94,428 research outputs found

    A cloud-based tool for sentiment analysis in reviews about restaurants on TripAdvisor

    Get PDF
    The tourism industry has been promoting its products and services based on the reviews that people often write on travel websites like TripAdvisor.com, Booking.com and other platforms like these. These reviews have a profound effect on the decision making process when evaluating which places to visit, such as which restaurants to book, etc. In this contribution is presented a cloud based software tool for the massive analysis of this social media data (TripAdvisor.com). The main characteristics of the tool developed are: i) the ability to aggregate data obtained from social media; ii) the possibility of carrying out combined analyses of both people and comments; iii) the ability to detect the sense (positive, negative or neutral) in which the comments rotate, quantifying the degree to which they are positive or negative, as well as predicting behaviour patterns from this information; and iv) the ease of doing everything in the same application (data downloading, pre-processing, analysis and visualisation). As a test and validation case, more than 33.500 revisions written in English on restaurants in the Province of Granada (Spain) were analyse

    Automated Game Design Learning

    Full text link
    While general game playing is an active field of research, the learning of game design has tended to be either a secondary goal of such research or it has been solely the domain of humans. We propose a field of research, Automated Game Design Learning (AGDL), with the direct purpose of learning game designs directly through interaction with games in the mode that most people experience games: via play. We detail existing work that touches the edges of this field, describe current successful projects in AGDL and the theoretical foundations that enable them, point to promising applications enabled by AGDL, and discuss next steps for this exciting area of study. The key moves of AGDL are to use game programs as the ultimate source of truth about their own design, and to make these design properties available to other systems and avenues of inquiry.Comment: 8 pages, 2 figures. Accepted for CIG 201

    On Agent-Based Software Engineering

    Get PDF
    Agent-based computing represents an exciting new synthesis both for Artificial Intelligence (AI) and, more generally, Computer Science. It has the potential to significantly improve the theory and the practice of modeling, designing, and implementing computer systems. Yet, to date, there has been little systematic analysis of what makes the agent-based approach such an appealing and powerful computational model. Moreover, even less effort has been devoted to discussing the inherent disadvantages that stem from adopting an agent-oriented view. Here both sets of issues are explored. The standpoint of this analysis is the role of agent-based software in solving complex, real-world problems. In particular, it will be argued that the development of robust and scalable software systems requires autonomous agents that can complete their objectives while situated in a dynamic and uncertain environment, that can engage in rich, high-level social interactions, and that can operate within flexible organisational structures

    Which Design Decisions in AI-enabled Mobile Applications Contribute to Greener AI?

    Full text link
    Background: The construction, evolution and usage of complex artificial intelligence (AI) models demand expensive computational resources. While currently available high-performance computing environments support well this complexity, the deployment of AI models in mobile devices, which is an increasing trend, is challenging. Mobile applications consist of environments with low computational resources and hence imply limitations in the design decisions during the AI-enabled software engineering lifecycle that balance the trade-off between the accuracy and the complexity of the mobile applications. Objective: Our objective is to systematically assess the trade-off between accuracy and complexity when deploying complex AI models (e.g. neural networks) to mobile devices, which have an implicit resource limitation. We aim to cover (i) the impact of the design decisions on the achievement of high-accuracy and low resource-consumption implementations; and (ii) the validation of profiling tools for systematically promoting greener AI. Method: This confirmatory registered report consists of a plan to conduct an empirical study to quantify the implications of the design decisions on AI-enabled applications performance and to report experiences of the end-to-end AI-enabled software engineering lifecycle. Concretely, we will implement both image-based and language-based neural networks in mobile applications to solve multiple image classification and text classification problems on different benchmark datasets. Overall, we plan to model the accuracy and complexity of AI-enabled applications in operation with respect to their design decisions and will provide tools for allowing practitioners to gain consciousness of the quantitative relationship between the design decisions and the green characteristics of study.Comment: Accepted as registered report at ESEM 202
    corecore