5,841 research outputs found

    Factors shaping the evolution of electronic documentation systems

    Get PDF
    The main goal is to prepare the space station technical and managerial structure for likely changes in the creation, capture, transfer, and utilization of knowledge. By anticipating advances, the design of Space Station Project (SSP) information systems can be tailored to facilitate a progression of increasingly sophisticated strategies as the space station evolves. Future generations of advanced information systems will use increases in power to deliver environmentally meaningful, contextually targeted, interconnected data (knowledge). The concept of a Knowledge Base Management System is emerging when the problem is focused on how information systems can perform such a conversion of raw data. Such a system would include traditional management functions for large space databases. Added artificial intelligence features might encompass co-existing knowledge representation schemes; effective control structures for deductive, plausible, and inductive reasoning; means for knowledge acquisition, refinement, and validation; explanation facilities; and dynamic human intervention. The major areas covered include: alternative knowledge representation approaches; advanced user interface capabilities; computer-supported cooperative work; the evolution of information system hardware; standardization, compatibility, and connectivity; and organizational impacts of information intensive environments

    About the nature of Kansei information, from abstract to concrete

    Get PDF
    Designer’s expertise refers to the scientific fields of emotional design and kansei information. This paper aims to answer to a scientific major issue which is, how to formalize designer’s knowledge, rules, skills into kansei information systems. Kansei can be considered as a psycho-physiologic, perceptive, cognitive and affective process through a particular experience. Kansei oriented methods include various approaches which deal with semantics and emotions, and show the correlation with some design properties. Kansei words may include semantic, sensory, emotional descriptors, and also objects names and product attributes. Kansei levels of information can be seen on an axis going from abstract to concrete dimensions. Sociological value is the most abstract information positioned on this axis. Previous studies demonstrate the values the people aspire to drive their emotional reactions in front of particular semantics. This means that the value dimension should be considered in kansei studies. Through a chain of value-function-product attributes it is possible to enrich design generation and design evaluation processes. This paper describes some knowledge structures and formalisms we established according to this chain, which can be further used for implementing computer aided design tools dedicated to early design. These structures open to new formalisms which enable to integrate design information in a non-hierarchical way. The foreseen algorithmic implementation may be based on the association of ontologies and bag-of-words.AN

    Computational Explorations of Creativity and Innovation in Design

    Get PDF
    This thesis addresses creativity in design as a property of systems rather than an attribute of isolated individuals. It focuses on the dynamics between generative and evaluative or ascriptive processes. This is in distinction to conventional approaches to the study of creativity which tend to concentrate on the isolated characteristics of person, process and product. Whilst previous research has advanced insights on potentially creative behaviour and on the general dynamics of innovation in groups, little is known about their interaction. A systems view of creativity in design is adopted in our work to broaden the focus of inquiry to incorporate the link between individual and collective change. The work presented in this thesis investigates the relation between creativity and innovation in computational models of design as a social construct. The aim is to define and implement in computer simulations the different actors and components of a system and the rules that may determine their behaviour and interaction. This allows the systematic study of their likely characteristics and effects when the system is run over simulated time. By manipulating the experimental variables of the system at initial time the experimenter is able to extract patterns from the observed results over time and build an understanding of the different types of determinants of creative design. The experiments and findings presented in this thesis relate to artificial societies composed by software agents and the social structures that emerge from their interaction. Inasmuch as these systems aim to capture some aspects of design activity, understanding them is likely to contribute to the understanding of the target system. The first part of this thesis formulates a series of initial computational explorations on cellular automata of social influence and change agency. This simple modelling framework illustrates a number of factors that facilitate change. The potential for a designer to trigger cycles of collective change is demonstrated to depend on the combination of individual and external or situational characteristics. A more comprehensive simulation framework is then introduced to explore the link between designers and their societies based on a systems model of creativity that includes social and epistemological components. In this framework a number of independent variables are set for experimentation including characteristics of individuals, fields, and domains. The effects of these individual and situational parameters are observed in experimental settings. Aspects of relevance in the definition of creativity included in these studies comprise the role of opinion leaders as gatekeepers of the domain, the effects of social organisation, the consequences of public and private access to domain knowledge by designers, and the relation between imitative behaviour and innovation. A number of factors in a social system are identified that contribute to the emergence of phenomena that are normally associated to creativity and innovation in design. At the individual level the role of differences of abilities, persistence, opportunities, imitative behaviour, peer influence, and design strategies are discussed. At the field level determinants under inspection include group structure, social mobility and organisation, emergence of opinion leaders, established rules and norms, and distribution of adoption and quality assessments. Lastly, domain aspects that influence the interaction between designers and their social groups include the generation and access to knowledge, activities of gatekeeping, domain size and distribution, and artefact structure and representation. These insights are discussed in view of current findings and relevant modelling approaches in the literature. Whilst a number of assumptions and results are validated, others contribute to ongoing debates and suggest specific mechanisms and parameters for future experimentation. The thesis concludes by characterising this approach to the study of creativity in design as an alternative 'in silico' method of inquiry that enables simulation with phenomena not amenable to direct manipulation. Lines of development for future work are advanced which promise to contribute to the experimental study of the social dimensions of design

    Fuzzy Clustering in Web Mining

    Get PDF
    Web mining is the use of data mining techniques to automatically discover and extract information from web. Clustering is one of the possible techniques to improve the efficiency in information finding process. Conventional clustering classifies the given data objects into exclusive clusters. However such a partition is insufficient to represent many real situations. Hence a fuzzy clustering method is offered to construct clusters with uncertain boundaries and allows the object to belong to multiple clusters with degree of membership. Web data has fuzzy characteristics, so fuzzy clustering is better suitable for web mining in comparison with conventional clustering. In this paper, we have proposed two algorithms that are Fuzzy c-Means (FCM) and Clustering based on Fuzzy Equivalence Relations which can be used for web page mining and web usage mining. The results obtained from the proposed algorithm are more convincing. The experimental results are carried out on different algorithmic parameters on real data. The analysis is being done by comparing the proposed algorithm with conventional clustering algorithms

    Annotation graphs as a framework for multidimensional linguistic data analysis

    Full text link
    In recent work we have presented a formal framework for linguistic annotation based on labeled acyclic digraphs. These `annotation graphs' offer a simple yet powerful method for representing complex annotation structures incorporating hierarchy and overlap. Here, we motivate and illustrate our approach using discourse-level annotations of text and speech data drawn from the CALLHOME, COCONUT, MUC-7, DAMSL and TRAINS annotation schemes. With the help of domain specialists, we have constructed a hybrid multi-level annotation for a fragment of the Boston University Radio Speech Corpus which includes the following levels: segment, word, breath, ToBI, Tilt, Treebank, coreference and named entity. We show how annotation graphs can represent hybrid multi-level structures which derive from a diverse set of file formats. We also show how the approach facilitates substantive comparison of multiple annotations of a single signal based on different theoretical models. The discussion shows how annotation graphs open the door to wide-ranging integration of tools, formats and corpora.Comment: 10 pages, 10 figures, Towards Standards and Tools for Discourse Tagging, Proceedings of the Workshop. pp. 1-10. Association for Computational Linguistic

    Detecting Irregular Patterns in IoT Streaming Data for Fall Detection

    Full text link
    Detecting patterns in real time streaming data has been an interesting and challenging data analytics problem. With the proliferation of a variety of sensor devices, real-time analytics of data from the Internet of Things (IoT) to learn regular and irregular patterns has become an important machine learning problem to enable predictive analytics for automated notification and decision support. In this work, we address the problem of learning an irregular human activity pattern, fall, from streaming IoT data from wearable sensors. We present a deep neural network model for detecting fall based on accelerometer data giving 98.75 percent accuracy using an online physical activity monitoring dataset called "MobiAct", which was published by Vavoulas et al. The initial model was developed using IBM Watson studio and then later transferred and deployed on IBM Cloud with the streaming analytics service supported by IBM Streams for monitoring real-time IoT data. We also present the systems architecture of the real-time fall detection framework that we intend to use with mbientlabs wearable health monitoring sensors for real time patient monitoring at retirement homes or rehabilitation clinics.Comment: 7 page
    corecore