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Abstract

Agent-based computing represents an exciting new synthesis both for Artificial Intelligence (AI)
and, more generally, Computer Science. It has the potential to significantly improve the theory
and the practice of modeling, designing, and implementing computer systems. Yet, to date, there
has been little systematic analysis of what makes the agent-based approach such an appealing and
powerful computational model. Moreover, even less effort has been devoted to discussing the inherent
disadvantages that stem from adopting an agent-oriented view. Here both sets of issues are explored.
The standpoint of this analysis is the role of agent-based software in solving complex, real-world
problems. In particular, it will be argued that the development of robust and scalable software
systems requires autonomous agents that can complete their objectives while situated in a dynamic
and uncertain environment, that can engage in rich, high-level social interactions, and that can operate
within flexible organisational structures. 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

An increasing number of computer systems are being viewed in terms of autonomous
agents. Agents are being espoused as a new theoretical model of computation that
more closely reflects current computing reality than Turing Machines [58]. Agents
are being advocated as a next generation model for engineering complex, distributed
systems [36,59]. Agents are also being used as an overarching framework for bringing
together the component AI subdisciplines that are necessary to design and build intelligent
entities [41,49]. Yet despite this intense interest, a number of fundamental questions about
the nature and the use of the agent-oriented approach remain unanswered. In particular:
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• what are the essential concepts and notions of agent-based computing?
• what makes the agent-based approach an appealing and powerful computational

model?
• what are the drawbacks of adopting an agent-oriented approach?
• what are the wider implications for AI and computer science of agent-based

computing?
These questions can be tackled from many different perspectives, ranging from the
philosophical to the pragmatic. This paper proceeds from the standpoint of using agent-
based software to address real-world problems. However in the course of this analysis,
a number of broader points are made about general direction and emphasis of future AI
research.

Building high quality software for real-world applications is difficult. Indeed, it has been
argued that such developments are one of the most difficult construction tasks humans
undertake (both in terms of the number and the flexibility of the constituent components
and in terms of their interconnections). Moreover, this statement is true no matter what
models and techniques are applied: it is a consequence of the “essential complexity of
software” [4]. Such complexity manifests itself in the fact that the software has a large
number of parts that have many interactions [53].2 Given this state of affairs, the role of
software engineering is to provide models and techniques that make it easier to handle
this complexity [46,54]. To this end, a wide range of software engineering paradigms
have recently been devised (e.g., object-orientation [2,42], component-ware [55], design
patterns [18] and software architectures [6]). Each successive development either claims
to make the engineering process easier or to extend the complexity of applications that
can feasibly be built. Although evidence is emerging to support these claims, researchers
continue to strive for more efficient and powerful techniques, especially as solutions for
ever more demanding applications are sought.

In this article, it is argued that although contemporary methods are a step in the right
direction, when it comes to developing complex, distributed systems they fall short in two
main ways:

(i) the interactions between the various computational entities are too rigidly defined;
and

(ii) there are insufficient mechanisms available for representing the system’s inherent
organisational structure (see Section 4 for more details of these arguments).

Against this background, the two central arguments of this paper can be expressed:

The Adequacy Hypothesis.Agent-oriented approaches can significantly enhance our
ability to model, design and build complex, distributed software systems.

The Establishment Hypothesis.As well as being suitable for designing and building
complex systems, the agent-oriented approach will succeed as a mainstream software
engineering paradigm.

2 In this context, the term “complexity” is used in a general manner (as in [11,15,57]);not in the specific
technical sense of algorithmic or computational complexity.
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In seeking to argue for these hypotheses, it is clear that this work differs in flavour from
the majority of scientific papers. It presents no new theorems, has no experimental results,
and does not describe a novel application. Rather, it represents a (qualitative) analysis of
an important and fast growing area of computer science. The aim of this analysis is to
provide the intellectual justification of precisely why agent-based systems are well suited
to engineering complex software systems. The analysis contained herein is based on more
than a decade of experience in using agent-based techniques to construct large-scale, real-
world applications in a wide variety of industrial and commercial domains (see [17,25,30,
33,34]). Despite these caveats, this paperdoesmake a number of important contributions
to the state of the art. Firstly, despite agent-based systems being touted as an approach that
will have a major impact on future generation software (“pervasive in every market by the
year 2000” [27] and “the new revolution in software” [21]), there has been no systematic
evaluation ofwhy this may be the case. Thus, although there are an increasing number
of deployed agent applications (see [37,44] for a review), nobody has systematically
analysed precisely what makes the paradigm effective. This is clearly a major gap in
knowledge that this paper seeks to address. Secondly, there has been comparatively little
work on viewing agent-based computing as a serious software engineering paradigm that
can significantly enhance developments in a wide range of applications. This shortcoming
is rectified by recasting the essential components of agent systems into more traditional
software engineering concepts. From here, it can be shown that the agent-based approach is
a both a natural and a logical evolution of a range of contemporary approaches to software
engineering.

The remainder of the paper is structured as follows. Section 2 discusses the essence of
agent-based computing. Section 3 makes the case as to why an agent-oriented approach is
well suited to engineering complex, distributed systems. Section 4 argues why agent-based
techniques are likely to succeed and make it into the mainstream of software engineering.
Section 5 highlights the potential disadvantages of adopting an agent-oriented approach.
Section 6 advocates a new perspective on modeling computer systems (thesocial level
[32]) as a promising means of remedying the identified shortcomings. Finally, Section 7
places the work in a broader AI and computer science context.

2. The essence of agent-based computing

The first step in arguing for an agent-oriented approach to software engineering is to
precisely identify and define the key notions and concepts of agent-based computing.
Defining and classifying phenomena is always a task fraught with difficulty—there will
always be objections to basic definitions, arguments that important points have been
overlooked, or claims that it is really nothing new anyway. Such observations are especially
pertinent if the entity to be defined is both intangible and a relatively new phenomenon.
Nevertheless, such definitions are precisely what are needed in order to argue for agent-
oriented software engineering. Given this necessity, the approach taken here is to offer
a definition that is sufficiently encompassing to cover a broad range of phenomena that
can reasonably go under the heading of agent-based systems, yet sufficiently tight that it
can rule out systems that are clearly not agent-based. Around the edges there will always
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be debate. Moreover, the definitions offered here concentrate on necessary, rather than
sufficient, conditions so they can always be extended.

Here the key definitional problem relates to the term “agent”. At present, there is much
debate [16], and little consensus, about exactly what constitutes agenthood. However, an
increasing number of researchers find the following characterisation useful [59]:

An agent is an encapsulated computer system that is situated in some environment
and that is capable of flexible, autonomous action in that environment in order to
meet its design objectives.

There are a number of points about this definition that require further explanation. Agents
are:

(i) clearly identifiable problem solving entities with well-defined boundaries and
interfaces;

(ii) situated (embedded) in a particular environment—they receive inputs related to the
state of their environment through sensors and they act on the environment through
effectors;

(iii) designed to fulfill a specific purpose—they have particular objectives (goals) to
achieve;

(iv) autonomous—they have control both over their internal state and over their own
behaviour;3

(v) capable of exhibiting flexible problem solving behaviour in pursuit of their design
objectives—they need to be both reactive (able to respond in a timely fashion to
changes that occur in their environment) and reactive (able to act in anticipation of
future goals) [60].

When adopting an agent-oriented view of the world, it soon becomes apparent that most
problems require or involve multiple agents; to represent the decentralised nature of
the problem, the multiple loci of control, the multiple perspectives or the competing
interests [3]. Moreover, the agents will need to interact with one another, either to achieve
their individual objectives or to manage the dependencies that ensue from being situated
in a common environment [9,29]. These interactions can vary from simple information
interchanges, to requests for particular actions to be performed and on to cooperation,
coordination and negotiation in order to arrange interdependent activities. In all of these
cases, however, there are two points that qualitatively differentiate agent interactions from
those that occur in other computational models. Firstly, agent-oriented interactions are
conceptualised as taking place at theknowledge level[40]. That is, they are conceived
in terms of which goals should be followed, at what time, and by whom (cf. method
invocation or function calls that operate at a purely syntactic level). Secondly, as agents
are flexible problem solvers, operating in an environment over which they have only
partial control and observability, interactions need to be handled in a similarly flexible

3 Having control over their own behaviour is one of the characteristics that distinguishes agents from objects
[59]. Although objects encapsulate state and behaviour (more accurately behaviour realisation) [2], they fail to
encapsulate behaviour activation or action choice. Thus, any object can invoke any publicly accessible method on
any other object at any time. Once the method is invoked, the corresponding actions are performed. In this sense,
objects are totally obedient to one another and do not have autonomy over their choice of action.
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Fig. 1. Canonical view of an agent-based system.

manner. Thus, agents need the computational apparatus to makerun-timedecisions about
the nature and scope of their interactions and to initiate (and respond to) interactions that
were not foreseen at design time (cf. the hard-wired engineering of such interactions in
extant approaches).

In most cases, agents act to achieve objectives either on behalf of individuals/companies
or as part of some wider problem solving initiative. Thus, when agents interact there is
typically some underpinning organisational context between them [14,19]. This context
defines the nature of the relationship between the agents (e.g., they may be peers working
together in a team or one may be the manager of the other agents) and consequently
influences their behaviour. Since agents make decisions about the nature and scope
of interactions at run time, it is imperative that this key shaping factor is taken into
account. Thus organisational relationships need to be represented explicitly. In many
cases, these relationships are subject to ongoing change: social interaction means existing
relationships evolve and new relations are created. This means the temporal extent of
relationships can also vary significantly, from just long enough to deliver a particular
service once, to a permanent bond. To cope with this variety and dynamic, agent
researchers have: devised protocols that enable organisational groupings to be formed and
disbanded; specified mechanisms to ensure groupings act together in a coherent fashion;
and developed structures to characterise the macro behaviour of collectives (see [37,60] for
an overview).

Drawing these points together (Fig. 1), the essential concepts of agent-based computing
can be seen to be: agents, high-level interactions and organisational relationships (see
[14,19,23] for broadly similar characterisations).

3. The case for an agent-based approach to software engineering

Probably the most compelling argument that could be made for adopting an agent-
oriented approach to software development is to have a set of quantitative data that showed,
on a standard set of software metrics, the superiority of the agent-based approach (in terms
of productivity, software reliability, system maintainability, etc.) over a range of other
techniques. However such data simply does not exist (as it doesn’t for other contemporary
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methods in software engineering).4 Hence the arguments for agent-oriented software
engineering must be qualitative in nature.

The structure of the argument that will be used here is based on the suitability of
agent-based techniques for tackling complex, real-world problems and it has the following
broad form. On the one hand, there are a number of well-known techniques for tackling
complexity in software. Also the key characteristics of complex software systems are
(reasonably) well understood. On the other hand, the essential concepts and notions of
the agent-based paradigm have been elucidated (Section 2). Thus, an argument and an
evaluation can be made by examining the degree of match between these two perspectives;
a high degree of match would be indicative of the suitability of the agent-based approach,
whereas a poor degree would be indicative of its unsuitability.

Before this match process can commence, however, the techniques for tackling
complexity in software need to be introduced. Booch [2] identifies three such tools:
• Decomposition:The most basic technique for tackling large problems is to divide

them into smaller, more manageable chunks each of which can then be dealt with in
relative isolation. This helps tackle complexity because it limits the designer’s scope;
at any given instant only a portion of the problem needs to be considered.
• Abstraction:The process of defining a simplified model of the system that emphasises

some of the details or properties, while suppressing others. Again, this technique
works because it limits the designer’s scope of interest at a given time. Attention can
be focused on the salient aspects of the problem, at the expense of the less relevant
details.
• Organisation:5 The process of identifying and managing the interrelationships

between the various problem solving components. The ability to specify and enact
organisational relationships helps designers tackle complexity in two ways. Firstly,
by enabling a number of basic components to be grouped together and treated as
a higher-level unit of analysis (e.g., the individual components of a subsystem can
be treated as a single coherent unit by the parent system). Secondly, by providing a
means of describing the high-level relationships between various units (e.g., a number
of components may work together (cooperate) to provide a particular functionality).

Next, the characteristics of complex systems need to be enumerated [53]:
• Complexity frequently takes the form of a hierarchy. That is, a system that is

composed of interrelated subsystems, each of which is in turn hierarchic in structure,
until the lowest level of elementary subsystem is reached. The precise nature of these
organisational relationships varies between subsystems, however some generic forms

4 Software paradigms generally go through three main phases. Firstly, early pioneers identify a new way of
doing things (based on intuition and insight). Secondly, individuals and organisations that are early adopters of
leading-edge technologies recognise the potential (based on qualitative arguments) and start to build systems
using the new concepts. Thirdly, the advocated concepts, and knowledge of their advantages (sometimes backed
up by quantitative data), become more widespread and enter the mainstream of software engineering. At this
time, agent-oriented techniques are firmly in phase two, but one of the aims of this paper is to start the movement
towards phase three.

5 Booch [2] actually uses the term “hierarchy” for this final point. However, the more neutral term
“organisation” is preferred here.
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(such as client-server, peer, team, etc.) can be identified. These relationships are not
static: they often vary over time.
• It is possible to distinguish between the interactionsamongsubsystems and the

interactionswithin subsystems. The latter are both more frequent (typically at least
an order of magnitude more) and more predictable than the former. This gives rise to
the view that complex systems arenearly decomposable: subsystems can be treated
almost as if they are independent of one another, but not quite, since there are some
interactions between them. Moreover, although many of these interactions can be
predicted at design time, some simply cannot.
• The choice of which components in the system are primitive is relatively arbitrary and

is defined by the observer’s aims and objectives.
• Hierarchic systems evolve more quickly than non-hierarchic ones of comparable size.

In other words, complex systems will evolve from simple systems more rapidly if
there arestable intermediate forms,than if there are not.

With these two characterisations in place, the precise form of the match process argument
in favour of agent-based software engineering can now be expressed:
• show that agent-oriented decomposition is an effective way of partitioning the

problem space of a complex system (Section 3.1);
• show that the key abstractions of the agent-oriented mindset are a natural means of

modeling complex systems (Section 3.2);
• show that the agent-oriented philosophy for dealing with organisational relationships

is appropriate for complex systems (Section 3.3).

3.1. The merits of agent-oriented decomposition

The agent-oriented approach advocates decomposing problems in terms of autonomous
agents that can engage in flexible, high-level interactions. Considering the autonomous
nature of the problem solving entities first. Autonomy, in this context, means that the
problem solvers have their own persistent thread of control (i.e., they are active) and that
they decide for themselves which actions they should perform at what time. Decomposing
a problem in such a way aids the process of engineering complex systems in two main
ways. Firstly, it is simply a natural representation for complex systems that are invariably
distributed (“all real systems are distributed” [22]) and that invariably have multiple loci of
control (“real systems have no top” [42, p. 47]).6 This decentralisation, in turn, reduces the
system’s control complexity and results in a lower degree of coupling between components.
The fact that agents are active means they know for themselves when they should be acting
and when they should update their state (cf. passive objects that need to be invoked by
some external entity to do either). Such self-awareness reduces control complexity since
the system’s control know-how is taken from a centralised repository and localised inside
each individual problem solving component. Secondly, since decisions about what actions
should be performed are devolved to autonomous entities, selection can be based on the

6 Indeed the view that decompositions based upon functions/actions/processes are more intuitive and easier to
produce than those based upon data/objects is even acknowledged within the object-oriented community [42,
p. 44].
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local situation of the problem solver. This enables selection to be responsive to the agent’s
actual state of affairs, rather than some external entity’s perception of this state,7 and
means that the agent can attempt to achieve its individual objectives without being forced to
perform potentially distracting actions simply because they are requested by some external
entity.

Moving onto the flexible nature of interactions. The fact that agents make decisions
about the nature and scope of interactions at run-time makes the engineering of complex
systems easier for two main reasons. Firstly, the system’s inherent complexity means
it is impossible to knowa priori about all potential links: interactions will occur at
unpredictable times, for unpredictable reasons, between unpredictable components. For
this reason, it is futile to try and predict or analyse all the possibilities at design-time.
Rather, it is more realistic to endow the components with the ability to make decisions
about the nature and scope of their interactions at run-time. From this, it follows that
components need the ability to initiate (and respond to) interactions in a flexible manner
(see Section 5 for a discussion of the downside of this flexibility). Thus agents are
specifically designed to deal with unanticipated requests and they can spontaneously
generate requests for assistance whenever appropriate. Secondly, the problem of managing
control relationships between the software components is significantly reduced (see above
discussion). All agents are continuously active and any coordination that is required is
handled bottom-up through inter-agent interaction. Thus, the ordering of the system’s top-
level goals is no longer something that has to be rigidly prescribed at design time. Rather,
it becomes something that is handled in a context-sensitive manner at run-time.

To illustrate how an agent-oriented stance affects the manner in which a problem is
decomposed, consider the domain of flexible manufacturing control and, in particular, the
task of producing individually tailored goods (such as cars built according to a customer’s
specification) (Fig. 2). The manufacturing process involves a number of basic parts (A, B
and C) that have various operations (O1 to O9) performed upon them by various machines
(M1 to M9). Operations may be performed on a single component (e.g., O1 by M1 on
part A’s) or they may involve the joining of multiple parts to form a new composite (e.g.,
O5 by M5 joins parts of type A and B). Some operations may fail (e.g., O5 and O2) and
consequently will need to be redone. The end products (P1 to Pn) are composed of the
constituent components with various sequences of operations performed upon them.

The industry standard approach to this problem is to devise a global schedule, typically
covering one day, for the entire manufacturing process. This indicates when the various
parts should be released from their stores, which machines they should be routed through,
and what operations should be performed at the various machines. The problem with this
centralised and pre-planned approach, however, is that the schedule is rarely adhered to
in practice: machines and operations fail and operations take longer than expected. When
such disturbances occur, the plant controller either has to initiate a costly rescheduling
exercise or use the out-of-date schedule as an approximate guide.

7 Recognising the importance of allowing decisions about action execution to be based on local state, object-
oriented languages such as Eiffel allow the server to assert, and subsequently test, preconditions that need to be
established before one of its routines can be invoked [42].
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Fig. 2. Exemplar flexible manufacturing system.

As a consequence of these difficulties, several organisations have deployed an agent-
oriented approach (see [7,44] for details of specific systems). In such systems, each
manufactured part is represented by an autonomous agent that has the objective of getting
itself to the end of the manufacturing line, having had a specified set of operations
performed upon it. Each machine is also represented by an agent. Such agents have the
objective of maximising their throughput and they do this by deciding what components
will be accepted in what order and what operations will be performed at what time. Thus,
for a given part to have an operation performed upon it, its agent must negotiate with a
machine agent capable of performing that operation. Component agents representing the
constituent parts of a composite item also need to coordinate their actions so they arrive
at joining machines at the same time. When components are joined in this manner, a new
organisational structure representing the composite is formed.

The success of such agent-oriented systems, both in terms of increased throughput and
greater robustness to failure, can be attributed to a number of points. Firstly, representing
the components and the machines as agents means the decision making is much more
localised. It can, therefore, be more responsive to prevailing circumstances. If unexpected
events occur, agents have the autonomy and proactiveness to try alternatives. Secondly,
because the schedules are built up dynamically through flexible interactions, they can
readily be altered in the event of delays or unexpected contingencies. For example, if
one of the constituent parts of a composite item is delayeden routeto a synchronisation
point, it can inform the remaining team members. Together they can then re-arrange the
meeting time and adapt their individual behaviour accordingly. Thirdly, the explicitly
defined relationships between the constituent parts of a composite item identify those
agents that need to coordinate their actions. Moreover, a composite item team can be treated
as a single conceptual entity by machines further on down the manufacturing line. This, in
turn, eases the scheduling task by reducing the number of items that need to be considered
during decision making.

3.2. The suitability of the agent-oriented abstractions

A significant part of any design process is finding the right models for viewing the
problem. In general, there will be multiple candidates and the difficult task is picking the
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most appropriate one. When it comes to designing software, the most powerful abstractions
are those that minimise the semantic distance between the units of analysis that are
intuitively used to conceptualise the problem and the constructs present in the solution
paradigm.

In the case of complex systems, the problem to be characterised consists of subsystems,
subsystem components, interactions and organisational relationships. Taking each in
turn:
• There is a clear and strong degree of correspondence between the notions of

subsystems and agent organisations. They both involve a number of constituent
components that act and interact according to their role within the larger enterprise.
• The suitability of viewing subsystem components as agents has already been made

(Section 3.1).
• The interplay between the subsystems and between their constituent components

is most naturally viewed in terms of high level social interactions. For instance,
Booch [2] begins his analysis of complex systems from the following standpoint:
“at any given level of abstraction, we find meaningful collections of entities that
collaborate to achieve some higher level view” [2, p. 34]. This view and level of
abstraction accords precisely with the treatment of interaction afforded by the agent-
oriented approach. Agent systems are invariably described in terms of “cooperating to
achieve common objectives”, “coordinating their actions” or “negotiating to resolve
conflicts”.
• Complex systems involve changing webs of relationships between their various com-

ponents. They also require collections of components to be treated as a single con-
ceptual unit when viewed from a different level of abstraction. On both levels, the
agent-oriented mindset again provides suitable abstractions. A rich set of structures is
typically available for explicitly representing and managing organisational relation-
ships (e.g., roles [38], norms [10] and social laws [52]). Interaction protocols exist for
forming new groupings and disbanding unwanted ones (e.g., [50,51]). Finally, struc-
tures are available for modeling collectives (e.g., joint intentions [30] and teams [56]).
The latter point is especially useful in relation to representing subsystems since they
are nothing more than a team of components working together to achieve a collective
goal.

3.3. The need for flexible management of changing organisational structures

Organisational constructs are first-class entities in agent systems. Thus explicit represen-
tations are made of organisational relationships and structures. Moreover, agent-based sys-
tems have the concomitant computational mechanisms for flexibly forming, maintaining
and disbanding organisations. In the flexible manufacturing scenario, for example, individ-
ual part agents form themselves into ever more complex structures as they move through
the assembly process. In this case, the part agents explicitly represent the other compo-
nents to which they will eventually be joined. This organisational collective then negoti-
ates, as a single conceptual entity, with subsequent machine agents that need to perform
operations upon it. Similarly, if some part of the team is delayeden routeto a synchroni-
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sation rendezvous, then the explicit organisational model identifies those agents that need
to re-coordinate their activities. Finally, if a constituent component agent is destroyed or
ruined in the manufacturing process (e.g., by a faulty machining operation), then the re-
maining team members will enter a negotiation process in order to find a replacement.
This organisational updating is typical of the dynamic nature of groupings in complex
systems.

This representational power enables agent-oriented systems to exploit two facets of the
nature of complex systems. Firstly, the notion of a primitive component can be varied ac-
cording to the needs of the observer. Thus at one level, entire subsystems can be viewed as
singletons, alternatively, teams or collections of agents can be viewed as primitive compo-
nents, and so on until the system eventually bottoms out. Secondly, such structures provide
a variety of stable intermediate forms, that, as already indicated, are essential for the rapid
development of complex systems. Their availability means individual agents or organi-
sational groupings can be developed in relative isolation and then added into the system
in an incremental manner. This, in turn, ensures there is a smooth growth in functional-
ity.

4. Towards the software engineering mainstream

Having made the case that an agent-oriented approach is well suited to designing and
building complex systems (Section 3), the next step is to determine whether it will succeed
as a mainstream software engineering paradigm. This question is important because the
history of computing is littered with apparently promising technologies that were never
widely adopted. Fortunately, however, there are two compelling reasons for believing that
agent-based techniques will become widely adopted. Firstly, the agent-based approach can
be viewed as a natural next step in the evolution of a whole range of approaches to software
engineering.8 Secondly, agent-based techniques are the ideal computational model for
developing software for open, networked systems (such as the Internet). Each of these
issues will now be dealt with in turn.

A number of trends become evident when examining the evolution of programming
models from assembly languages, to procedural and structured programming, to object-
based and declarative programming, onto component-ware, design patterns, and software
architectures (see, for example, [1]). Firstly, there has been an inexorable move from
languages that have their conceptual basis determined by the underlying machine
architecture, to languages that have their key abstractions rooted in the problem domain.
Here the agent-oriented world view is perhaps the most natural way of characterising
many types of problem. Just as the real-world is populated with (passive) objects that
have operations performed on them, so it is equally (if not more) full of active, purposeful

8 It is not envisaged that agent-based approaches will supplant techniques such as object-orientation, design
patterns or component-ware. Rather, agent-based computing should be seen as providing a higher level of
computational abstraction and this may, in turn, be realised through object-based systems or in a component-
based fashion.
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agents that interact to achieve their objectives.9 Indeed, many object-oriented analyses
start from precisely this perspective: “we view the world as a set of autonomous agents
that collaborate to perform some higher level function” [2, p. 17]. Secondly, the basic
building blocks of the programming models exhibit increasing degrees of localisation
and encapsulation [44]. Agents follow this trend by localising purpose inside each agent,
by giving each agent its own thread of control, and by encapsulating action selection.
Thirdly, ever richer mechanisms for promoting re-use are being provided. Here, the agent
view also reaches new heights. Rather than stopping at re-use of subsystem components
(design patterns and component-ware) and rigidly preordained interactions (application
frameworks), agents enable whole subsystems and flexible interactions to be re-used.
In the former case, agent designs and implementations are re-used within and between
applications. Consider, for example, the class of agent models that has beliefs (what the
agent knows), desires (what the agent wants) and intentions (what the agent is doing) at its
core. Such Belief-Desire-Intention (BDI) architectures have been used in a wide variety of
applications including air traffic control [39], process control [30], simulation [47], fault
diagnosis [26], transportation [5], and scientific data interpretation [17]. In the latter case,
flexible patterns of interaction such as the Contract Net Protocol [12] (an agent with a task
to complete advertises this fact to others that it believes are capable of performing it, these
agents may submit a bid to perform the task if they are interested, and the originator then
delegates the task to the agent that makes the best bid) and various forms of resource-
allocation auction (e.g., English, Dutch, Vickrey) have been re-used in significant numbers
of applications (see [8], for example). The third notion of re-use is that agents enable legacy
(non-agent) software to be incorporated in a relatively straightforward manner [35]. The
technique used is to place wrapping software around the legacy code. The wrapper presents
an agent interface to the other software components and thus from the outside it looks
like any other agent. On the inside, the wrapper performs a two-way translation function:
taking external requests from other agents and mapping them into calls in the legacy code,
and taking the legacy code’s external requests and mapping them into the appropriate set
of agent communication commands. This ability to wrap legacy systems means agents
may initially be used as an integration technology. However, as new requirements are
uncovered, so bespoke agents may be developed and added. This feature enables a complex

9 Although there are certainly similarities between object- and agent-oriented approaches (e.g., both adhere
to the principle of information hiding and recognise the importance of interactions), there are also a number of
important differences. Firstly, objects are generally passive in nature: they need to be sent a message before they
become active. Secondly, although objects encapsulate state and behaviour realisation they do not encapsulate
action choice (Section 2). Thirdly, object-orientation fails to provide an adequate set of concepts and mechanisms
for modeling complex systems: for such systems “we find that objects, classes and modules provide an essential
yet insufficient means of abstraction” [2, p. 34] Individual objects represent too fine a granularity of behaviour
and method invocation is too primitive a mechanism for describing the types of interactions that take place. As
has already been argued, agents with their coarser level of granularity and higher-level view of interaction are
eminently more suitable. Finally, object-oriented approaches provide only minimal support for specifying and
managing organisational relationships (basically relationships are defined by static inheritance hierarchies). In
recognition of this fact, Hewitt and Inman [24] introduced the notion of ORGs into the basic Actor model. This
provided a number of inbuilt organisational structures that designers could exploit during their developments.
Gasser and Briot [20] also note similar limitations of object-based concurrent programming for modeling complex
social relationships.
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system to grow in an evolutionary fashion (based on stable intermediate forms), while
adhering to the important principle that there should always be a working version of the
system available. In summary, agent-oriented techniques represent a natural progression of
current software engineering thinking and, for this reason, the main concepts and tenets of
the approach should be readily acceptable to mainstream practitioners.

Turning now to the question of software models for open, networked systems. Such
systems are characterised by the fact that there is no single controlling organisation, by
the fact that the software represents the interests of a diverse range of stakeholders, and
by the fact that there is constant change [19,23]. In such environments, the dominant
software model needs to be based on synthesis or construction, rather than decomposition
or reduction. Thus the “system” is simply the collection of independently developed
software entities that are interacting with one another at any instant in time. From this
perspective, a number of requirements can be placed upon the computational model:

(i) the individual problem solving entities need to be able to act to achieve specified
objectives (i.e., they must be active and autonomous);

(ii) these entities must do so in a flexible manner in order to cope with the inherent
uncertainty they face (i.e., they need to be reactive and proactive);

(iii) the computational entities need to be capable of interacting with entities that were
not foreseen at design time and in a manner that is appropriate to their current
situation (i.e., they must be able to engage in flexible interactions); and

(iv) any organisational relationships that do exist between the stakeholders must be
reflected in the behaviour and actions of the problem solvers (i.e., the organisational
relationships need to be explicitly represented and taken into account during the
action selection process).

In short, the desired computational model needs to be agent-based.

5. The downside of an agent-based approach to software engineering

Having highlighted the potential benefits of agent-based software engineering (Sections
3 and 4), this section seeks to pinpoint some of the concomitant drawbacks. Here the
aim is to identify and isolate those aspects of complex system developments that are
made more difficult by adopting an agent-based approach. Thus, it does not address those
difficulties that arise from engineering large systemsper se(e.g., issues of performance
engineering and security), nor with those problems that are caused by the fact that agent-
based systems are both distributed and concurrent, nor with the issues that arise as a result
of software having to maintain an ongoing interaction with a dynamic and unpredictable
environment [45]. Finally, the aim is to concentrate on issues that are intrinsic to the
agent-based philosophy (cf. the many social and pragmatic problems often associated with
developing systems using any new technology [61]). Against this background, there are
two major drawbacks associated with the very essence of an agent-based approach:
• the patterns and the outcomes of the interactions are inherently unpredictable;
• predicting the behaviour of the overall system based on its constituent components

is extremely difficult (sometimes impossible) because of the strong possibility of
emergent behaviour.
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Although the flexibility of agent interactions has many advantages when it comes to
engineering complex systems, the downside is that it leads to unpredictability in the run-
time system. As agents are autonomous, the patterns and the effects of their interactions are
uncertain. Firstly, agents decide at run-time which of their objectives require interaction
in a given context, which acquaintances they will interact with in order to realise these
objectives, and when these interactions will occur. Hence decisions about the number,
pattern and timing of interactions depend on a complex interplay of the agent’s internal
state, the agent’s perception of the environment (perhaps including the state of its
acquaintances), and the organisational context that exists when the decision is made.
Combining these multifarious factors means that it is difficult to make predictions about
the system’s interactions. Secondly, there is a de-coupling, and potentially a considerable
degree of variability, between what one agent first requests through an interaction and the
outcome that eventually ensues. Since agents have autonomy over their own choices: the
request may be immediately honoured as it is, it may be refused completely, or it may be
modified through some form of social interchange. In short, in the general case, both the
nature (a simple request versus a protracted negotiation) and the outcome of an interaction
cannot be determined at the onset.

The second source of unpredictability in agent-oriented systems relates to the notion of
emergent behaviour. It has long been recognised that interactive composition—collections
of processes (agents) acting side-by-side and interacting in whatever way they have been
designed to interact [43]—results in behavioural phenomena that cannot be deconstructed
solely in terms of the behaviour of the individual components. That is, the whole is
often greater than the sum of the parts. Such emergent behaviour is a consequence of
the interaction between components and given their sophistication and flexibility in agent
systems, it is clear that the scope for unexpected collective behaviour is considerable.
In certain situations (e.g., social simulations and market systems) emergence is not
necessarily a bad thing since the ensuing behaviour is a more accurate model of the problem
being addressed. However, when predictability is a desirable system property, then the aim
is to minimise its occurrence and impact.

Both of the aforementioned drawbacks apply to the general case of using an agent-based
approach. However in specific systems and applications, designers are able to circumvent
these difficulties by using interaction protocols whose properties can be formally analysed
(sometimes borrowing techniques such as mechanism design from game theory [48]),
by adopting rigid and preset organisational structures, and/or by limiting the nature
and the scope of the agent interplay. In all of these cases, the aim is to reduce the
system’s unpredictability. However these restrictions also limit the power of the agent-
based approach; thus, in order to realise its full potential some longer term solutions are
required. In particular, a better understanding is needed of the impact of sociality and
organisational context on an individual’s behaviour and of the symbiotic link between the
behaviour of the individual agents and that of the overall system.

One means of tackling these fundamental issues is to follow an approach that proved
successful in elucidating the foundational principles and structures of individual (asocial)
agents. Newell’s [40] knowledge level analysis provided the seminal characterisation of in-
telligent agents—it stripped away implementation and application specific details to reveal
the core of asocial problem solvers. Since the aim here is to do the same for social agents,
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Newell’s basic approach appears an obvious point of departure. Thus a new computer level
needs to be defined (see [28] for details of the main arguments). This level can be called
thesocial level[32]. It should sit immediately above the knowledge level and should pro-
vide the social principles and foundations for agent-based systems. The primary benefit of
developing a social level description is that it enables the overall system’s behaviour and
key conceptual structures to be studied without the need to delve into the implementation
details of the individual agents or the specifics of particular interaction protocols [28,32].
Thus prediction of the behaviour of the social agents and of the overall system can be made
more easily. To this end, the next section presents a preliminary vision of the social level.

6. A social level view

This section presents the outline of a proposal for a social level characterisation of agent-
based systems (Table 1). This characterisation follows Newell’s basic nomenclature for
specifying computer system levels.

Thesystemis the entity to be described at that computer level. For the knowledge level
it is an (asocial) agent. For the social level it is an agent organisation; that is, a collection
(or grouping) of agents that are arranged in various relationships to one another.

Thecomponentsare the primitive elements from which the system is built up. For the
knowledge level, an agent is conceived of in terms of the goals it has to achieve and
the actions that it can perform in their pursuit. For the social level, an agent organisation
consists of four main components that together represent the objective basis upon which
the organisation functions. Firstly, there are the agents that go together to constitute
the organisation. Secondly, there are the various channels through which these agents
can communicate and interact with one another. These encompass both the underlying

Table 1
Summary of the knowledge and social levels

Dimension Description Knowledge level Social level

System Entity to be described (asocial) Agent Agent organisation

Components The system’s primitive
elements

Goals,
Actions

Agents,
Interaction channels,
Dependencies,
Organisational relationships

Compositional law How the components are
assembled

Various Roles,
Organisation’s rules

Behaviour law How the system’s
behaviour depends upon its
composition & components

Principle of
rationality

Principle of
organisational rationality

Medium The elements to be
processed to obtain the
desired behaviour

Knowledge Organisation and social obligations,
Means of influencing others,
Means of changing organisational
structures
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mechanism (e.g., message passing structures, blackboard systems or the environment)
as well as the content (e.g., agent communication languages and the associated domain
ontologies). The third component is the dependencies that exist between the agents.

Such dependencies can be between the objectives that the agents wish to achieve or
through the environment’s shared resources. In either case, it is the concept of dependence
that drives the agents to interact with one another [9,29]. Finally, there are the various
organisational relationships that exist between the agents. For example, the agents may be
peers, competitors or situated in a variety of authority relationships.

Thecompositional lawsdefine how the components are assembled to form the system.
For the knowledge level, Newell simply states that an agent’s goals and actions can be
arranged in multifarious ways. For the social level, the primitive components are assembled
according to their roles within the system and the organisation’s rules. Roles can be
undertaken by individual or multiple agents and their purpose is to define the achievable
objectives, to indicate the ensuing organisational relationships between the participants,
to set the channels through which interaction should occur, and to dictate the patterns
of interchange that are appropriate [19,23,38]. Accompanying the role definitions are the
organisation’s rules that define the concomitant procedures or the emergent norms in which
role enactment takes place. Thus, the rules specify, among other things, which agents can
adopt which roles and under what terms and conditions, what should happen if roles are
updated/modified and how conflicts between roles should be handled.

Thebehaviour lawspecifies how the system’s behaviour depends upon its composition
and its components. For the knowledge level, the behaviour law is the principle of
rationality which simply states that if an agent has knowledge that one of its actions
will lead to one of its goals, then the agent will select that action [40]. For the social
level, the behaviour of the organisation depends upon the ways in which the roles are
enacted and the degree to which the organisation’s rules are adhered to. Thus, this
organisational rationality indicates how the collective will actual behave in practice. For
example, the agents may well decide to follow their designated/assigned role in the
organisation and also to adhere to the organisation’s rules. However, there may equally
be situations in which these constraints are deliberately violated. Thus the notion of
organisational rationality indicates to what degree and under what circumstances the agents
will follow their organisational obligations. Since social interchange is an integral part
of a role’s specification, organisational rationality also covers social obligations between
the participating agents. Thus it defines the situations in which agents may make social
commitments, when they can violate them, and what compensating actions should be
performed in such circumstances.

The mediumrepresents the elements that are processed in order to obtain the desired
behaviour. For the knowledge level, an agent processes knowledge in order to attain its
goals. At the social level, organisations process three main types of elements. Firstly, the
various organisational and social obligations that the agents enter into: either as a result
of their organisational roles/relationships or as a consequence of the social interactions in
which they engage. Secondly, the various mechanisms and structures that are available for
the organisation’s components to influence the behaviour of one another (enacted through
the interaction channels). These include, for example, negotiation techniques, cooperation
protocols, and coordination models. All of these interactions can be characterised as means
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by which agents influence one another’s behaviour (in order to manage their respective de-
pendencies). The final element to be processed is the various means that are available for
changing or modifying the organisational structure. That is, the elements that are processed
in order to create new roles, to change organisational rules or to modify the prevailing or-
ganisational rationality.

At this stage, the aim of the social level characterisation is to provide a means of
tackling the aforementioned fundamental drawbacks of the agent-based approach. While
it is highly likely that this description will undergo modification and refinement in the
light of experience, it nevertheless provides a line of attack to these issues. Moreover, the
core concepts can be viewed as being relatively stable (see the evolution from [28] to
[32] and onto the current proposal). To this end, the social level aids the science of agent-
based computing by providing a comprehensive model for specifying and understanding
behaviour in agent-based systems. This contrasts with the majority of the extant work
in this area that typically concentrates on a small fragment of the overall picture. For
example, the BDI models typically fail to incorporate the influence of organisational
structures on an agent’s behaviour and the organisational models tend to neglect the
autonomy of the constituent agents. A social level perspective also aids the engineering
aspects of agent-based systems. By identifying the key constituent components and their
interrelationships, the social level provides a sound basis for developing tools that can
support the development of agent-based systems. Moreover, social level models provide a
basis for agent-oriented analysis and design. Indeed [62] follows precisely this approach;
presenting a methodology in which agent-based systems are viewed as computational
organisations that are defined in terms of roles, interactions and obligations.

7. Discussion

This paper has sought to justify the claim that agent-based computing has the potential to
significantly improve our ability to model, design and build complex, distributed software
systems. In making this claim, a series of qualitative arguments were developed to highlight
the high degree of match between the requirements of complex system development
paradigms on the one hand and the key concepts and notions of agent-based computing
on the other. The second claim contained herein is that the agent-based approach will
succeed as a mainstream software engineering paradigm. The basis for this belief is that
agent-based computing is a logical evolution of a number of contemporary approaches to
software engineering and also because it is ideally suited to developing software in truly
open systems. Against this promise, the inherent unpredictability of agent interactions and
the strong possibility of emergent behaviour were identified as inherent drawbacks. To help
provide a long-term means of addressing these problems, a social level characterisation of
agent-based systems was advocated as a promising point of departure.

Although this paper has concentrated predominantly on the perspective of developing
complex systems, agent-based computing should not be viewed merely as a good solution
technology. Rather, it should be seen in its broader context as a general-purpose model of
computation that naturally encompasses the major trends in software. In particular, there
is an inexorable move towards regarding distributed and concurrent systems as the norm
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rather than the exception, towards placing greater onus on flexible interactions between
(independently developed) software systems, and towards reflecting real-world relation-
ships (i.e., organisational context) in computer systems. In short, the agent-based approach
should be regarded as the foundation of the networked generation of computer systems.
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