research

Efficient Bayesian Learning in Social Networks with Gaussian Estimators

Abstract

We consider a group of Bayesian agents who try to estimate a state of the world θ\theta through interaction on a social network. Each agent vv initially receives a private measurement of θ\theta: a number SvS_v picked from a Gaussian distribution with mean θ\theta and standard deviation one. Then, in each discrete time iteration, each reveals its estimate of θ\theta to its neighbors, and, observing its neighbors' actions, updates its belief using Bayes' Law. This process aggregates information efficiently, in the sense that all the agents converge to the belief that they would have, had they access to all the private measurements. We show that this process is computationally efficient, so that each agent's calculation can be easily carried out. We also show that on any graph the process converges after at most 2ND2N \cdot D steps, where NN is the number of agents and DD is the diameter of the network. Finally, we show that on trees and on distance transitive-graphs the process converges after DD steps, and that it preserves privacy, so that agents learn very little about the private signal of most other agents, despite the efficient aggregation of information. Our results extend those in an unpublished manuscript of the first and last authors.Comment: Added coauthor. Added proofs for fast convergence on trees and distance transitive graphs. Also, now analyzing a notion of privac

    Similar works