3,144 research outputs found

    Efficient Bayesian Learning in Social Networks with Gaussian Estimators

    Get PDF
    We consider a group of Bayesian agents who try to estimate a state of the world θ\theta through interaction on a social network. Each agent vv initially receives a private measurement of θ\theta: a number SvS_v picked from a Gaussian distribution with mean θ\theta and standard deviation one. Then, in each discrete time iteration, each reveals its estimate of θ\theta to its neighbors, and, observing its neighbors' actions, updates its belief using Bayes' Law. This process aggregates information efficiently, in the sense that all the agents converge to the belief that they would have, had they access to all the private measurements. We show that this process is computationally efficient, so that each agent's calculation can be easily carried out. We also show that on any graph the process converges after at most 2N⋅D2N \cdot D steps, where NN is the number of agents and DD is the diameter of the network. Finally, we show that on trees and on distance transitive-graphs the process converges after DD steps, and that it preserves privacy, so that agents learn very little about the private signal of most other agents, despite the efficient aggregation of information. Our results extend those in an unpublished manuscript of the first and last authors.Comment: Added coauthor. Added proofs for fast convergence on trees and distance transitive graphs. Also, now analyzing a notion of privac

    Algorithmic Cheap Talk

    Full text link
    The literature on strategic communication originated with the influential cheap talk model, which precedes the Bayesian persuasion model by three decades. This model describes an interaction between two agents: sender and receiver. The sender knows some state of the world which the receiver does not know, and tries to influence the receiver's action by communicating a cheap talk message to the receiver. This paper initiates the algorithmic study of cheap talk in a finite environment (i.e., a finite number of states and receiver's possible actions). We first prove that approximating the sender-optimal or the welfare-maximizing cheap talk equilibrium up to a certain additive constant or multiplicative factor is NP-hard. Fortunately, we identify three naturally-restricted cases that admit efficient algorithms for finding a sender-optimal equilibrium. These include a state-independent sender's utility structure, a constant number of states or a receiver having only two actions

    Persuading Voters: It's Easy to Whisper, It's Hard to Speak Loud

    Full text link
    We focus on the following natural question: is it possible to influence the outcome of a voting process through the strategic provision of information to voters who update their beliefs rationally? We investigate whether it is computationally tractable to design a signaling scheme maximizing the probability with which the sender's preferred candidate is elected. We focus on the model recently introduced by Arieli and Babichenko (2019) (i.e., without inter-agent externalities), and consider, as explanatory examples, kk-voting rule and plurality voting. There is a sharp contrast between the case in which private signals are allowed and the more restrictive setting in which only public signals are allowed. In the former, we show that an optimal signaling scheme can be computed efficiently both under a kk-voting rule and plurality voting. In establishing these results, we provide two general (i.e., applicable to settings beyond voting) contributions. Specifically, we extend a well known result by Dughmi and Xu (2017) to more general settings, and prove that, when the sender's utility function is anonymous, computing an optimal signaling scheme is fixed parameter tractable w.r.t. the number of receivers' actions. In the public signaling case, we show that the sender's optimal expected return cannot be approximated to within any factor under a kk-voting rule. This negative result easily extends to plurality voting and problems where utility functions are anonymous

    Multi-Receiver Online Bayesian Persuasion

    Full text link
    Bayesian persuasion studies how an informed sender should partially disclose information to influence the behavior of a self-interested receiver. Classical models make the stringent assumption that the sender knows the receiver's utility. This can be relaxed by considering an online learning framework in which the sender repeatedly faces a receiver of an unknown, adversarially selected type. We study, for the first time, an online Bayesian persuasion setting with multiple receivers. We focus on the case with no externalities and binary actions, as customary in offline models. Our goal is to design no-regret algorithms for the sender with polynomial per-iteration running time. First, we prove a negative result: for any 0<α≤10 < \alpha \leq 1, there is no polynomial-time no-α\alpha-regret algorithm when the sender's utility function is supermodular or anonymous. Then, we focus on the case of submodular sender's utility functions and we show that, in this case, it is possible to design a polynomial-time no-(1−1e)(1 - \frac{1}{e})-regret algorithm. To do so, we introduce a general online gradient descent scheme to handle online learning problems with a finite number of possible loss functions. This requires the existence of an approximate projection oracle. We show that, in our setting, there exists one such projection oracle which can be implemented in polynomial time
    • …
    corecore