software tools used to create it accessible and easy to use. The accessibility features 

include: use of Python throughout the project, comments in the model code itself, 

adherence to Python coding style guidelines (Van Rossum, Warsaw, & Coghlan, 2001), 

availability of the code on open-source social-coding platform GitHub 

(https://github.com/justasb/olfactorybulb), model and tool documentation on how to 

run and modify the model, and parameterized scalability of the model.  This last 

feature allows it to be run on single machines with multiple CPU cores (Migliore, 

Cannia, Lytton, Markram, & Hines, 2006), rented cloud clusters like those available 

through Amazon Web Services, or supercomputers at the Neuroscience Gateway 

https://github.com/justasb/olfactorybulb
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(Sivagnanam et al., 2014). In addition, all tables in this manuscript can be downloaded 

from the repository in Microsoft Excel format. 

1.7 Results Summary 

Using experimental data, previous models, and newly developed software 

packages, I created a biophysically realistic model of the mouse olfactory bulb that 

modeled the two pathways and reproduced the experimentally observed gamma 

fingerprint. I then performed a series of model manipulations while assessing how they 

affect the gamma fingerprint. These experiments demonstrate that electrical 

synapses, relative mitral cell input strength, and granule cell inhibition are among the 

major determinants of the key components of the gamma fingerprint.  

The experimental data used for validation, the model source code, the 

documentation and tutorials, and the new software tools created to develop the model 

have been made available for access and extension by the neuroscience community. 

The new tools can be used to inspect the model and extend it with additional detail, 

cell types, and input and output systems. 
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2 METHODS 

To construct this model of the olfactory bulb, I first created detailed validated 

models of mouse mitral, tufted, and granule cells. The cell models were then placed 

and oriented within the reconstructed mouse olfactory bulb layers. Mitral and tufted 

cell model dendrites were confined to fit within their respective regions within the 

external plexiform layer. A proximity algorithm was used to form reciprocal synapses 

between mitral/tufted and granule cells. Electrical synapses were added to the tufted 

dendrites of mitral and tufted cells. Odor input was simulated using a model of sniffing. 

During simulations, soma membrane potentials were recorded and local field potentials 

were computed. Band-pass filters and wavelet transforms were performed to visualize 

the network gamma signature. Network parameters were manually adjusted until the 

gamma fingerprint was observed. Finally, a series of experiments manipulating 

network and cell properties were performed to assess their effect on the gamma 

fingerprint. 

2.1 Validation of Cell Model Electrophysiology and Morphology  

To validate cell models, I first aggregated literature-reported relevant 

electrophysiology and morphology measurements of mitral, tufted, and granule cells. 

The experimental electrophysiology data were stored in an SQLite database and 

protocols and conditions used to measure it were codified within the NeuronUnit 

(Gerkin et al., 2019) framework as automated model tests. Then, previously developed 

NEURON models of mitral, tufted, and granule cells were retrieved from ModelDB 

(Hines, Morse, Migliore, Carnevale, & Shepherd, 2004), and subjected to the tests, 

resulting in measures of model deviation from experimental measurements.  

Similarly, morphologies of previous models were analyzed using L-Measure 

(Scorcioni, Polavaram, & Ascoli, 2008) and compared to reconstructed morphologies 

of the three cell types. Next, ion channels from best performing models and 
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representative reconstructed morphologies were recombined into novel sets of models 

of each cell type. An optimization algorithm was used to search ion channel 

conductance space for parameter combinations with smaller deviations than the best 

earlier models. These novel models were then used in subsequent network 

construction. 

2.1.1 Experimental Data Database 

To validate cell models, 499 measurements of cell electrophysiology and 

morphology properties were collected from 45 publications (see next two sections for 

sources). An SQLite database for experimental data was developed to manage the 

complexity. Each publication was considered as a source of each measurement. Each 

measurement, consisting of a mean, standard deviation, and sample size, measured 

a particular electrophysiological or morphological property. Because each publication 

can report multiple measurements of different properties, measurements need to be 

linked to their source publications. Similarly, because each cell property can have 

multiple measurements, which can come from different publications, each 

measurement needs to be linked to a record of a property. 

To accommodate this information structure, three tables were added to the 

database: source, property, and measurement (see Figure 3). The tables were linked 

with foreign keys that linked measurements to their properties and to their publication 

sources. The source table stored information about each publication, like the short 

author name (e.g. Shepherd et al. (2010)), article/chapter title, journal or book title, 

and a URL that can be used to locate the publication. The property table stored the 

names of cell properties like “rheobase” and “resting potential”. The measurement 

table stored the summary statistics of each measurement and linked to records in the 

property and source tables. 
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Figure 3: Experimental Data Database Tables. Measurement table contains records of 

measurements of experimental properties, their means, standard deviations, and 

sample sizes. One-to-many foreign keys (arrows) link each measurement to the 

experimental property it measures and to the publication (source) in which the 

measurement was reported. Each property can have multiple measurements (in 

different publications), and each publication can report multiple measurements (of 

different properties). When appropriate, multiple measurements of a property can be 

pooled together to obtain the aggregate property summary statistics. 

Once all measurements from all the relevant publications were entered into the 

database, results from simulations of earlier cell models could be compared to these 

measurements easily. The peewee (Leifer, 2010/2019) object-relational mapping 

framework (Barry & Stanienda, 1998) was used to create Python classes that map to 

the database tables and write Python expressions to query the database. 

2.1.2 Electrophysiology Experimental Data 

A literature review was performed to identify publications reporting summary 

statistics (mean, sample size, and standard deviation or error) of adult mouse olfactory 
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bulb cell electrophysiology properties. Some publications were found via cell and 

species filtered search on NeuroElectro.org (Tripathy, Savitskaya, Burton, Urban, & 

Gerkin, 2014), others via citations in previously published models or review articles, 

and via NIH PubMed keyword searches. Publications were excluded if intracellular 

electrodes were not used, the cells were not synaptically isolated, or the publication 

did not report details of the stimulation protocol, or sample size and standard 

deviation/error. Where necessary, values were extracted from figures using 

WebPlotDigitizer (Rohatgi, 2011). Table 1, Table 2, and Table 3 list the 

electrophysiology properties whose summary statistics were collected from the 

previously published literature (Abraham et al., 2010; Angelo et al., 2012; Burton & 

Urban, 2014, 2015; Christie et al., 2005; Fukunaga et al., 2012; Hovis, Padmanabhan, 

& Urban, 2010; Hu, Ferguson, Whiteus, Meijer, & Araneda, 2016; Johnston & Delaney, 

2010; Shpak, Zylbertal, Yarom, & Wagner, 2012; Stroh et al., 2012; Yu, Burton, 

Tripathy, & Urban, 2015; Zibman, Shpak, & Wagner, 2011). 
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Table 1: Granule Cell Electrophysiology Property Measurements  

 

 

Table 2: Tufted Cell Electrophysiology Property Measurements  

Property µ ± σ (n) Source

AP Afterdepolarization Depth (mV) 0 ± 2 (49) Stroh et al. (2012)

AP Afterdepolarization Duration (ms) 42 ± 22 (49) Stroh et al. (2012)

AP Amplitude (mV) 55.2 ± 12 (31) Burton and Urban (2015)

AP Half-Width (ms) 1 ± 0.19 (31) Burton and Urban (2015)

AP Threshold (mV) -41.9 ± 7.8 (31) Burton and Urban (2015)

Capacitance (pF) 46.1 ± 11.7 (28) Burton and Urban (2015)

FI Curve Slope (Hz/nA) 860 ± 330 (30) Burton and Urban (2015)

Input Resistance (MOhm) 603.2 ± 363.4 (32) Burton and Urban (2015)

1070 ± 390 (20) Stroh et al. (2012)

Membrane Resting Voltage (mV) -92 ± 4 (17) Stroh et al. (2012)

-84.2 ± 8.5 (40) Burton and Urban (2015)

Membrane Time Constant (ms) 27.3 ± 13.2 (28) Burton and Urban (2015)

Rebound Potential Presence 0 ± 1 (1) Burton and Urban (2015)

Rheobase (pA) 37.1 ± 21.2 (31) Burton and Urban (2015)

Sag Amplitude (mV) -4.6 ± 1.56 (5) Hu et al. (2016)

Spiking Rate Accommodation (Hz) 0 ± 1 (1) Burton and Urban (2015)

Granule Cell Electrophysiology Properties

Property µ ± σ (n) Source

AHP Amplitude (mV) 16.8 ± 3.3 (12) Burton and Urban (2014)

AHP Duration (ms) 20.5 ± 20.1 (28) Burton and Urban (2014)

AP Amplitude (mV) 72.1 ± 5.5 (12) Burton and Urban (2014)

AP Threshold (mV) -55.5 ± 2.9 (12) Burton and Urban (2014)

AP Width at Half-height (ms) 0.87 ± 0.1 (12) Burton and Urban (2014)

Capacitance (pF) 188.8 ± 110 (28) Burton and Urban (2014)

FI Curve Slope (Hz/nA) 406 ± 144 (28) Burton and Urban (2014)

ISI Coefficient of Variation 0.8 ± 0.43 (28) Burton and Urban (2014)

Input Resistance (MOhm) 89.8 ± 34.8 (6) Fukunaga et al. (2012)

111.8 ± 51.6 (28) Burton and Urban (2014)

Membrane Resting Voltage (mV) -68.5 ± 4.7 (28) Burton and Urban (2014)

Membrane Time Constant (ms) 18.8 ± 8.6 (28) Burton and Urban (2014)

Rebound Potential Presence 1 ± 1 (28) Burton and Urban (2014)

Rheobase Current (pA) 94.6 ± 49.7 (28) Burton and Urban (2014)

Sag Amplitude (mV) -4.4 ± 6.1 (28) Burton and Urban (2014)

Spiking Rate Accommodation (Hz) -20.2 ± 19.1 (28) Burton and Urban (2014)

Spiking Rate Accom. Time Const. (ms) 585 ± 664 (28) Burton and Urban (2014)

Tufted Cell Electrophysiology Properties
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Property µ ± σ (n) Source

AHP Amplitude (mV) 14.8 ± 3.2 (10) Burton and Urban (2014)

19.5 ± 6.2 (48) Yu et al. (2015)

AHP Duration (ms) 5.2 ± 1.8 (48) Yu et al. (2015)

58.2 ± 77.5 (35) Burton and Urban (2014)

AP Amplitude (mV) 63.2 ± 10.4 (48) Yu et al. (2015)

76.2 ± 5.4 (10) Burton and Urban (2014)

AP Half-Width (ms) 1.06 ± 0.2 (10) Burton and Urban (2014)

1.2 ± 0.2 (48) Yu et al. (2015)

AP Peak (mV) 16.4 ± 9 (48) Yu et al. (2015)

AP Threshold (mV) -55.2 ± 3 (10) Burton and Urban (2014)

-46.8 ± 8.7 (48) Yu et al. (2015)

Capacitance (pF) 235.1 ± 137.1 (48) Yu et al. (2015)

236.4 ± 94.6 (35) Burton and Urban (2014)

FI Curve Slope (Hz/nA) 196 ± 76 (35) Burton and Urban (2014)

ISI Coefficient of Variation 0.31 ± 0.33 (48) Yu et al. (2015)

0.45 ± 0.29 (35) Burton and Urban (2014)

Input Resistance (MOhm) 19 ± 7 (5) Hovis et al. (2010)

59 ± 30 (29) Abraham et al. (2010)

68 ± 21.9 (30) Christie et al. (2005)

76.2 ± 22.3 (3) Fukunaga et al. (2012)

94.3 ± 40.5 (35) Burton and Urban (2014)

128.2 ± 53.4 (48) Yu et al. (2015)

240 ± 110 (20) Shpak et al. (2012)

299 ± 135 (35) Zibman et al. (2011)

Membrane Resting Voltage (mV) -74.65 ± 2.7 (20) Shpak et al. (2012)

-71.2 ± 5.5 (48) Yu et al. (2015)

-66.9 ± 4 (35) Burton and Urban (2014)

-57 ± 17 (29) Abraham et al. (2010)

Membrane Time Constant (ms) 14 ± 4.5 (5) Hovis et al. (2010)

21.3 ± 9.4 (35) Burton and Urban (2014)

28.1 ± 16.5 (48) Yu et al. (2015)

42.5 ± 16.1 (35) Zibman et al. (2011)

Rebound Potential Presence 0 ± 1 (35) Burton and Urban (2014)

0 ± 1 (35) Johnson and Delaney (2010)

Rheobase Current (pA) 111.4 ± 55.7 (35) Burton and Urban (2014)

Sag Amplitude (mV) -5 ± 2.93 (6) Hu et al. (2016)

-3.8 ± 4.1 (45) Yu et al. (2015)

-3.43 ± 5.8 (105) Angelo et al. (2012)

-2 ± 2.6 (35) Burton and Urban (2014)

Spiking Rate Accommodation (Hz) -9.43 ± 17.83 (35) Burton and Urban (2014)

15.9 ± 24.5 (35) Zibman et al. (2011)

113 ± 58.8 (35) Zibman et al. (2011)

398 ± 562 (35) Burton and Urban (2014)

Mitral Cell Electrophysiology Properties

Spiking Rate Accom. Time Const. (ms)
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Table 3: Mitral Cell Electrophysiology Property Measurements  

Some publications using rat slices reported subthreshold oscillations or bi-

stability in mitral cells (Chen & Shepherd, 1997; Desmaisons, Vincent, & Lledo, 1999; 

Heyward, Ennis, Keller, & Shipley, 2001); however no published articles reporting 

summary statistics of these properties in mice were found in the literature search. 

Because all other experimental data to validate this model were based on mouse data, 

cell models were not validated against these properties. 

2.1.3 Experimental Morphology Data 

Morphology data to validate mitral, tufted, and granule cell model morphologies 

was obtained by analyzing the morphologies of reconstructed cells (Belnoue, Malvaut, 

Ladevèze, Abrous, & Koehl, 2016; Breton-Provencher et al., 2009; Burton, LaRocca, 

Liu, Cheetham, & Urban, 2017; Burton & Urban, 2014; Case et al., 2017; Dahlen, 

Jimenez, Gerkin, & Urban, 2011; Daroles et al., 2016; Denizet, Cotter, Lledo, & 

Lazarini, 2017; Fukunaga et al., 2012; Ke, Fujimoto, & Imai, 2013; McDole, Isgor, 

Pare, & Guthrie, 2015; Murai et al., 2016; Pun et al., 2012; Sailor et al., 2016; Siopi 

et al., 2016). Cell reconstructions of all three cell types were obtained from 

NeuroMorpho.org (Ascoli, Donohue, & Halavi, 2007) by performing a filtered search of 

adult mouse olfactory cell reconstructions in the control experimental condition. Each 

SWC morphology file in the resulting archives was manually inspected for 

reconstruction issues using neuTube (Feng, Zhao, & Kim, 2015). Reconstructions that 

did not include markers for somas or showed extremely large dendrite radius variations 

were excluded. Mislabeled or missing cell dendrites (e.g. all labeled as basal) were 

relabeled. Mitral and tufted cell reconstructions that had misplaced tufted dendrites 

(e.g. oriented correctly but translated ~100µm away from the soma) were corrected 

by translating them back to the soma. Reconstructions that did not include radius 

information (e.g. constant or extremely small) were labeled to not be used when 
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computing morphology metrics that utilized radius information. Reconstructions that 

did not show cell appropriate radial symmetries (e.g. thin slices) were labeled to not 

be used when computing morphology metrics that used depth information. No 

additional steps were taken to adjust for shrinkage. (However, see “2.1.5 Novel Cell 

Model Development” section below.) 

Once the reconstructions were cleaned, a set of morphology metrics were 

computed for each mitral, tufted, and granule cell reconstruction (Table 4, Table 5, 

and Table 6). The set of metrics that are shown in the detailed view of reconstructions 

on NeuroMorpho.org were the metrics chosen to analyze cell reconstructions. The 

pyLMeasure Python package (Birgiolas, 2019/2019c) that wraps L-Measure (Scorcioni 

et al., 2008) functionality was used when writing NeuronUnit morphology tests and to 

compute all metrics. The definitions of each metric and how they are computed can be 

seen in L-Measure documentation (“L-Measure functions,” n.d.). Once computed, the 

metrics were pooled across publications to obtain summary statistics (mean and 

standard deviation) for each metric for each cell type.  
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Morphology Metrics of Mitral Cell Reconstructions 

    

Number of Stems   5.56 ± 1.69 (61) 

Soma Surface Area (µm2)   1,479.25 ± 667.19 (61) 

    

 Apical Dendrite  Basal Dendrite 

Mean Bifurcation Angle Local (°) 85.88 ± 14.59 (52)  74.93 ± 21.61 (61) 

Mean Bifurcation Angle Remote (°) 68.65 ± 17.10 (52)  43.52 ± 18.33 (61) 

Mean Contraction 0.78 ± 0.16 (52)  0.74 ± 0.07 (48) 

Mean Diameter (µm) 1.52 ± 1.36 (52)  0.99 ± 0.29 (48) 

Mean Rall's Ratio 1.20 ± 0.21 (52)  0.99 ± 0.35 (48) 

Fractal Dimension 1.05 ± 0.13 (52)  1.04 ± 0.02 (61) 

Max Branch Order 8.30 ± 2.84 (52)  2.85 ± 2.06 (61) 

Max Euclidean Distance (µm) 252.40 ± 57.82 (52)  667.44 ± 209.90 (61) 

Max Path Distance (µm) 346.41 ± 91.53 (52)  847.76 ± 208.91 (61) 

Number of Bifurcations 18.30 ± 8.66 (17)  9.18 ± 7.32 (26) 

Number of Branches 32.07 ± 19.52 (17)  20.87 ± 10.53 (26) 

Overall Depth (µm) 114.15 ± 48.82 (17)  180.29 ± 96.33 (26) 

Overall Height (µm) 137.19 ± 67.80 (52)  898.30 ± 359.43 (61) 

Overall Width (µm) 165.84 ± 73.02 (52)  329.05 ± 234.91 (61) 

Partition Asymmetry 0.47 ± 0.15 (52)  0.33 ± 0.20 (61) 

Total Length (µm) 730.59 ± 182.25 (17)  4,644.17 ± 2,630.20 (26) 

Total Surface (µm2) 3,737.63 ± 1,021.03 (17)  21,375.40 ± 8,921.32 (13) 

Total Volume (µm3) 3,016.61 ± 635.19 (17)  7,225.05 ± 3,575.24 (13) 

    

Sources:    

Burton and Urban (2014), Burton et al. (2017), Case et al. (2017), Fukunaga et al. (2012), Ke 
et al. (2013), Murai et al. (2016) 

 

Table 4: Statistics of Morphology Metrics of Mitral Cell Reconstructions 
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Morphology Metrics of Tufted Cell Reconstructions 

    

Number of Stems   4.23 ± 2.21 (37) 

Soma Surface Area (µm2)   1,097.46 ± 587.27 (37) 

    

 Apical Dendrite  Basal Dendrite 

Mean Bifurcation Angle Local (°) 91.71 ± 6.84 (37)  79.99 ± 32.04 (37) 

Mean Bifurcation Angle Remote (°) 70.75 ± 6.26 (37)  46.44 ± 21.16 (37) 

Mean Contraction 0.79 ± 0.06 (37)  0.71 ± 0.19 (37) 

Mean Diameter (µm) 0.94 ± 0.28 (37)  1.04 ± 0.23 (37) 

Mean Rall's Ratio 1.27 ± 0.15 (37)  0.89 ± 0.43 (37) 

Fractal Dimension 1.07 ± 0.02 (37)  1.03 ± 0.14 (37) 

Max Branch Order 10.62 ± 4.81 (37)  2.52 ± 2.10 (37) 

Max Euclidean Distance (µm) 174.57 ± 44.13 (37)  435.20 ± 179.56 (37) 

Max Path Distance (µm) 274.00 ± 65.42 (37)  699.56 ± 236.47 (37) 

Number of Bifurcations 23.02 ± 27.57 (8)  4.88 ± 3.14 (8) 

Number of Branches 77.70 ± 53.10 (8)  13.05 ± 5.62 (8) 

Overall Depth (µm) 97.80 ± 57.83 (8)  77.11 ± 94.13 (8) 

Overall Height (µm) 115.51 ± 51.40 (37)  569.14 ± 286.67 (37) 

Overall Width (µm) 92.05 ± 39.73 (37)  177.18 ± 130.90 (37) 

Partition Asymmetry 0.52 ± 0.10 (37)  0.28 ± 0.21 (37) 

Total Length (µm) 1,049.13 ± 478.38 (8)  1,617.03 ± 1,156.48 (8) 

Total Surface (µm2) 2,902.06 ± 1,881.73 (8)  8,368.72 ± 3,231.42 (8) 

Total Volume (µm3) 1,351.55 ± 1,127.77 (8)  1,663.74 ± 1,099.35 (8) 

    

Sources:    

Burton and Urban (2014), Burton et al. (2017), Fukunaga et al. (2012) 

 

Table 5: Statistics of Morphology Metrics of Tufted Cell Reconstructions 
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Morphology Metrics of Granule Cell Reconstructions 

    

Number of Stems   2.67 ± 1.21 (149) 

Soma Surface Area (µm2)   263.15 ± 181.14 (149) 

    

 Apical Dendrite  Basal Dendrite 

Mean Bifurcation Angle Local (°) 76.86 ± 20.51 (499)  8.05 ± 26.93 (482) 

Mean Bifurcation Angle Remote (°) 45.97 ± 15.62 (499)  6.74 ± 23.20 (482) 

Mean Contraction 0.92 ± 0.04 (412)  0.16 ± 0.34 (401) 

Mean Diameter (µm) 1.02 ± 0.20 (357)  0.22 ± 0.50 (401) 

Mean Rall's Ratio 1.97 ± 0.20 (357)  0.12 ± 0.64 (401) 

Fractal Dimension 1.02 ± 0.03 (499)  0.31 ± 0.48 (488) 

Max Branch Order 3.36 ± 1.61 (499)  0.23 ± 0.68 (482) 

Max Euclidean Distance (µm) 241.16 ± 84.02 (499)  11.36 ± 24.08 (488) 

Max Path Distance (µm) 285.48 ± 96.92 (499)  13.63 ± 25.97 (488) 

Number of Bifurcations 2.67 ± 1.83 (45)  0.28 ± 0.47 (39) 

Number of Branches 6.45 ± 4.48 (45)  2.14 ± 1.53 (45) 

Overall Depth (µm) 41.59 ± 53.56 (45)  6.10 ± 7.48 (45) 

Overall Height (µm) 223.42 ± 81.14 (499)  9.15 ± 21.41 (488) 

Overall Width (µm) 59.32 ± 39.90 (499)  7.45 ± 15.90 (488) 

Partition Asymmetry 0.47 ± 0.22 (499)  0.01 ± 0.07 (482) 

Total Length (µm) 421.69 ± 375.10 (45)  38.85 ± 34.08 (45) 

    

Sources:    

Belnoue et al. (2016), Breton-Provencher et al. (2016), Dahlen et al. (2011), Daroles et al. 
(2016), Denizet et al. (2017), McDole et al. (2015), Pun et al. (2012), Sailor et al. (2016), 
Siopi et al. (2016) 

 

Table 6: Statistics of Morphology Metrics of Granule Cell Reconstructions 

2.1.4 Evaluation of Previous Cell Models 

ModelDB (Hines et al., 2004; McDougal et al., 2015) was searched to identify 

previously developed models of olfactory bulb mitral, tufted, or granule cells (Bhalla & 

Bower, 1993; Chen, Shen, Shepherd, Hines, & Midtgaard, 2002; David, Linster, & 

Cleland, 2008; Davison, Feng, & Brown, 2000; Djurisic, Popovic, Carnevale, & Zecevic, 

2008; Kaplan & Lansner, 2014; Li & Cleland, 2013; McTavish, Migliore, Shepherd, & 

Hines, 2012; Migliore et al., 2014, 2015, 2005; Migliore, Inzirillo, & Shepherd, 2007; 

Migliore & McTavish, 2013; Migliore & Shepherd, 2008; O’Connor et al., 2012; Rubin 

& Cleland, 2006; Saghatelyan et al., 2005; Shen, Chen, Midtgaard, Shepherd, & Hines, 

1999; Short et al., 2016; Yu et al., 2013). Only models that were implemented in 



27 

NEURON (Hines & Carnevale, 1997) and modeled cells or cell networks were included 

for evaluation. To prepare models for evaluation, each cell model was isolated 

programmatically (inputs disconnected). Default or control condition ion channel 

conductance values were used.  

The protocols used to measure experimental values of electrophysiology 

properties listed in Table 1 were codified into NeuronUnit tests. Most publications used 

slightly different protocols when measuring the property values (e.g. different length 

of current injection, different definition of action potential threshold). To remove this 

source of variability and to evaluate the models more fairly, each publication protocol 

was codified into its own NeuronUnit test. Each cell model’s result in response to a 

publication’s protocol to measure a property was compared to that publication’s 

property summary statistics. Model deviation from a publication reported property 

value was computed as a Z-score. Model deviations from a set of experimental 

measurements of the same property under different conditions (e.g. rheobase current 

with different current injection duration or temperature) were combined by weighing 

each publication Z-scores by the publication reported sample sizes. Thus, each model 

and property combination received a “combined Z-score”, which aggregated the 

property’s sample-size-weighted Z-scores across publications. 

To evaluate a model’s overall correspondence to electrophysiology data, the 

combined Z-scores across electrophysiology properties reported for that cell type were 

aggregated to an overall model score by taking the square root of the sum of combined 

Z-score squared values (RMSE).  

Model morphologies were evaluated separately from electrophysiology. Each 

model’s morphology was extracted via conversion to the SWC format via the use of 

the Python hoc2swc package (Birgiolas, 2019/2019a, p. 2), and the pyLMeasure 

package was used to compute morphology metrics listed in Table 4, Table 5, and Table 
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6. Once computed, each model’s morphology metrics were compared to corresponding 

experimental distributions (see the tables above) by computing the model-metric 

combination’s Z-score. As for electrophysiology, the overall model morphology score 

was the square root of the sum of the squared Z-scores of each metric. 

 

Table 7: Mitral Cell Model Electrophysiology Validation Results. Left column lists the 

cell models that were compared to experimental electrophysiology data. The columns 

on the right show the electrophysiology properties computed for each model and their 

combined, sample size weighed Z-scores relative to the experimental distributions. 

RMSE column shows each model’s overall score. The rows are sorted by RMSE. Z-

scores were clamped to ±6 standard deviations. Models developed for this dissertation 

are the first five rows.  
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Birgiolas2020 MC1 2.4 -0.1 0.2 0.2 0.3 -0.4 0.6 0.2 0.0 0.8 0.1 0.8 -0.4 -1.2 -0.4 0.9 0.4 1.0

Birgiolas2020 MC5 3.5 0.0 0.4 -0.1 -0.5 -0.2 0.4 -0.2 0.0 0.1 0.4 0.8 0.4 2.9 -0.2 0.4 0.7 1.1

Birgiolas2020 MC2 3.9 1.2 1.5 -0.1 -0.5 0.2 0.3 -0.3 0.0 0.4 0.4 0.8 0.2 2.9 0.3 0.9 0.5 0.2

Birgiolas2020 MC3 3.9 -1.1 -0.1 0.6 -0.3 -0.5 -0.6 -0.5 0.0 -0.3 -0.2 0.8 0.2 3.0 0.8 1.4 0.9 0.0

Birgiolas2020 MC4 4.1 0.8 -0.4 0.3 -1.9 -0.5 -0.4 -0.4 0.0 0.9 0.4 0.8 0.1 2.9 0.4 0.4 0.9 0.4

Shen1999 4.8 0.6 1.9 0.0 0.7 -0.2 0.2 -0.3 0.0 0.3 0.9 0.7 -0.1 3.0 -0.4 -2.6 0.0 0.4

Saghatelyan2005 5.7 1.4 0.0 -0.2 0.2 -1.2 0.5 -0.2 0.0 0.3 0.4 0.7 -0.1 2.9 1.8 2.9 2.6 1.0

Migliore2008 6.0 -0.3 -0.1 -0.4 1.6 -1.2 -0.5 -1.1 0.0 0.5 0.6 0.7 -0.1 3.0 2.8 2.2 2.7 -0.3

Migliore2007 6.2 -0.3 -0.3 -0.4 1.8 -1.1 -0.5 -1.1 0.0 0.5 0.6 0.7 -0.1 3.0 2.8 2.8 2.6 -0.3

McTavish2012 6.3 -0.5 -0.1 -0.3 1.5 -1.1 -0.7 -1.1 0.0 0.5 1.0 0.7 -0.1 3.0 2.8 2.9 2.6 -0.3

Short2016 6.3 -0.5 -0.1 -0.3 1.5 -1.1 -0.7 -1.1 0.0 0.5 1.0 0.7 -0.1 3.0 2.8 2.9 2.6 -0.3

MiglioreMcTavish2013 6.3 -0.5 -0.1 -0.4 1.9 -1.1 -0.7 -1.2 0.0 0.5 0.9 0.7 -0.1 3.0 2.8 2.8 2.6 -0.3

Migliore2005GJs 6.4 0.1 -0.2 -0.9 2.3 -1.1 0.2 -1.2 0.0 0.5 0.1 0.7 -0.1 2.9 2.6 2.8 2.8 0.1

Yu2012 6.4 -0.6 -0.1 -0.4 1.9 -1.2 -0.7 -1.2 0.0 0.5 0.9 0.7 -0.1 2.9 2.8 2.9 2.6 -0.3

Chen2002 6.9 -0.1 -1.2 -0.4 -0.5 -0.1 0.4 -0.6 0.0 1.0 -1.4 0.7 0.1 6.0 0.6 -2.1 0.1 -0.8

BhallaBower1993 7.2 0.0 -1.1 3.9 -1.8 1.0 -1.0 0.9 0.0 0.8 2.0 0.8 -0.4 3.4 0.7 -3.5 0.9 0.5

LiCleland2013 7.5 3.2 3.2 -1.1 -1.9 0.4 2.8 -0.4 0.0 0.2 0.1 0.7 0.8 3.0 -0.2 -3.4 0.8 1.3

David2008 8.9 1.1 -0.9 5.1 -2.1 0.6 -0.1 3.8 0.0 0.8 0.3 0.8 -1.5 3.1 0.5 -4.0 1.3 1.3

Djurisic2008 9.1 1.1 -2.0 -1.2 -2.6 -1.2 3.7 -0.3 0.0 1.0 3.8 0.7 -0.1 4.7 -1.5 -3.4 -0.4 1.4

Migliore2014 9.2 1.1 -0.9 0.4 -2.6 -1.1 -1.9 -1.8 0.0 0.5 6.0 0.7 -0.1 2.9 3.2 1.6 3.0 -0.4

Migliore2015 9.2 1.4 -1.0 0.6 -2.6 -1.1 -1.9 -1.7 0.0 0.5 6.0 0.7 -0.1 2.9 3.2 1.0 3.1 -0.3

Davison2000 9.5 1.2 -1.0 5.3 -2.2 1.0 -0.1 3.9 0.0 0.8 0.7 0.8 0.5 3.2 0.6 -4.5 2.0 1.3

Oconnor2012 MC2 10.6 -2.4 -2.0 -1.1 -2.2 -1.2 -1.2 -1.8 0.0 0.5 2.4 0.7 -0.1 4.7 3.5 6.0 3.4 1.0

Oconnor2012 MC5 10.8 0.1 -0.2 -0.3 -2.6 -0.7 -1.7 -1.7 0.0 -0.1 6.0 0.7 -2.0 3.0 3.2 5.5 3.6 0.3

Oconnor2012 MC6 10.9 -0.8 -2.0 -0.5 -2.6 -1.2 -1.7 -1.8 0.0 0.5 6.0 0.7 -0.1 4.7 2.2 5.0 3.2 1.1

Oconnor2012 MC3 11.2 -1.9 0.5 -1.2 -2.6 -0.8 -1.6 -1.9 0.0 0.5 6.0 0.7 -2.2 3.0 2.3 6.0 3.5 1.3

Oconnor2012 MC1 11.5 0.5 -0.1 -1.5 -2.6 -1.1 -1.6 -2.0 0.0 0.4 6.0 0.7 -0.1 4.7 2.4 6.0 3.7 1.4

RubinCleland2006 12.2 3.4 2.1 1.4 -2.6 0.7 -2.0 -1.7 0.5 1.3 6.0 2.6 0.5 6.0 3.6 -2.8 3.8 0.2

KaplanLansner2014 12.5 1.2 6.0 5.3 -1.0 1.9 -0.1 3.9 0.0 0.8 0.7 0.8 -5.6 3.1 0.8 -4.6 2.0 1.3

Oconnor2012 MC4 12.8 -0.4 6.0 -1.1 -2.6 -1.2 -1.0 -1.7 0.0 0.6 5.9 0.7 -0.1 4.7 1.0 6.0 3.2 2.9

Mitral Cell Model Validation Results
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Table 8: Tufted Cell Model Electrophysiology Validation Results. See description in 

Table 7. 

 

 

 

Table 9: Granule Cell Model Electrophysiology Validation Results. See description in 

Table 7. 
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Birgiolas2020 TC3 3.6 -0.6 -1.0 -0.9 -1.4 -0.6 0.7 -0.7 -1.0 -0.3 -0.5 0.9 0.1 -0.2 0.1 0.0 2.3

Birgiolas2020 TC4 3.7 -0.3 -1.0 -0.8 -2.3 -0.6 1.0 -0.4 0.0 0.5 0.2 1.6 -0.7 -0.6 0.7 0.0 0.9

Birgiolas2020 TC5 3.8 0.4 -1.0 -1.6 -0.5 -0.7 -0.2 -2.1 0.0 1.0 -0.8 1.0 1.1 -0.5 0.4 0.0 1.2

Birgiolas2020 TC2 3.8 -0.9 -1.0 -1.5 -1.4 -0.7 0.0 -2.0 -1.0 -0.1 -0.2 0.7 0.0 -0.5 -0.2 0.0 1.4

Birgiolas2020 TC1 3.8 -0.7 -1.0 -1.6 0.2 -1.0 0.4 -2.1 0.0 1.1 0.5 0.8 0.2 -0.7 0.4 0.0 1.5

Tufted Cell Model Validation Results

Granule Cell Model R
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Birgiolas2020 GC1 3.44 0.00 -1.55 -0.48 -1.55 0.25 0.58 0.00 -0.15 0.50 2.09 0.00 -0.08 1.32 0.19

Birgiolas2020 GC5 3.71 0.02 -1.62 -0.31 -0.67 0.28 0.13 0.00 0.22 0.70 2.98 0.00 0.77 0.66 -0.21

Birgiolas2020 GC3 3.87 0.00 -0.46 -0.06 -0.30 -0.58 -0.17 0.00 2.05 0.72 2.96 0.00 0.47 0.66 0.46

Birgiolas2020 GC2 3.94 0.00 -1.56 -0.57 -0.97 -0.23 -0.02 0.00 0.24 0.65 2.95 0.46 0.81 1.32 0.01

Birgiolas2020 GC4 3.97 0.00 -1.65 -0.41 -1.67 0.01 0.36 0.00 0.30 0.64 2.96 0.35 0.35 0.66 0.08

Saghatelyan2005 8.44 2.73 -1.70 -1.95 -2.55 0.62 -0.25 0.00 2.84 1.94 2.95 0.00 -2.69 3.95 2.60

LiCleland2013 9.19 2.07 -1.78 -3.06 -1.48 3.24 -0.33 0.00 2.01 -1.13 -0.66 -6.00 1.45 3.29 0.22

Migliore2008 11.70 5.65 -1.65 -2.03 -1.55 0.65 -0.33 0.00 3.19 -0.24 2.95 -6.00 0.27 6.00 2.09

MiglioreMcTavish2013 11.70 5.65 -1.65 -2.03 -1.55 0.65 -0.33 0.00 3.19 -0.24 2.95 -6.00 0.27 6.00 2.09

McTavish2012 11.82 5.90 -1.68 -2.30 -1.55 1.51 -0.10 0.00 3.20 -0.60 2.24 -6.00 0.37 6.00 2.07

Short2016 11.82 5.90 -1.68 -2.30 -1.55 1.51 -0.10 0.00 3.20 -0.60 2.24 -6.00 0.37 6.00 2.07

Migliore2014 11.93 5.80 -1.69 -2.42 -1.58 1.49 -0.25 0.00 3.20 -0.62 2.95 -6.00 0.58 6.00 1.86

Migliore2015 11.97 5.90 -1.68 -2.30 -1.55 1.51 -0.10 0.00 3.20 -0.60 2.95 -6.00 0.37 6.00 2.07

Yu2012 11.97 5.90 -1.68 -2.30 -1.55 1.51 -0.10 0.00 3.20 -0.60 2.95 -6.00 0.37 6.00 2.07

Davison2003 12.31 1.90 -1.68 2.72 -2.27 1.61 6.00 0.00 3.56 -1.66 2.95 -5.74 0.63 6.00 -0.70

KaplanLansner2014 12.76 1.81 -1.70 3.89 -2.30 1.64 6.00 0.00 3.57 -1.66 2.95 -5.99 0.84 6.00 -0.96

Granule Cell Model Validation Results
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2.1.5 Novel Cell Model Development 

After evaluating existing models, novel cell models were developed with lower 

deviation from experimental data. Additionally, multiple models of each cell type were 

developed to better account for natural heterogeneity found in real cells. The full 

biophysically realistic models were developed by adding ion channel models to the 

membranes of representative morphologies and performing automated parameter 

searches using the electrophysiology RMSE as the cost function. 

For each cell type, five reconstructions were randomly selected from a set of 

cleaned full-cell reconstructions. Granule cell reconstructions were from Sailor et al. 

(2016), and mitral and tufted cell reconstructions were from Fukunaga et al. (2012). 

Using neuTube’s “edit SWC” tool, SWC nodes that were closer than 1 µm were merged. 

Axons, if any, were truncated to 30 µm. NEURON’s import SWC function was used to 

create NEURON sections from the morphologies. NEURON’s d_lambda rule with 

frequency parameter set to 100 Hz was used to discretize the imported sections into 

compartments (“Using the d_lambda Rule,” 2019). 
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Figure 4: Morphologies of Novel Models of Mitral, Tufted, and Granule Cells 

 

Figure 5: Electrophysiology of Novel Models of Mitral, Tufted, and Granule Cells. Each 

row contains somatic membrane potential traces of five novel cell models in response 

to 700 ms square current injections. Mitral and tufted cell models were injected 0.25, 

-0.1, and 0 nA. Granule cell models were injected 0.06, -0.02, and 0 nA.  Simulation 

temperature was 35 ºC. Y-axis units are mV; X-axis units are ms. 

The lateral dendrites of each mitral and tufted cell reconstruction reflect their 

local olfactory bulb curvature. In order to build a network model and ensure that the 
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lateral dendrites are confined to their respective locations within the layers regardless 

of their position in the bulb, the lateral dendrites were planarized by manually rotating 

the dendritic branches around the branch points. This transformation preserved the 

surface area (no changes to lengths or radii of the sections). When these base cell 

models were inserted into a specific location within the bulb, a novel algorithm was 

used to confine the planarized dendrites to their appropriate portions of the plexiform 

layer (see “2.3.4 Cell and Dendrite Orientations”) resulting in lateral dendrites that 

reflect the local bulbar curvature. 

Similarly, to aid later cell orientation, the apical dendrites were aligned with the 

Z-axis. In some cases, mitral/tufted cell apical dendrites were rotated “up-right” to be 

roughly perpendicular to the lateral dendrite plane. From this position, the apical 

dendrites were aligned towards a nearby glomerulus when placing the cell within the 

bulb layers. 

To perform the surface area conserving rotations, an add-on, BlenderNEURON 

(Birgiolas, 2018/2019a), was developed for the 3D modeling software Blender 

(Blender Foundation, 2019). Using Blender and NEURON Python interfaces, the add-

on establishes a two-way communication channel, which allows the import of models 

instantiated in NEURON into Blender. Once in Blender, a variety of complex 3D 

manipulations can be performed using Blender’s built-in functionality. Specifically, 

BlenderNEURON establishes parent-child object relations between cell model sections, 

which allows rotations applied to a base branch section to be applied to descendant 

sections as well (see Figure 6). This functionality was used to planarize mitral/tufted 

cell lateral dendrites and to rotate cells and align their apical dendrites with the Z-axis. 

The manipulation does not alter section sizes and preserves cell surface area, which 

prevents the need to re-fit cell model electrophysiology. Once the 3D manipulations 
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were finished, BlenderNEURON exported changes to the sections back to NEURON for 

simulation.  

 

Figure 6: Branch Rotations Using BlenderNEURON. BlenderNEURON add-on imports 

NEURON sections into Blender. The sections/cells can then be manipulated (e.g. 

rotated, translated) and exported back to NEURON for simulation. 

Once a cell model morphology was in NEURON, ion channel models were added 

to the cell model membrane. Channel models were taken from previously published 

models. The channel models included: passive (Hines & Carnevale, 1997), Na, Kd, KA 

(Short et al., 2016) KM, Kslow, LCa, CaT, Ih (Li & Cleland, 2013) and KCa (O’Connor 

et al., 2012). A calcium pool model (Li & Cleland, 2013) was also included in 

compartments with calcium channels. Base 3 temperature correction factor Q10 was 

added to Kslow, LCa, and CaT channels. 

All sections of mitral and tufted cell models contained the passive, Na, Kd, LCa, 

Kslow, KA, and KCa channels. Mitral and tufted apical dendrite sections contained the 

CaT and Ih channels. All sections of granule cell models contained the passive, Na, and 

Kd channels. Granular soma sections had the KM, KA, and Ih channels. 

Once the channels were added, parameters in Table 13 were allowed to vary 

freely (within the specified ranges) while a genetic algorithm was used to find 
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parameter value combinations that minimized each model’s overall electrophysiology 

property RMSE. 

 

Table 13: Parameters and Their Ranges Used for Cell Model Fitting. Parameter column 

lists the parameters that were varied. Parameters with underscores follow the NEURON 

convention (param_mechanism). “diam scale” was a scaling factor by which original 

reconstruction diameters were scaled. Loc columns refer to the cell parts where the 

parameters were varied (A: apical, B: basal/lateral, AX: axonal, S somatic). Range 

columns show the allowed low-high value range. 

The genetic algorithm used for fitting was implemented using the DEAP package 

(Fortin, Rainville, Gardner, Parizeau, & Gagné, 2012). Each model was optimized using 

30 individuals over 200 generations. The cost function was the electrophysiology 

property RMSE. The “bounded simulated binary crossover” rule with eta parameter set 

to 0.1 was used for mating. The “polynomial mutation” rule with eta parameter set to 

0.1 and mutation probability set to 0.9 was used for mutations. Elitism was 

implemented by retaining the top 20% individuals of each generation. 25% of offspring 

had elite parents, another 25% had random parents, while the remaining offspring 

Parameter Loc Loc Loc

diam scale A,B,AX 0.1 5 A,B,AX 0.1 2 A 0.1 3

Length S 6.58 13.37 S 3.5 11.6 S 0.89 5.04

Ra All 1 150 All 1 150 All 5 150

cm All 0.1 2 All 0.1 5 All 0.1 10

ena All 20 80 All 20 80 All 10 90

ek All -100 -50 All -100 -50 All -100 -30

e_pas All -90 -50 All -90 -50 All -100 -50

g_pas All 0 0.0002 All 0 0.0004 All 0 0.004

sh_Na All 0 10 All 0 10 All 0 10

gbar_Na All 0 0.2 All 0 0.1 S 0 5

gbar_Kd All 0 0.1 All 0 0.2 S 0 5

gbar_KA All 0 0.02 All 0 0.02 S 0 0.8

gbar_Kslow All 0 0.002 All 0 0.002

gbar_KCa All 0 0.016 All 0 0.016

gbar_LCa All 0 0.0005 All 0 0.001

tau_CaPool All 1 300 All 1 300

gbar_CaT A 0 0.02 A 0 0.02

eh A -40 -10 A -40 -10 S -60 -10

gbar_Ih A 0 0.000006 A 0 0.00006 S 0 0.0002

gbar_KM S 0 0.13

gbar_Na A 0 0.4

gbar_Kd A 0 1.6

Mitral Tufted Granule

RangeRange Range
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were randomly generated. Each simulation was performed using NEURON’s variable 

step integration method (CVODE) with 0.001 as the absolute tolerance. Parameter sets 

that resulted in long running (>2.5 minutes) or unstable (integrator errors) simulations 

were assigned high cost values (e.g. 90, while typical well-behaved model RMSEs were 

below 20 and completed under 2 minutes). 

After optimization, the electrophysiology RMSE values of all 15 novel models 

were below the RMSE values of all previous models of each cell type (Birgiolas2020 

models in Table 7, Table 8, and Table 9). Morphology RMSE values of novel models 

were below or in the close vicinity of RMSE values of earlier models whose 

morphologies were based on neuron reconstructions (Table 10, Table 11, and Table 

12). These 15 novel models were selected for inclusion in the network model. 

2.2 Layer Reconstruction 

An anatomical model of the 3D cell layers of mouse olfactory bulb was 

developed and the reconstructed layers were used to place and orient the cell models 

within their appropriate locations. 
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Figure 7: Reconstructed Layers of the Olfactory Bulb. Green: glomerular layer, Aqua: 

external plexiform layer, Orange: mitral cell layer, Purple: internal plexiform layer, 

Blue: granule cell layer. Scale bar: 1000 µm. An interactive, downloadable version of 

the model shown in this figure is available online at: https://skfb.ly/6NpHL. 

The Allen Mouse Brain Atlas (“Interactive Atlas Viewer: Atlas Viewer,” 2019; 

Oh et al., 2014) contains labeled adult mouse coronal and sagittal brain slices that 

include all layers of the olfactory bulb. However, while the sagittal slices contain the 

entire bulb, they are lower resolution, 200 µm thick, slices. Alternatively, the coronal 

slices are higher resolution, 100 µm thick, but do not contain the most anterior portion 

of the bulb. To ensure the model contained the full bulb while preserving the most 

detail, Blender was used to combine the laminar structures obtained from partial, 

higher resolution coronal slices with the laminar structure obtained from complete, but 

lower resolution sagittal slices.  

First, labeled 2D coronal and sagittal slice stacks of the bulb were combined 

into 3D models of each cut direction. Layer outlines contained in 2D slice images were 

converted to vector format using Inkscape (Bah, 2011) and the resulting SVG files 

were imported into Blender. Polygons were created between vertices of nearby slices 

using Blender’s “Bridge Edge Loops” or “Make Edge/Face” tools as necessary. The 

https://skfb.ly/6NpHL
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combined, higher-resolution 3D model of the bulb with the missing anterior portion 

obtained from coronal slices was fused with the lower-resolution 3D model of the 

anterior portion of the bulb obtained from the sagittal slices. Fusing of the anterior 

portion with the rest of the bulb was performed by manually aligning the vertices of 

the two partial 3D meshes and using Blender’s “Merge Vertex” tool. The final 3D model 

consisted of 3D meshes of glomerular, external plexiform, mitral cell, internal 

plexiform, and granule cell layers (Figure 7). To reduce the number of polygons and 

achieve roughly uniform vertex density, layer meshes were simplified by manually 

sculpting each mesh with Blender’s “Dyntopo” tool, which simplifies the vertices under 

the cursor while maintaining the overall curvature. The layer vertices were saved as 

Blender files, which were later accessed using Blender’s Python API. 

2.3 Cell Model Placement within Olfactory Bulb Layers 

After the olfactory bulb structural model was constructed, the cell models were 

placed and oriented within the correct layers of the anatomical model. The locations 

of the model somas of each cell type were identified based on the layers in which each 

cell type is found and the cell counts of each type found in the literature. Once the 

somas were placed within layers, cell apical dendrites were oriented towards nearby 

glomeruli while lateral dendrites, if any, were confined to appropriate sub-layer 

regions. 

2.3.1 Virtual Slices 

A virtual slice paradigm was employed to make to make it possible to build 

network models at different scales. Common experimental slice preparations as well 

as arbitrary 3D shapes (called meshes in Blender nomenclature) can be defined as 

“virtual slices” (see Figure 8). Once defined, the name of the slice object is passed into 

a script that builds the network model, selecting the glomeruli and cell somas that are 
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within that slice for inclusion in the network simulation. The virtual slices do not 

truncate the dendrites that fall outside of the slice boundaries.  

 

Figure 8: Examples of Virtual Slices. Virtual slices can be defined by arbitrary 3D 

meshes. The sagittal slice shown is 100 µm thick, the coronal slice is 200 µm thick, 

while the arbitrary slice defines a column of size 100x100x1000 µm. Glomeruli and 

cells that are inside a virtual slice are included in the simulation.  

2.3.2 Cell and Glomerular Counts 

Published literature was surveyed to identify the number of cells of each type 

in adult mouse olfactory bulb (Table 14). Each reported measurement was treated as 

a Gaussian distribution parameterized by the mean (µ) and standard deviation (σ) of 

the reported value, from which n (reported sample size) random values were picked 

and combined into pools for each cell type. To select a specific number of cells to 

include in the whole bulb model, a random number was picked from each pool. If a 

publication did not report the sample size, the standard deviation was assumed to be 

zero and n to be one. The same method was used to select the number of glomeruli 

to include in the whole bulb model (also in Table 14). 
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The selected values are reported in the right column of Table 14. Virtual slices 

were used to select a subset of the whole bulb. If a virtual slice were defined to be 

large enough to encompass the full bulb, and thereby include all cells and glomeruli, 

it would include approximately 800,000 cells. 

 

Table 14: Experimental and Model Counts of Cells and Glomeruli. Left columns show 

the summary statistics of cell and glomerular counts reported in experimental 

literature. The last column shows the maximum number of cells that would be included 

if the entire bulb was selected for simulation (see section 2.3.2 for details). Virtual 

slices include subsets of these cells. 

2.3.3 Glomerular and Soma Locations 

In order to place cells, their soma locations were pre-determined within layers 

via the use of a space-filling algorithm. Blender comes with built in “particles” 

functionality that uses a white noise distribution to select random locations of particles 

within the confines of a 3D mesh (e.g. a layer). These locations can then be used for 

cell placement. However, a white noise distribution tends to create random regions 

with high and low densities, which are not realistic in a compact neuropil setting. 

Blender also has a built-in physics simulation, which can be used to evenly pack soma-

like spheres within layers. However, for the granule cell layer, this would require 

µ ± σ (n) Source Full Model

Glomeruli 1,943 ± 171 (10) Pomeroy et al. (1990) 1,915            

1,810 ± 164 (16) Royet et al. (1988)

Mitral Cells 38,355 ± 2,856 (4) Benson et al. (1984) 39,660          

45,250 ± 0 (1) Purves el. al. (2004)

Tufted Cells 95,888 ± 9,784 (2) Shepherd (1972) 93,564          

76,710 ± 0 (1) Shepherd et al. (2010)

90,500 ± 0 (1) Purves el. al. (2004)

Granule Cells 758,313 ± 248,050 (33) Gheusi et al. (2000) 672,353       

537,064 ± 30,637 (16) Breton-Provencher et al. (2009)

Experimental (Adult Mouse) and Model Counts of Glomeruli and Cells
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running a computationally expensive ~800,000-body force-field simulation. A 

computationally efficient alternative that approximates biological realism is the use of 

a blue noise distribution (Yuksel, 2015), which results in more even, yet random, 

distribution of points within a mesh. The algorithm is implemented in a Blender add-

on (BorisTheBrave, 2017/2019), which was used to select cell/glomerular locations 

within glomerular, external plexiform, mitral cell, and granule cell layers. When 

creating a virtual slice, only soma/glomerular locations that are within the slice mesh 

are used. The generated cell locations were saved in a Blender file and later accessed 

via the Blender Python API.  

2.3.4 Cell and Dendrite Orientations 

Once a virtual slice has been selected and soma and glomerular locations within 

it identified, cell models were placed and oriented at each location.  

Mitral and tufted cells were placed using a similar procedure (see Figure 9). 

First, a random soma location within the slice was chosen and distance to the closest 

point in the glomerular layer was computed. The set of five available cell models was 

filtered to the set of cells whose apical dendrite could extend into the glomerular layer. 

A cell was randomly picked from this filtered set. If no cell could extend that far, the 

model with the longest apical dendrite was selected. When selecting a granule cell 

model, the full granule cell model set was filtered to those models whose apical 

dendrites could extend within the external plexiform layer. As with mitral/tufted cells, 

the granule cell model with the longest apical dendrite was selected if no cell could 

extend into the external plexiform layer. 

The selected mitral/tufted cell was placed at the selected soma location and 

rotated so that its apical dendrite pointed towards the closest glomerulus. The cell 

soma and the glomerulus formed a vector around which the whole cell was rotated by 

a random degree. Because the reach of the apical dendrite did not always coincide 
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with the distance to the closest glomerulus, a nearby glomerulus was identified such 

that the distance to it was approximately the same as the reach of the apical dendrite. 

The apical dendrite was then rotated towards the matching glomerulus. Granule cells 

did not require this step. 

 

Figure 9: The Process for Placing Mitral Cell Models. A: A virtual slice defines cell model 

soma and glomerulus locations for inclusion in the slice model. B: A mitral cell model 

is placed at a random soma location in the mitral cell layer. The whole cell is rotated 

by a random amount around the apical dendrite. This model’s apical dendrite extends 

beyond the glomerular layer, and the lateral dendrites do not follow the curvature of 

the bulb layers. C: The apical dendrite is rotated towards a glomerulus whose distance 

matches the extent of the apical dendrite. D: The lateral dendrites are confined to the 

lower portion of the external plexiform layer. 

Mitral and tufted cell dendrites are confined to approximately deeper and 

superficial halves of the external plexiform layer, respectively (Fukunaga et al., 2012, 

2014; Mori et al., 1983; Nagayama, Igarashi, et al., 2014). In order to make sure the 

dendrites in this model reflect these distributions, a novel algorithm was developed to 

confine the dendrites of the cell models within their respective sub-layer regions. The 

algorithm takes two Blender meshes that define deeper and superficial boundaries for 

dendrite confinement, low-high fractions that define the confinement portion between 
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the layers, and a maximum angle by which dendritic branches can be rotated about 

their branch points. Starting with lateral dendrite sections closest to the soma, the 

algorithm rotates the section and its descendant sections (as in Figure 6) towards a 

random position between the two layers. It then repeats the rotations to descendant 

dendritic sections. At the end of the process, all lateral dendrites become confined to 

the space between the specified layer boundaries. 

 

Figure 10: Placement and Dendritic Locations of a Column Slice Model. Mitral cell model 

(blue) somas are placed in the mitral cell layer, with apical dendrites reaching towards 

glomeruli, while the lateral dendrites are confined to the deeper portion of the external 

plexiform layer. Tufted cell (pink) model somas are located throughout the external 

plexiform layer, while their lateral dendrites are confined to the superficial portion of 

the external plexiform layer. Granule cell (yellow) model somas are placed in the 

granule cell layer with apical dendrites extending into the external plexiform layer. 

The placement, rotation, apical dendrite alignment, and lateral dendrite 

confinement is repeated for all cell models specified by the virtual slice. After this step, 

the model cells are ready to be connected with synapse models. In this model (Figure 

10), a virtual 100x100x1000 µm column slice of the dorsal olfactory bulb (Figure 8), 

contained a total of 10 mitral, 23 tufted, and 170 granule cell models. 
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2.4 Synapses 

Once cell models were placed and oriented, mitral and tufted cell dendrites 

were connected to the dendrites of granule cell models. Apical tuft dendrites of tufted 

and mitral cell models were connected with glomerular electrical synapses. 

2.4.1 Chemical Synapses 

Reciprocal synapses were formed between the dendrites of tufted/mitral and 

granule cell models based on a proximity rule (Peters & Feldman, 1976). See Rees et. 

al. (2017) for review of this approach. The Blender API was used to locate dendritic 

section pairs that were within 5 µm of each other. 5 µm is the typical maximum length 

of adult mouse granule cell spines (Whitman & Greer, 2007). For each pair, an 

AMPA/NMDA synapse model (Migliore et al., 2014) monitored mitral/tufted sections 

for action potentials and, once detected, triggered excitatory currents in the 

appropriate granule cell model section. In the reverse direction, a GABA synapse model 

(Migliore et al., 2014) monitored granule sections for action potentials and, once 

detected, triggered inhibitory currents in the appropriate mitral/tufted cell model 

sections. With the exception of parameters varied as described in section “3.1 

Reproduced Gamma Fingerprint”, all other parameters were set to default values. 

2.4.2 Electrical Synapses 

Electrical synapse models (Stacey, Lazarewicz, & Litt, 2009) were added 

between tufted cell model apical tuft dendrites that shared glomeruli. Each glomerular 

tufted cell model was connected to two other tufted cell models in a round robin 

fashion. The same procedure was used to connect mitral cell model tufts as well. 

2.5 Inputs 

Once the network was assembled and connected, simulated odors were applied 

to the glomeruli. Optical imaging recordings of glomerular activity during odor 

presentation (Vincis, Gschwend, Bhaukaurally, Béroud, & Carleton, 2012) were used 
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to construct inputs to the network model. Odor triggered maximal activations of 

glomeruli in the dorsal surface of the olfactory bulb were based on those obtained in 

a previously published model (Migliore et al., 2014).  

To apply odor activations based on Vincis et. al. (2012) to the glomeruli of this 

model, I identified glomeruli in this model that are homologous to the glomeruli of the 

Migliore (2014) model. To do this, the mitral cell models of the Migliore (2014) model 

were imported into Blender and aligned with the glomerular layer of the model 

developed here. Then, the glomeruli that were closest to the glomeruli of the Migliore 

model were identified and maximal activations were assigned to them. Given that the 

glomerular positions in the Migliore et. al. (2014) model were directly mapped from 

the glomerular positions in Vincis et. al. (2012), the number of glomeruli in this model 

was selected from experimental distributions (see Table 14), and the glomeruli were 

uniformly distributed throughout the reconstructed glomerular layer (see “2.2 Layer 

Reconstruction” and “2.3.3 Glomerular and Soma Locations” sections), the positions 

of the dorsal glomeruli in this model are expected to correspond well to those observed 

in Vincis et. al. (2012).  

Maximal glomerular activations were combined with a sniffing model to 

generate simulated olfactory receptor input into mitral/tufted cell model tufted 

dendrites. Each inhalation was modeled by a train of action potentials whose times 

were picked from a random Gaussian distribution. The mean and standard deviation 

of the distribution were chosen so that its 99% range (±2.576 standard deviations) 

spanned the duration of the inhalation (100-150 ms (Manabe & Mori, 2013)). The 

number of spikes was set to be proportional to the normalized glomerular activation 

(0-1) with the maximum scale to correspond to the maximum olfactory receptor firing 

rate  of ~150 Hz (Duchamp-Viret, Duchamp, & Chaput, 2000). Action potential times 
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outside the 99% range were not allowed. No input action potentials were generated 

during the exhalation phase (100-300 ms (Manabe & Mori, 2013)). 

Action potentials from the sniffing model were monitored by double exponential 

synapse models (Hines & Carnevale, 1997) that triggered excitatory currents (τ1=6, 

τ2=12 ms (Gilra & Bhalla, 2015a)) in apical tufts of the mitral and tufted cells. Cell 

models connected to each glomerulus received an appropriate random train of action 

potentials.  

2.6 Outputs 

During model development, BlenderNEURON was used to visualize model 

structure and simulation results. The add-on was configured to monitor all cell model 

sections and map their membrane potentials to brightness. Blender’s “Timeline” 

feature was then used to replay action potential propagation through the network. To 

visualize network activity in figures, membrane potentials of all soma sections, 

grouped by cell type, were plotted over time. 

Local field potentials were recorded using the LFPsimpy library (Birgiolas, 

2019/2019b) which is an MPI-compatible, Python version of the LFPsim project 

(Parasuram et al., 2016). To replicated the conditions in the Manabe & Mori (2013) 

study, an extracellular electrode was placed in the ventral portion of the granule cell 

layer of the model. The “line source” method was used to compute the extracellular 

potential sampled at 10 kHz. The recorded potential was band-pass filtered (30-120 

Hz) with 4th-order Butterworth filter (Selesnick & Burrus, 1998). For spectral 

decomposition, the PyWavelets library (Lee, Gommers, Waselewski, Wohlfahrt, & 

O’Leary, 2019) was used to perform a continuous wavelets transform of the band-pass 

filtered signal. The wavelet was the 5th-order complex Gaussian with 50 evenly spaced 

scales ranging from 3 to 32 (corresponding to 30-140 Hz range). The power values of 

resulting spectrograms of each sniff were sniff-phase aligned and averaged to create 
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composite sniff local field potential signatures. The spectrogram of the first sniff in the 

simulation was not used. 

2.7 Simulation 

The data and source code used to create and validate the model are stored in 

a public online GitHub repository (Birgiolas, 2018/2019b). The “commit history” 

feature can be used to examine the line-by-line evolution of the model over time. The 

SQLite database used for storing experimental database is also stored in the repository 

and can be downloaded for offline analysis. Similarly, Blender files that store layer 

information are also in the repository. 

The model was architected to be executable on a single machine with multiple 

cores or multi-machine clusters. This was done using Parallel NEURON (Migliore et al., 

2006) features to assign cell models to different parallel processes (MPI ranks). During 

model initialization, a heap data structure was used to keep track of rank complexity 

(measured as the number of assigned compartments) and to dynamically assign cell 

models to the rank with the lowest complexity. Global identifiers were assigned to each 

pre- and post- synaptic compartment by taking the first 9 digits of the SHA256 hash 

of the compartment’s single rank address. For reproducibility of spike trains in a 

parallel processing environment, a fixed random seed was assigned to the simulation 

and to each glomerulus.  

Simulations were performed on local and remote machines and machine 

clusters, each running Ubuntu Linux. Local simulations were performed on a 20-thread 

Intel i9 7900X machine, while remote simulations were performed either on a 40-

thread Intel Xeon E5-2640 v4 machine or a cluster of four 96-thread c5.24xlarge 

Amazon Web Services instances. Cluster management was performed using the 

StarCluster package (“STAR: Cluster—Home,” 2019). 
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3 RESULTS 

Once the gamma fingerprint was reproduced in the slice model, a series of 

experimental manipulations were performed to perturb the gamma fingerprint 

behavior and to test the mechanistic fingerprint hypothesis outlined above. 

3.1 Reproduced Gamma Fingerprint 

Once the slice network was created, a manual network parameter search was 

performed (Table 15) until the gamma fingerprint was visible in the local field potential 

spectrogram (Figure 11).  

First, the network was silenced by disabling all reciprocal synapses. The silent 

network was administered with 9 200 ms long sniffs of “Apple” odor (Migliore et al., 

2014; Vincis et al., 2012) at 0.2 relative concentration, which generated a series of 

random spike trains during each 125 ms inhalation phase. The spikes activated 

excitatory synapses located on the tufted dendrites of the mitral and tufted cell models. 

This resulted in clear spiking activity in all mitral and tufted cell models. Then, dendritic 

tuft electrical synapse conductances were doubled starting from 1 µS until clear 

synchronization between spikes of mitral and tufted cell populations became apparent 

at 32 µS. Next, the maximum conductances of AMPA/NMDA synapses were doubled 

from 1 µS until mitral and tufted cell model spikes were followed by spikes in the 

majority of companion granule cell models (at 64 µS). Next, the maximum 

conductances of GABA synapse models were doubled from 0.25 µS until the number 

of mitral and tufted cell model spikes were reduced by approximately 50%.  

Finally, the time constant of the GABA synapse model, and the maximum 

conductances of the input synapses to tufted and mitral cell models were 

simultaneously varied until a combination of GABA τ2 = 36 ms, gTC = 0.8 µS, gTC = 0.2 

µS resulted in a clear two cluster pattern in the average local field potential 

spectrogram (see Figure 11 and Table 15). The same parameter combination elicited 
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qualitatively similar patterns in response to other odors and their relative 

concentrations and durations.  

Search Parameters (in search order) 
Search 
Range 

Fingerprint 
Range 

This Model 

Electrical synapse conductance (µS) 0-128 32-128 32 

AMPA/NMDA synapse max. conductance (nS) 0-256 64-256 64 
GABA synapse max. conductance (µS) 0-8 2-4 2 
GABA synapse time constant τ2 (ms) 0-150 15-50 36 
Tufted cell input syn. max. conductance (µS)  0-1 0.6-1 0.8 
Mitral cell input syn. max. conductance (µS)  0-1 0.15-0.3 0.2 

 

Table 15: Network Parameters Varied to Identify the Gamma Fingerprint. The                                

six listed parameters were allowed to vary during the parameter search as described 

in the text. “Fingerprint Range” column shows the parameter value range where a two-

cluster fingerprint is visible. The right column provides the set of parameter values 

that results in a fingerprint that closely matches the experimental fingerprint (Manabe 

& Mori, 2013).  

 

 

Figure 11: Reproduced Gamma Fingerprint. The two-cluster gamma fingerprint is 

visible in the average local field potential wavelet spectrogram. 
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Figure 12: Network Activity Underlying the Gamma Fingerprint. A) Odor input spikes 

to each principal cell (red: to tufted, blue: to mitral cell models). B) Red and blue 

curves show somatic membrane potentials of tufted and mitral cell models 

respectively. C) Blue: The raw local field potential recorded in the granule cell layer. 

Orange: 30-120 Hz (gamma) filtered, 10-fold amplified version. D) Spectrogram of 

the continuous wavelet transformation of the band-pass filtered local field potential. 

Figure 11 is the average of the spectrograms of the last 8 sniffs (first sniff is ignored). 

Scales are in arbitrary units for visualization purposes. 
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In this model, each pair of mitral/tufted cell models was connected by one 

electrical synapse model. Thus, the electrical synapse conductance in Table 15 

corresponds to the total conductance of all electrical synapses between a pair of 

mitral/tufted cells within a glomerulus. The value is consistent with the high coupling 

observed between intra-glomerular mitral/tufted cell pairs (Schoppa & Westbrook, 

2001).  

The network model included only a small subset of all cells in the olfactory bulb 

and did not model input from distant mitral or neighboring granule cells. Because of 

this and because the values of the conductances of excitatory and inhibitory synapses 

were chosen to reliably induce granule cell spiking and inhibition of mitral/tufted cells, 

the conductance values are higher than those observed in experimental preparations 

(Cang & Isaacson, 2003; Schoppa, Kinzie, Sahara, Segerson, & Westbrook, 1998). I 

expect that smaller values would be sufficient in larger network models. GABA synapse 

model time constant was consistent with experimental observations (Chen, Xiong, & 

Shepherd, 2000; Schoppa et al., 1998). 

The four-fold difference of synaptic input strengths between tufted and mitral 

cells is consistent with experimentally observed charge deposition and firing rate 

differences between tufted and mitral cells induced by olfactory nerve stimulation 

(Burton & Urban, 2014; Gire et al., 2012). 

To assess the robustness of the selected parameter value set, a one-at-a-time 

sensitivity analysis (Czitrom, 1999; Daniel, 1973) was performed. Starting with the 

selected parameter value combination (“This Model” in Table 15) each parameter was 

varied within its search range while the other parameters remained fixed. The range 

of parameter values that resulted in the formation of a two-cluster pattern in the 

spectrogram were noted and summarized in “Fingerprint Range” column of Table 15. 
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3.2 Effect of Blocking Tufted Cell Model Electrical Synapses  

Blocking electrical synapses that connect tufted cell apical tufts was expected 

to result in reduced synchronization of tufted cell model spiking and be observable as 

a smearing of the tufted cell gamma cluster. The mitral cell cluster was expected to 

be preserved but temporally advanced, occurring earlier in the sniff cycle due to 

reduced delay caused by tufted cell induced inhibition. The results of the reproduced 

gamma fingerprint simulation with blocked tufted cell electrical synapses 

(conductances set to 0) agreed with the predictions. 

Blocking tufted cell electrical synapses resulted in desynchronized tufted cell 

spiking onset (see Figure 13). The synchronization of mitral cell spikes remained intact. 

 

Figure 13: Effect of Blocking Tufted Cell Electrical Synapses on Spike Trains. Blocking 

tufted cell electrical synapses resulted in desynchronized tufted cell (red) spike onset 

(compare region to Figure 12). Mitral cell spikes (blue) remained synchronized. 

  



55 

 

Figure 14: Effect of Blocking Tufted Cell Electrical Synapses on Gamma Activity. 

Blocking tufted cell electrical synapses abolished the early gamma cluster and 

advanced the second cluster by approximately 20 ms. 

3.3 Effect of Blocking Mitral Cell Model Electrical Synapses 

Similar to blocking tufted cell electrical synapses, blocking electrical synapses 

that connect mitral cell tufted dendrites was expected to reduce mitral cell spiking 

onset synchronization, while leaving tufted cell synchronization intact. Results of a 

simulation with blocked mitral cell electrical synapses agreed with the prediction. 
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Figure 15: Effect of Blocking Mitral Cell Electrical Synapses on Spike Trains. Blocking 

electrical synapses connecting mitral cell tufted dendrites results in desynchronized 

onset of mitral cell (blue) spiking. 
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Figure 16: Effect of Blocking Mitral Cell Electrical Synapses on Gamma Activity. 

Blocking mitral cell electrical synapses preserves the first gamma cluster while 

abolishing the coherence of the second cluster. 

In each sniff cycle, the synchronization of mitral cell spiking onset was reduced, 

while the tufted cell spike synchronization remained intact (see Figure 15). As 

expected, this resulted in preservation of the first gamma cluster while the intensity 

of the second cluster was diminished (Figure 16). 

3.4 Effect of Equalizing Mitral and Tufted Cell Model Input Strength  

When mitral cell input strength is lower than input to tufted cells, the tufted 

cells are hypothesized to activate first, and granule cells that share connections 

between mitral and tufted cells inhibit mitral cells, thus causing a delay in mitral cell 

spike onset. However, if input strengths of mitral and tufted cells connected to a 

glomerulus are approximately equal, the two populations are expected to receive a 

similar amount of post-synaptic excitation and fire at approximately the same time. 

Without the input strength difference, mitral cell firing should not be delayed and the 

second cluster should not be formed. Results of a simulation where input strength to 
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mitral and tufted cell tufted dendrites was equalized (maximum tufted and mitral input 

synapse conductance = 0.8 µS) agreed with this prediction (Figure 17). 

 

Figure 17: Effect of Equalizing Input Strength on Spike Trains. Equal input strengths 

to mitral and tufted cells abolish the delay of mitral cell spiking onset 
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Figure 18: Effect of Equalizing Input Strength on Gamma Activity. Equalizing mitral 

and tufted cell input results in a single cluster. 

When the maximum conductances of mitral and tufted cell input synapses are 

equalized, the onset of mitral cell spikes is approximately the same as the onset of 

tufted cell spikes (see Figure 17). In this case, synchronized activity of tufted cells can 

no longer be distinguished from the synchronized activity of mitral cells in the 

spectrogram (Figure 18). 

3.5 Effect of Blocking Inhibition 

In the hypothesis tested here, early inhibition of mitral cells by tufted cell 

activates granule cells and results in a delay of mitral cell spiking onset. If so, blocking 

granule cell inhibition should result in the advancement of mitral cell firing onset. The 

results of a simulation with blocked granule cell GABA synapses (maximum 

conductance set to 0) agreed with this prediction. 
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Figure 19: Effect of Inhibition Blocking on Spike Trains. Mitral cell spike onset is 

advanced when granule cell inhibition is blocked. Dashed lines mark the time of the 

first mitral cell spike of each sniff in the control condition (inhibition intact). When 

GABA synapses are blocked, mitral cells spike earlier in each sniff cycle (arrows) than 

in the control condition. 

Blocking inhibition resulted in increased network activity; however, in this 

experiment the focus is to observe the effect on mitral cell spike onset. In response to 

glomerular stimulation that is identical to stimulation in the control condition, mitral 

cells spike earlier in each sniff cycle (Figure 19), demonstrating that granule cell 

inhibition causes a delay in mitral cell spike onset. 
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4 DISCUSSION 

4.1 Olfactory Bulb Modeling Platform 

In this work, published experimental data were aggregated and synthesized 

into a scalable, extendable, open-source model of the mouse olfactory bulb. 

Electrophysiology and morphology data of three major cell types were curated and 

stored in a novel database, which was used to validate previous models and develop 

novel biophysically realistic models of the three cell types. Labeled slices were used to 

reconstruct the layer structure of the bulb, within which the novel cell models were 

placed and oriented using novel open-source software developed for this purpose. The 

data, models, and software are freely accessible online. When used together, they 

make up a computational modeling platform that is applicable for modeling a variety 

of experimental setups. 

To demonstrate the utility of the platform, virtual slicing functionality was used 

to create a model of a glomerular column. The model was then used to reproduce the 

gamma frequency range oscillation pattern (“gamma fingerprint”) observed in 

extracellular recordings of rodent olfactory bulb. Once reproduced (Figure 11), a 

mechanistic hypothesis was developed to explain the underlying causes of the 

fingerprint. The hypothesis was then tested by a series of computational experiments, 

which can be replicated in experimental investigations. 

4.2 Role of Electrical Synapses, Input Strength, and Inhibition  

The gamma fingerprint consists of two clusters: early-fast and late-slow. The 

two clusters correspond to brief periods of synchronized activity in mitral and tufted 

cell subnetworks in each sniff cycle. Experiments conducted with the olfactory bulb 

network model, demonstrate the important roles of electrical synapses in formation of 

the synchronization. Figure 14 and Figure 16 show the effects of blocking electrical 

synapses between tufted and mitral cells respectively. When electrical synapses 
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between tufted cells are blocked, tufted cell synchronization is reduced, resulting in 

elimination of the early-fast gamma cluster in extracellular recordings (Figure 14). 

Similarly, when electrical synapses between mitral cells are blocked, mitral cells 

desynchronize, resulting in extinguishment of the late-slow gamma cluster (Figure 16). 

Thus, electrical synapses between mitral and tufted cell dendritic tufts are necessary 

for synchronized activity within their respective sub-networks. Electrical synapses are 

widely expressed in the glomerular layer in mouse (Zhang & Restrepo, 2003) and have 

been detected between mitral cell tufted dendrites (Christie et al., 2005). While it is 

not clear if electrical synapses exist between pairs of tufted cell dendrites (Kosaka & 

Kosaka, 2005), their existence is supported by demonstration of electrical coupling 

between tufted cell pairs (Ma & Lowe, 2010). This model suggests that electrical 

synapses exist between tufted cell tufted dendrites and that their blockage or genetic 

knock-out should disturb the gamma fingerprint. 

As discussed earlier, tufted cells have been shown to receive greater effective 

input than mitral cells (Burton & Urban, 2014; Gire et al., 2012). The model here 

demonstrates that this property is necessary for the formation of the gamma clusters. 

When mitral cell input strength was set equal to tufted cell input strength in simulation 

experiments, mitral cell spiking delay was eliminated (compare mitral cell spike onset 

in Figure 12 (Control) to Figure 17), and the late-slow gamma cluster fused with the 

early-fast cluster (Figure 18). The hypothesis for the mechanism underlying this effect 

is that the delay in mitral cell spiking onset due to reduced input is exaggerated by 

granule cell inhibition (discussed next). This finding could be tested experimentally, 

by, for example, monitoring the olfactory receptor activity in a glomerulus and then 

artificially amplifying mitral cell input via optogenetic stimulation of mitral cell dendritic 

tufts. Such manipulation should result in the collapse of the second gamma cluster. 
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Finally, the apical dendrites of “Type I” granule cells span the external plexiform 

layer (Mori et al., 1983) where they form synapses with dendrites of mitral and tufted 

cells (Orona et al., 1983). This type of granule cell enables interaction between mitral 

and tufted cell sub-networks. An experiment with this model demonstrated that 

granule cell inhibition exaggerates mitral cell spike onset delay caused by reduced 

mitral cell glomerular input. When granule cell inhibitory GABA synapses were blocked, 

the delay of mitral cell spike onset was greatly reduced (Figure 19), consistent with 

the gap between the two gamma clusters. Experimentally, such a finding could be 

tested by examining the effect of blocking granule cell inhibition on mitral cell spike 

onsets. 

These experiments establish a clear picture of the mechanisms underlying the 

dynamics of the gamma fingerprint. During each sniff, the early olfactory receptor 

spikes induce synchronized activity that is mediated by electrical synapses (early-fast 

cluster) in glomerular tufted cell populations (Figure 20). During this time, due to 

reduced synaptic input, mitral cell populations have not been excited enough to 

produce spikes. As action potentials of active tufted cells spread through their lateral 

dendrites, they excite Type I granule cells. In turn, the granule cells inhibit connected 

mitral cells, just as they approach their spiking thresholds, suppressing the would-be 

mitral cell spikes. As inhibition by granule cells subsides and odor input spikes continue 

to excite mitral cells (Figure 21), mitral cells are able to overcome the early inhibition 

and produce delayed, electrical synapse synchronized spikes (late-slow cluster). 
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Figure 20: Mechanism of the Early-Fast Cluster of the Gamma Fingerprint. A) Odor 

input spikes reach a glomerulus shared by tufted (brown) and mitral (blue) cells. B) 

Tufted cells are more excitable and receive greater input than (C) mitral cells. D) 

Tufted cells spike first, exciting (‘+’) granule (gold) cells (E) which inhibit (‘-’) mitral 

cells (F). Inhibition spreads to mitral cell soma, canceling the weak incoming 

glomerular excitation (G) and resulting in a mitral cell spike blockade (H). 
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Figure 21: Mechanism of the Late-Slow Cluster of the Gamma Fingerprint. A) After the 

initial spike blockade, odor input spikes continue to excite the glomerulus during the 

inhalation phase of a sniff. B) Simultaneously, the initial granule cell inhibition of mitral 

cells is subsiding (‘x’s), while excitation continues to build up in the mitral cell apical 

dendrite (C). D) Glomerular excitation overwhelms the remaining mitral cell inhibition, 

resulting in a mitral cell spike (E). 

4.3 Limitations 

One limitation of this study is that the cell models validated against 

experimental data were all implemented using NEURON. Olfactory models 

implemented in other simulators (David, Courtiol, Buonviso, & Fourcaud-Trocmé, 

2015; Gilra & Bhalla, 2015a) or custom code (Osinski & Kay, 2016) were not evaluated, 

leaving the possibility that one of those models would have a better correspondence 

to experimental data. Given the non-trivial amount of effort required to learn the 

nomenclature of other simulators, conversion of those models to NEURON was not 

within the scope of this project. However, the NeuronUnit electrophysiology and 

morphology tests are only dependent on simulator capabilities. If adapter code is 

written to allow execution of NeuronUnit tests using other simulators, those models 

could be evaluated and compared to the cell models evaluated here. 

Another limitation is imperfect match between experimental morphology and 

electrophysiology data used to constrain the cell models. Cell model morphologies 

were taken from intact cell reconstructions, while electrophysiology data was obtained 

from cells in slices. Dendritic truncations due to slicing, variability in slice bath ionic 

concentrations (Tripathy et al., 2014), and signal filtering effects due to choice of 

electrode (e.g. patch pipette, sharp electrode) were not controlled and may contribute 

to electrical behavior differences between cell models and intact cells. Future modeling 

studies could constrain the models using data collected under more uniform conditions 

or replicate the experimental conditions computationally while evaluating the models 

(similar to how variability in experimental temperature and current injection protocols 

were replicated during the constraining of novel cell models).  
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The network parameter set that reproduces the gamma fingerprint was found 

manually, albeit mostly relying on widely accepted neuroscience principles. It is 

possible that the parameter combination is not optimal, so that another combination 

of parameter values could produce a better correspondence to the experimental 

fingerprint. However, the results of the sensitivity analysis (Table 15) demonstrate 

that the combination is robust to perturbations in parameter values. Future studies 

could utilize more automated means to explore the parameter space further and 

identify other stable parameter combinations. 

Besides the three types of cells modeled here, other cells (Burton, 2017; 

Kosaka, Toida, Aika, & Kosaka, 1998) and mechanisms (Bokil, Laaris, Blinder, Ennis, 

& Keller, 2001; Schoppa & Westbrook, 2001) could interact to produce a similar 

fingerprint. For example, there is evidence that mitral cell firing might be primarily 

driven poly-synaptically by juxtaglomerular cells known as external tufted cells rather 

than by direct mono-synaptic excitation by olfactory receptor neurons (Gire et al., 

2012; Najac et al., 2011). Because of the extensible design of this modeling platform, 

future studies could follow a process similar to the one described here and add 

additional cells and mechanisms. For example, external tufted cell models could be 

added to the bulb model and the odor input model could be modified to excite external 

tufted cells models. The effect of such circuit modification on the gamma fingerprint 

could be assessed. If the fingerprint could be reproduced using an alternative model, 

it could be used to form an alternative hypothesis. All alternative models could be 

inspected and a set of experiments could be identified to efficiently resolve between 

the alternative explanations. 

4.4 Future Directions 

The olfactory bulb is involved in depression (Kelly et al., 1997; Negoias et al., 

2010), which has been shown to be responsive to ketamine treatments (Murrough et 
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al., 2013). More recently, administration of ketamine, an NMDA antagonist, has been 

demonstrated to induce high-frequency oscillations in the olfactory bulb (Hunt et al., 

2019). A process similar to this study could be used to reproduce the oscillations and 

form mechanistic hypotheses of their origin. 

The modeling platform supports arbitrary slice shapes (Figure 8). There is some 

evidence that slice thickness affects gamma oscillations (Cleland, personal 

communication). Similarly, researchers have proposed that mitral cell bi-stability 

(Heyward et al., 2001) might be dependent on slice preparation (Burton, personal 

communication). Such hypotheses could be investigated by adding additional detail to 

the current model and by adding new functionality to BlenderNEURON to simulate 

dendritic truncations. The virtual slicing functionality could also be used to construct 

bulbar models for investigating the function of mediolateral glomerular symmetries 

and intra-bulbar projections (Zhou & Belluscio, 2008, 2012). 

The purpose of the odor information segregation between mitral and tufted cell 

pathways remains unclear. Examining the differences between glomerular input odor 

patterns and mitral/tufted output patterns could be used to investigate information 

processing differences between the two networks. 

Another possible use of the model would be to model the effects of synaptic 

plasticity or effects of the addition of new granule cells (Whitman & Greer, 2007). For 

example, models of adult-born granule cells could be gradually added to the network 

model and their effect on network activity investigated.  

This model only models the activity of a single olfactory bulb. Future models 

could include the second bulb and include interactions between them (Shepherd, 

2011). A similar process that was used to develop this model (cell validation, layers, 

cell placement) could be used to develop models of cortical regions that the olfactory 

bulb is known to interact with (Igarashi et al., 2012; Mori, 2014; Nagayama, Igarashi, 
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et al., 2014). Such models could then be connected to the bulbar model to gain better 

understanding of cortical feedback mechanisms. 

Finally, in the distant future, as more experimental data is collected, organized, 

and made accessible, and computing power continues to increase, the data could be 

synthesized to create models of all brain regions and then assembled into models of 

whole brains. Such models could receive sensory input and produce output, in the form 

of behavior, within simulated virtual reality environments. Such models could be used 

for the development of novel neuropsychopharmaceuticals and reduce the reliance on 

animal models. 

Whole brain emulation refers to the theoretical possibility of creating a 

computational model of a particular person’s brain in sufficient detail that the behavior 

of the model would be practically indistinguishable from the behavior of the simulated 

person (Koene, 2012; Sandberg, Bostrom, & Martin, 2008). In the next section, I 

describe how the discovery of an efficient algorithm to particularize generic 

biophysically realistic models would result in valuable medical applications and offer a 

novel route to whole brain emulation.  

In the past, models were built from data collected across different species. For 

example the (Bhalla & Bower, 1993) model incorporated data from mice, rats, rabbits, 

and turtles to create what can be called “inter-species models”. As more data have 

become available, more recent models (Gilra & Bhalla, 2015b) were constrained by 

data collected from fewer species: mice and rats. Here, I developed a model 

constrained only by adult mouse data. If this trend continues, there will be a time 

where models will be constrained by data collected from a single individual from one 

species. Brains of conspecifics are simultaneously different and similar, thus when 

creating a model of a specific individual, a model created from data obtained from 

conspecific brains would likely be a better starting point than trying to create the 
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specific model de novo. However, the aid of such a model would depend on the 

existence of an algorithm that could efficiently fine-tune or particularize the more 

general multi-individual model to a single-individual model. If discovered, such 

generic-to-individual model fine tuning algorithms could be used to efficiently create 

biophysically realistic models of brain regions of specific individuals. Such models of 

specific human brain regions would be useful as neural prostheses for individuals 

affected by stroke, brain injury, or neurodegenerative disease (Berger & Glanzman, 

2005; Berger et al., 2011).  

Such fine-tuning is already possible using neural population models developed 

with the Virtual Brain software (Sanz Leon et al., 2013). For example, models of 

specific mouse (Melozzi, Woodman, Jirsa, & Bernard, 2017) and human brains (Bansal, 

Medaglia, Bassett, Vettel, & Muldoon, 2018; Bansal, Nakuci, & Muldoon, 2018) have 

been created by constraining generic whole brain models with an individual’s large-

scale brain connectivity and region volume data. Further in the future, similar 

algorithms could be used to individualize generic biophysically realistic human brain 

models to models of brains of individual humans. If so, a generic model fine-tuning 

approach could be another route to whole brain emulation (Sandberg et al., 2008). 
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