8,515 research outputs found

    Computational Complexity of the Interleaving Distance

    Full text link
    The interleaving distance is arguably the most prominent distance measure in topological data analysis. In this paper, we provide bounds on the computational complexity of determining the interleaving distance in several settings. We show that the interleaving distance is NP-hard to compute for persistence modules valued in the category of vector spaces. In the specific setting of multidimensional persistent homology we show that the problem is at least as hard as a matrix invertibility problem. Furthermore, this allows us to conclude that the interleaving distance of interval decomposable modules depends on the characteristic of the field. Persistence modules valued in the category of sets are also studied. As a corollary, we obtain that the isomorphism problem for Reeb graphs is graph isomorphism complete.Comment: Discussion related to the characteristic of the field added. Paper accepted to the 34th International Symposium on Computational Geometr

    Computational Complexity of the Interleaving Distance

    Get PDF
    The interleaving distance is arguably the most prominent distance measure in topological data analysis. In this paper, we provide bounds on the computational complexity of determining the interleaving distance in several settings. We show that the interleaving distance is NP-hard to compute for persistence modules valued in the category of vector spaces. In the specific setting of multidimensional persistent homology we show that the problem is at least as hard as a matrix invertibility problem. Furthermore, this allows us to conclude that the interleaving distance of interval decomposable modules depends on the characteristic of the field. Persistence modules valued in the category of sets are also studied. As a corollary, we obtain that the isomorphism problem for Reeb graphs is graph isomorphism complete

    Computing the interleaving distance is NP-hard

    Full text link
    We show that computing the interleaving distance between two multi-graded persistence modules is NP-hard. More precisely, we show that deciding whether two modules are 11-interleaved is NP-complete, already for bigraded, interval decomposable modules. Our proof is based on previous work showing that a constrained matrix invertibility problem can be reduced to the interleaving distance computation of a special type of persistence modules. We show that this matrix invertibility problem is NP-complete. We also give a slight improvement of the above reduction, showing that also the approximation of the interleaving distance is NP-hard for any approximation factor smaller than 33. Additionally, we obtain corresponding hardness results for the case that the modules are indecomposable, and in the setting of one-sided stability. Furthermore, we show that checking for injections (resp. surjections) between persistence modules is NP-hard. In conjunction with earlier results from computational algebra this gives a complete characterization of the computational complexity of one-sided stability. Lastly, we show that it is in general NP-hard to approximate distances induced by noise systems within a factor of 2.Comment: 25 pages. Several expository improvements and minor corrections. Also added a section on noise system

    FPT-Algorithms for Computing Gromov-Hausdorff and Interleaving Distances Between Trees

    Get PDF
    The Gromov-Hausdorff distance is a natural way to measure the distortion between two metric spaces. However, there has been only limited algorithmic development to compute or approximate this distance. We focus on computing the Gromov-Hausdorff distance between two metric trees. Roughly speaking, a metric tree is a metric space that can be realized by the shortest path metric on a tree. Any finite tree with positive edge weight can be viewed as a metric tree where the weight is treated as edge length and the metric is the induced shortest path metric in the tree. Previously, Agarwal et al. showed that even for trees with unit edge length, it is NP-hard to approximate the Gromov-Hausdorff distance between them within a factor of 3. In this paper, we present a fixed-parameter tractable (FPT) algorithm that can approximate the Gromov-Hausdorff distance between two general metric trees within a multiplicative factor of 14. Interestingly, the development of our algorithm is made possible by a connection between the Gromov-Hausdorff distance for metric trees and the interleaving distance for the so-called merge trees. The merge trees arise in practice naturally as a simple yet meaningful topological summary (it is a variant of the Reeb graphs and contour trees), and are of independent interest. It turns out that an exact or approximation algorithm for the interleaving distance leads to an approximation algorithm for the Gromov-Hausdorff distance. One of the key contributions of our work is that we re-define the interleaving distance in a way that makes it easier to develop dynamic programming approaches to compute it. We then present a fixed-parameter tractable algorithm to compute the interleaving distance between two merge trees exactly, which ultimately leads to an FPT-algorithm to approximate the Gromov-Hausdorff distance between two metric trees. This exact FPT-algorithm to compute the interleaving distance between merge trees is of interest itself, as it is known that it is NP-hard to approximate it within a factor of 3, and previously the best known algorithm has an approximation factor of O(sqrt{n}) even for trees with unit edge length

    Sparse Nerves in Practice

    Get PDF
    Topological data analysis combines machine learning with methods from algebraic topology. Persistent homology, a method to characterize topological features occurring in data at multiple scales is of particular interest. A major obstacle to the wide-spread use of persistent homology is its computational complexity. In order to be able to calculate persistent homology of large datasets, a number of approximations can be applied in order to reduce its complexity. We propose algorithms for calculation of approximate sparse nerves for classes of Dowker dissimilarities including all finite Dowker dissimilarities and Dowker dissimilarities whose homology is Cech persistent homology. All other sparsification methods and software packages that we are aware of calculate persistent homology with either an additive or a multiplicative interleaving. In dowker_homology, we allow for any non-decreasing interleaving function α\alpha. We analyze the computational complexity of the algorithms and present some benchmarks. For Euclidean data in dimensions larger than three, the sizes of simplicial complexes we create are in general smaller than the ones created by SimBa. Especially when calculating persistent homology in higher homology dimensions, the differences can become substantial
    • …
    corecore