4,116 research outputs found

    A Parallel Algorithm for solving BSDEs - Application to the pricing and hedging of American options

    Get PDF
    We present a parallel algorithm for solving backward stochastic differential equations (BSDEs in short) which are very useful theoretic tools to deal with many financial problems ranging from option pricing option to risk management. Our algorithm based on Gobet and Labart (2010) exploits the link between BSDEs and non linear partial differential equations (PDEs in short) and hence enables to solve high dimensional non linear PDEs. In this work, we apply it to the pricing and hedging of American options in high dimensional local volatility models, which remains very computationally demanding. We have tested our algorithm up to dimension 10 on a cluster of 512 CPUs and we obtained linear speedups which proves the scalability of our implementationComment: 25 page

    Hedging error in Lévy models with a Fast Fourier Transform approach

    Get PDF
    We measure, in terms of expectation and variance, the cost of hedging a contingent claim when the hedging portfolio is re-balanced at a discrete set of dates. The basic point of the methodology is to have an integral representation of the payoff of the claim, in other words to be able to write the payoff as an inverse Laplace transform. The models under consideration belong to the class of Lévy models, like NIG, VG and Merton models. The methodology is implemented through the popular FFT algorithm, used by many financial institutions for pricing and calibration purposes. As applications, we analyze the effect of increasing the number of tradings and we make some robustness tests.Hedging, Lévy models, Fast Fourier Transform

    The new risk management: the good, the bad, and the ugly

    Get PDF
    At one time, risk management was limited to insurance and the avoidance of lawsuits and accidents. The new risk management also includes using tools developed for pricing financial options for the management of financial risks within the firm. Trading in financial markets based on these tools can insulate companies from the risk of changes in interest rates, input prices, or currency fluctuations. In this article Philip H. Dybvig and William J. Marshall introduce the new risk management and the policy choices firms should be considering.Management ; Risk

    Bivariate Normal Mixture Spread Option Valuation

    Get PDF
    This paper explores the properties of a European spread option valuation method for correlated assets when the marginal distribution each asset return is assumed to be a mixture of normal distributions. In this ‘bivariate normal mixture’ (BNM) approach no-arbitrage option values are just weighted sums of different 2GBM values based on two correlated lognormal diffusions, and likewise for their sensitivities. The main advantage of this approach is that BNM option values are consistent with the volatility smiles for each asset and an implied correlation ‘frown’, both of which are often observed when spread options are priced under the 2GBM assumptions. It is simple to perform an extensive consideration of model values for varying strike, and for different asset volatility and correlation structures. We compare BNM valuations with those based on the ‘2GBM’ assumption of two correlated lognormal diffusions and explain the differences between the BNM values and the 2GBM values of spread options as a weighted sum of six second order 2GBM value sensitivities. We also investigate the BNM sensitivities and these, like the option values, can sometimes be significantly different from those obtained under the 2GBM model. Finally, we show how the correlation frown that is implied by this model is affected as we change the parameters in the bivariate normal mixture density of the asset returns.spread option, implied correlation, bivariate normal mixture density

    Hedging with Stochastic and Local Volatility

    Get PDF
    We derive the local volatility hedge ratios that are consistent with a stochastic instantaneous volatility and show that this ‘stochastic local volatility’ model is equivalent to the market model for implied volatilities. We also show that a common feature of all Markovian single factor stochastic volatility models, (log)normal mixture option pricing models and ‘sticky delta’ models is that they predict incorrect dynamics for implied volatility. As a result they over-hedge the Black-Scholes model in the presence of a market skew and this explains the poor delta hedging performance of these models reported in the literature. Whilst the traditional ‘sticky tree’ local volatility models do not possess this unfortunate property, they cannot be used for pricing without exogenous and ad hoc smoothing of results. However the stochastic local volatility framework allows one to extend a good pricing model into a good hedging model. The theoretical results are supported by an empirical analysis of the hedging performance of seven models, each with different volatility characteristics, on the SP500 index skew.Local volatility, stochastic volatility, implied volatility, hedging, dynamic delta hedging, volatility dymamics
    corecore