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Abstract

We measure, in terms of expectation and variance, the cost of hedg-
ing a contingent claim when the hedging portfolio is re-balanced at a
discrete set of dates. The basic point of the methodology is to have an
integral representation of the payoff of the claim, in other words to be
able to write the payoff as an inverse Laplace transform. The models
under consideration belong to the class of Lévy models, like NIG, VG
and Merton models. The methodology is implemented through the
popular FFT algorithm, used by many financial institutions for pric-
ing and calibration purposes. As applications, we analyze the effect of
increasing the number of tradings and we make some robustness tests.

JEL classification: G13 C63
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1 Introduction

The aim of this paper is the measurement of the cost of hedging a contingent
claim when the hedging portfolio is re-balanced at a discrete set of dates. The
basic point of the methodology is to have an integral representation of the
payoff of the claim, in other words to be able to write the payoff as an inverse
Laplace transform. This approach was proposed by Hubalek et al. [16] in
order to efficiently compute the optimal strategy and its variance. It was then
used by Angelini and Herzel [2] to valuate the variance of hedging error of a
given strategy, satisfying a compatibility condition which is met by various
important strategies, like the delta one. This approach provides a framework
suitable for managing derivatives, namely for pricing, for computing hedging
ratios and for measuring the cost of hedging. For pricing and calibration
purposes, as well as for computation of Greeks, a popular method adopted by
financial institution is the Fast Fourier Transform (FFT) algorithm, proposed
by Carr and Madan [6]. We will show how the FFT algorithm may also be
implemented to compute the expectation and the variance of the hedging
error. One of the main contribution of the paper is to suggest that the FFT
machinery may be an integrated tool to deal with different aspects of the
derivative risk management. Notice that the different forms of the problem
require in principle different probability measures, the martingale measure
for pricing purposes and the ”objective” measure for valuating the variance
of the error. We will develop our results for a generic probability measure.
However, as suggested in [1] and analogously to [8], in order to incorporate
the market views of future scenarios and the risk premia attached to the
prices, we will perform computations using a martingale measure for both
problems.

Most of financial models for pricing and hedging derivatives assume that
trading is possible in continuous time. Such an assumption does not hold in
practice. For example, the widely used Black-Scholes delta hedging strategy
produces an error even if all other assumptions of the Black-Scholes model
are met. This type of error may be called ”discretization error”. The sec-
ond font of error has to do with the incompleteness of the model. Here we
will consider the class of Levy models, which have recently been extensively
studied in finance. Cont et al. [8] study the incompleteness error in models
with jumps, while Tankov and Voltchkova [23] show an asymptotic analysis
of the discretization error in the same model setting.

The problem of hedging derivatives in incomplete markets has been stud-
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ied by many authors [[21], [16], [8], [5], [20]], following the seminal papers of
Föllmer and Sondermann [12]. The main approach to the problem is that
of determining a strategy which minimizes the variance of the hedging error,
which we will refer to as the optimal strategy. Generally more feasible to
compute is the strategy that minimizes the variance of cost of local portfolio
adjustments, which we will call the local optimal strategy. It is well known
that, when the discounted price process is a martingale, the local optimal
strategy is the same as the optimal one. However, the Black-Scholes delta
hedging strategy is still very popular among practitioners. In a different
model setting than the Black-Scholes one, this choice is not theoretically
coherent, but it can nevertheless be followed by using the Black-Scholes im-
plied volatility of the option to be hedged. Another feasible alternative is to
compute the model-based delta simply as the derivative of the price of the
derivative with respect to the underlying. As pointed out by Tankov [22],
in a model with jumps this choice is not optimal, since it does not take into
account the risk coming from the jumps, but only that coming from infin-
itesimal movements. Moreover, in some models, it may not even exist. A
sensible solution is again to compute the optimal strategy.

In our model setting, for derivatives with integral representation, we are in
the position of using results of Hubalek et al. [16] and Angelini and Herzel [2]
to compute the expectation and the variance of the hedging error for all the
strategies described above and to compare their performances. Moreover, we
are able to analyze the effect on such quantities due to a model mispecification
in the following sense. We fix a set of model parameters to compute the price
of the claim and the hedging strategy; this set may be thought as obtained
through a model calibration to option prices. Then we let the market evolve
following the same model, but with different sets of parameters. This should
give a measure of the robustness of the model for each given strategy and
provide some insight on the influence of quantities such as the standard
deviation, the skewness and the kurtosis of the underlying.

The rest of the paper is structured as follows. In the following section we
set up the theoretical framework: first we give the concept of integral repre-
sentation of payoffs and the general model setting; we also briefly describe
the particular Lévy models under analysis, reporting, for convenience of the
reader, their characteristic functions. Then we show how to perform pric-
ing and computation of various relevant hedging ratios, like the model-delta,
the Black-Scholes delta and the local optimal ratio. Finally, we define the
hedging error and review results of [2] to be used in the sequel. Section 3
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is devoted to the illustration of the FFT machinery. We start with a review
of the pricing algorithm; we then describe how to adapt the algorithm to
the computation of expected value and variance of the hedging error. In
Section 4 we show some applications: after some remarks about numerical
implementation, we give an asymptotic analysis for models like NIG and
Merton models, as the number of trading dates increases; then we perform a
robustness test. Section 6 draws some conclusions and gives hints for future
research.

2 The Theoretical Framework

2.1 Integral representation of payoffs

In their works Hubalek et al. [16] and Angelini Herzel [2] consider European
derivative securities on the stock S with maturity T = N∆t and payoff
H = f(SN), with the function f : (0,∞) → IR of the form

f(S) =

∫
SzΠ(dz). (2.1)

Π is a complex measure on a strip in the complex plane {z ∈ C : R′ ≤
Re(z) ≤ R}, where R′ and R are real and are defined in such a way that
E[e2R′X1 ] < ∞ and E[e2RX1 ] < ∞.

We remark that the form of the payoff function is that of an inverse
Laplace transform of the measure Π. For example, taking R = R′ means
to perform an inverse Laplace transform on a straight line parallel to the
imaginary axis. Let us note that this transformation, apart from a scaling
factor is nothing but the Fourier transform on the real line. For instance,
the payoff of an European call option with strike price K > 0 and maturity
T , is (S −K)+ and it can be written as

(S −K)+ =
1

2πi

∫ R+i∞

R−i∞
Sz K1−z

z(z − 1)
dz, (2.2)

for an arbitrary R > 1 and for each S > 0. Many payoffs can be represented
as inverse Laplace (Fourier) transform: to cite the most important ones, we
mention the put, the power call and the digital option [16]. In [15] Hubalek
provides integral representation of many derivatives, even path-dependent or
depending on multiple assets.
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2.2 Model setting

Let (Ω,F , (Fn)n∈(0,1,...,N), P ) denote a filtered probability space and let X =
(Xn)n=0,1,...,N be a real-valued process with independent and stationary in-
crements satisfying:

1. X is adapted to the filtration (Fn)n∈(0,1,...,N),

2. X0 = 0,

3. ∆Xn = Xn −Xn−1 has the same distribution for n = 1, . . . , N ,

4. ∆Xn is independent of Fn−1 for n = 1, . . . , N .

We model the price process S = (Sn)n=0,1,...,N of a non dividend paying
stock at time t = n∆t, as follows

Sn = S0e
Xn . (2.3)

We assume that E[S2
1 ] < ∞ so that the moment generating function m(z) =

E[ezX1 ] is defined at least for complex z with 0 ≤ Re(z) ≤ 2. Moreover, we
exclude the case when S is a deterministic process.

Let Xt be a Lévy process (see for example [22] or [26]). It is known
that the Lévy-Khintchine theorem provides an integral representation of the
characteristic function of Xt of the form

φXt(u) = E[eiuXt ] = etψX(u), (2.4)

where ψX(u) is the characteristic exponent:

ψX(u) = iuµ− 1

2
u2σ2 +

∫

R0

(eiux − 1− iux1|x|<1)ν(dx). (2.5)

Here µ is a constant drift, σ2 describes the constant variance of the contin-
uous component of the the Lévy process and ν(dx) is the Lévy density that
represents the arrival rate for jumps of size x.

The characteristic function of the underlying process St can be written
in terms of that of the Lévy process Xt in the following way:

φSt(u) = eiu log(S0)φXt(u).

In a risk adjusted martingale measure, the discounted price is a martin-
gale, while the drift µ = r − log(E[eX1 ]) can be obtained simply by setting
the expected value of Sn equal to the forward value E[Sn] = S0e

rn∆t, where r
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is the risk free interest rate. Notice that, differently from other related works
[2, 16, 14], where r is set to zero, or equivalently the price process is intended
discounted, in our work we prefer to make the dependence on the risk free
interest rate explicit.

Now we describe in detail the Lévy models we analyze. The drift part is
the same for all the models and we do not write it.

1. The Black-Scholes model for which Xt = σWt is a pure diffusive con-
tinuous process with σ a constant deterministic volatility and Wt the
Wiener process. The characteristic exponent is given by

ψX(u) = −1

2
u2σ2.

2. The Merton’s Jump diffusion model combines to the Brownian motion
a compound Poisson process. Thus Xt = σWt +

∑Nt

i=1 Yi, with N a
Poisson process with mean arrival rate λ and Yi a sequence of indepen-
dent random variables normally distributed with mean µJ and standard
deviation σJ . The characteristic exponent is

ψX(u) = −1

2
u2σ2 + λ

(
eiuµJ− 1

2
u2σ2

J − 1
)

.

The Merton’s model exhibits a finite activity, meaning that the process
generates a finite number of jumps within any finite time interval.

3. In the Variance Gamma (VG) model [18, 19], Xt is a pure jump process
with an infinite activity and a finite variation. It can be obtained sub-
ordinating a Brownian motion of volatility σ and drift θ with an inde-
pendent Gamma process Γν

t [13] of variance rate ν: Xt = θΓν
t + σWΓν

t
.

The characteristic function is computed in [19] and its characteristic
exponent is:

ψX(u) = −1

ν
log

(
1 +

u2σ2ν

2
− iθνu

)
.

4. The Normal Inverse Gaussian (NIG) [4, 7] is obtained subordinating a
Brownian motion of volatility σ and drift θ with an independent Inverse
Gaussian process Iν

t , of variance rate ν: Xt = θIν
t + σWIν

t
. The NIG

process is a pure jump process and its characteristic function is:

ψX(u) =
1

ν
− 1

ν

√
1 + u2σ2ν − 2iuθν.
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This process has an infinite activity but differently from the VG one it
is an infinite variation process.

A very attractive feature of VG and NIG models is that they depend only
on three parameters (σ, θ, ν) and these parameters are related in a simple way
to the variance, skewness and kurtosis of the log-return distribution implied
by the process. And in fact while the variance for both the models is given by
a linear combination of σ2 and θ2ν, the sign of skewness is given by the sign
of θ, while the percentage excess of kurtosis is given by ν. So for example, if
θ = 0, such distribution is symmetric, as the skewness is zero, the annualized
variance is simply σ2 and the annualized percentage excess of kurtosis is just
ν both for VG and NIG models. On the other hand, if θ is different from
zero σ, θ and ν combine themselves in a non linear but still polynomial way
to give the variance, skewness and kurtosis of the distribution, and thus they
can no more be thought as three independent parameters in determining the
desired moments.

For what concern the Merton model, the parameters are related to the
moments of the log-return distribution in a way for which it is not easy to
separate the effect of each single parameter on them, even if µJ = 0, for
which the skewness of the distribution is zero.

2.3 Pricing and hedging

Starting from the integral representation of payoff (2.1), one can compute
the price of the claim at time t = n∆t just performing the expectation under
a risk neutral probability measure, conditional to Fn, and discounting at the
risk free rate

Cn = e−r(N−n)∆tEn

[∫
Sz

NΠ(dz)

]
.

Exchanging the expected value integral with the Laplace integral by the
Fubini’s theorem and using the fact that the log-returns are i.i.d. variables,
one gets the integral representation of the price value:

Cn = e−r(N−n)∆t

∫
Sz

nm(z)N−nΠ(dz).

We remark that the previous price formula holds for any model satisfying
the conditions of Section 2.2 and whose moment generating function m(z) is
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known 1.
Now we can compute some interesting hedge ratios. From the above

pricing formula, it is natural to take the derivative with respect to Sn

∆n+1 =
∂Cn

∂Sn

= e−r(N−n)∆t

∫
zm(z)N−nSz−1

n Π(dz).

This is the delta within the model. As pointed out by Tankov [22], in a model
with jumps this choice is not optimal, since it does not take into account
the risk coming from the jumps, but only that coming from infinitesimal
movements. Analogously, one can compute other Greeks within the model.

A better choice would be the local optimal hedging ratio, that is the strat-
egy which minimizes the variance of the next period costs and whose formal
definition can be found in [21]. Such a strategy is computed in Theorem 2.1
of [16] in the case of r = 0. Following [21], we performed the computation of
the ”local optimal” strategy also in the case of r 6= 0 obtaining:

ξn+1 = e−r(N−n)∆t

∫
f ξ

n+1(z)Sz−1
n Π(dz), (2.6)

where f ξ
n+1(z) = er∆tg(z)h(z)N−n−1, with

g(z) =
m(z + 1)−m(1)m(z)

m(2)−m(1)2
,

h(z) = m(z)− (m(1)− er∆t)g(z).

The most used hedging strategy is the Black-Scholes delta. Given the
market price of the claim to be hedged, or its implied volatility σ̄, the delta
of the position in the underlying from time (n)∆t to time (n+1)∆t is simply
given by:

∆bs
n+1 =

∂Cbs
n

∂Sn

= e−r(N−n)∆t

∫
zmbs(z)N−nSz−1

n Π(dz),

where

mbs(z) = e

��
r− σ̄2

2

�
z+ σ̄2

2
z2
�
∆t

is the moment generating function for the Black-Scholes model.

1In fact the formula may be easily generalized to a wider class of models like Affine
models and stochastic volatility models
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Another interesting strategy is the ”improved-delta” strategy provided by
Wilmott in [25] in which the delta position is corrected by a term proportional
to the gamma of the option:

∆w
n+1 = ∆bs

n+1 + ∆t(µ− r +
1

2
σ̄2)Γbs

n+1Sn,

where the gamma function is the second derivative of Cbs
n with respect to Sn

and both the Greeks delta and gamma are computed in the Black-Scholes
framework, with volatility σ̄. Note the presence of the drift µ of the evolution
of the underlying price in the real world.

As for the delta strategy, one can give an integral representation of the
improved-delta Wilmott’s strategy, in terms of the Black-Scholes moment
generating function and of the complex measure Π(dz) relative to the claim:

∆w
n+1 = e−r(N−n)∆t

∫
Sz−1

n (zmbs(z)N−n +

∆t(µ− r +
1

2
σ̄2)z(z − 1)mbs(z)N−n)Π(dz),

Let us remark that, in principle, the delta and the improved-delta strate-
gies are conceived for a log-normal process. For a general dynamic of the
underlying, our approach is that of setting the volatility to the market im-
plied volatility σ̄. Another approach could be to choose the parameter µ and
the volatility σ̄ in order to fit mean and variance of the log-returns at a given
date.

Notice that the strategies we considered up to now are of the form:

ϑn = e−r(N−n+1)∆t

∫
ϑ(z)nΠ(dz), (2.7)

with ϑ(z)n = fϑ
n (z)Sz−1

n−1, where fϑ
n (z) is a function of the complex variable

z which does not contain Sk for any k. A hedging strategy which satisfies
condition (2.7) is said to be compatible with a contingent claim whose payoff
function satisfies condition (2.1). This definition is given adding a discount
factor depending on r, in analogy with the case of a ∆bs-strategy, to the
definition (2.1) in [2].

Better than the local optimal strategy, one could try to minimize the ex-
pected square value of the total hedging error given a fixed initial endowment
c. It is well known that such a strategy ξ(c) exists [21] and it is computed
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together with its variance in[16] using the same approach as here, namely
using the approach of Laplace transform. Such an optimal strategy is the
most important example of a strategy that is non-compatible. We recall that,
if the discounted price process is a martingale, then this coincides with the
local optimal strategy and it is therefore compatible.

2.4 Measurement of hedging error

Let ϑ = (ϑn), for n = 1, . . . , N , be a hedging strategy. The random variable
ϑn is interpreted as the number of shares of the underlying asset held from
time (n − 1)∆t up to time n∆t. Suppose moreover that the strategy is an
admissible one, that is a predictable process such that the cumulative gains
are square-integrable [16, 21].

The cumulative gains in the presence of a money market account can be
simply obtained by capitalizing (or discounting) up to the same date at the
risk free interest rate all the cash-flows deriving from the hedging strategy.
We choose to capitalize the cash-flows up to the date of maturity of the claim
to hedge. Thus the cumulative gains from the strategy at time T = N∆t is:

GN(ϑ) =
N∑

k=1

ϑke
r(N−k+1)∆t(Ske

−r∆t − Sk−1),

and the resulting final hedging error is:

ε(ϑ, c) = H − erT c−GN(ϑ),

where c is the price at time t = 0 of the claim whose payoff at time T is H.
Let us remark that the strategy ϑ determines a unique self-financing port-

folio. The hedging error ε(ϑ, c) is the net loss-gain one can get at maturity
if one starts with the initial capital c and follows the strategy.

We suppose that the strategy ϑ = (ϑn) is compatible with the given
contingent claim. For such strategies, Angelini and Herzel in Theorem (3.1)
of [2], computed the expected value E[ε(ϑ, c)] and the variance var(ε(ϑ, c))
of the error. For convenience of the reader, here we give an extension of their
results to the case of a risk free interest rate different from zero:

Theorem 2.1 Let ϑ be a strategy which is compatible with a contingent claim
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H and let c be its initial value, then

E[ε(ϑ, c)] =

∫
Sz

0

[
m(z)N − (e−r∆tm(1)− 1)

N∑

k=1

fϑ(z)km(z)k−1

]
Π(dz)−erT c

(2.8)
and

E[ε(ϑ, 0)2] =

∫ ∫
Sy+z

0 (v1(y, z)− v2(y, z)− v3(y, z) + v4(y, z))Π(dz)Π(dy),

(2.9)
where

v1(y, z) = m(y + z)N ,

v2(y, z) =
N∑

n=1

fϑ
n (y)m(y + z)n−1m(z)N−n(e−r∆tm(z + 1)−m(z)),

v3(y, z) =
N∑

n=1

fϑ
n (z)m(y + z)n−1m(y)N−n(e−r∆tm(y + 1)−m(y)),

v4(y, z) = (e−r∆tm(2)− 2e−r∆tm(1) + 1)
N∑

n=1

fϑ
n (y)fϑ

n (z)m(y, z)n−1 +

+ (e−r∆tm(1)− 1)
∑
j<n

N∑
n=2

fϑ
j (y)fϑ

n (z)m(y)n−1−jm(y + z)j−1 ×

×(e−r∆tm(y + 1)−m(y)) +

+ (e−r∆tm(1)− 1)
∑
j<n

N∑
n=2

fϑ
n (y)fϑ

j (z)m(z)n−1−jm(y + z)j−1 ×

×(e−r∆tm(z + 1)−m(z)).

Therefore, the variance of the hedging error is

var(ε(ϑ, c)) = var(ε(ϑ, 0)) = E[ε(ϑ, 0)2]− E[ε(ϑ, 0)]2.

Let us remark that the expectations in the previous formulas are intended
under a certain probability measure. In principle, the probability measure to
consider depends on the problem at hand. For pricing purposes one would
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obviously need the martingale measure, while it would seem natural to com-
pute expectations of hedging errors under the ”objective” measure. Following
[8], we will consider all the expectations computed under a risk neutral mea-
sure rather than under an objective measure. The first can be thought of
as obtained from a calibration process and thus extracted from the quoted
option prices. The ”objective” measure can be retrieved from historical data
matching the moments or the quantiles of distribution of log-returns. Un-
der a martingale risk-adjusted measure, the expectation of the hedging error
should reflect future uncertainty up to the maturity of the option and this
is just the case for a risk adjusted measure drawn from the quoted option
prices after a calibration procedure [1, 8, 9, 10]. In fact, such a measure is
intended to discount all the market views of future scenarios. Moreover, as
pointed out in [1], the risk-adjusted martingale measure should reflect not
only the future probabilities of occurrence, but also the risk premia attached
to asset and contingent claim prices from the market.

We shall apply the above results to Lévy models with pure jumps, as
NIG and VG, and to the jump-diffusion Merton process, performing the
computation with a Fast Fourier transform machinery.

3 Fast Fourier Transform (FFT)

In this section we are interested in performing a computation of the expecta-
tion and variance of hedging error for different strategies using a Fast Fourier
Transform (FFT) approach. Carr and Madan in their work [6] showed how
to determine the call and put option prices using the FFT algorithm. Their
approach assumes that the characteristic function of the density in the risk
neutral world is known analytically, and thus it can be applied to a large
class of models, from the Lévy models to stochastic volatility ones. More-
over, the FFT approach to derivative pricing is fast and accurate and allows
to perform a pricing in real time, even for a book with thousands of options.
These features make the FFT technique a fundamental instrument today,
especially for financial institutions, where the everyday needs of calibration
on different financial instruments and of reevaluating books with many deriv-
atives, require a fast and accurate pricing machinery. In this work our main
motivation is to extend the FFT technique also to the analysis of hedging
error.
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3.1 A review of FFT applied to option pricing

Let us rewrite the Laplace representation for the call payoff (2.2) in terms of
an inverse Fourier transform. Performing a translation followed by a rotation
in the complex plane

z → iv + R (3.10)

and putting α = R − 1, just to make uniform our notations with the ones
in [6], one can rewrite the payoff of the call in terms of an inverse (in the
variable k) Fourier transform

(S −K)+ =
e−kα

2π

∫ ∞

−∞
e−ikv eis(v−i(α+1))

(iv + α)(iv + α + 1)
dv, (3.11)

where s = log(S) and k = log(K) are respectively the log-value of S and the
log-strike and where we consider the payoff as a function of the strike rather
then of the stock price. Then, performing an expectation in a risk neutral
world of the payoff (3.11) as in [2] and discounting with the risk free rate,
one can obtain the price of the call at time t = n∆t:

Cn =
e−k̃α

π

∫ ∞

0

e−ik̃vχ(v)dv, (3.12)

where

χ(v) =
e−r(N−n)∆tesnφN−n(v − i(α + 1))

(iv + α)(iv + α + 1)
, (3.13)

in which one can recognize the valuation formula of Carr and Madan in [6]
written for k̃ = k − sn = log(K/Sn). The characteristic function of the
underlying process φN−n(u) is computed at time (N − n)∆t and is intended
under a risk neutral density.

The factor e−k̃α can be viewed as a dampen to make the price call function
of k square-integrable over the entire real line [6].

Just for review, let us sketch the fundamental steps to compute the in-
tegral (3.12) with an FFT technique. The FFT is an algorithm to compute
efficiently sum of the form:

Γ(l) =
M∑

j=1

e−i 2π
M

(j−1)(l−1)X(j) (3.14)
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for l = 1, . . . , M . M has to be a power of 2. Performing a trapezoid rule
in (3.12) one can obtain the desired sum simply setting vj = η(j − 1), k̃l =
−b + λ(l − 1) and

λη =
2π

M
. (3.15)

where η is the lattice spacing of the integration variable and Mη becomes the
effective upper limit of integration. X(j) is the integrand (3.13) computed
in vj and multiplied by the grid size η. Note that the summation gives a
vector of results for a vector of log-strikes equally spaced with lattice spacing
λ, centered around k̃ = 0 and running from −b to b with b = Mλ/2: k̃l =
(l − 1 − M/2)λ for l = 1, . . . , M . The prices are then obtained by scaling
the vector of results, after the FFT summation has been performed, with a
strike dependent factor

C(k̃l) ≈ e−αk̃l

π
Γ(l),

for each l = 1, . . . ,M .
The algorithm depends on the two parameters, M and η, and one has to

find the right trade-off between a finer grid for integration and a good grid
around the at the money for the strike dimension as the two lattice steps
are related by formula (3.15). Introducing some Simpson’s weights into the
summation, one can obtain an accurate integration even with a larger value
of η, thus leaving the possibility of a finer grid in the strike dimension. For
more details see [6].

Recently, Chourdakis [11] adopted the fractional Fourier transform (FRFT)
of Bailey and Swartztrauber [3] for computing option prices. This algorithm
allows to make independent the integration grid from the log-strike one. An
N -point FRFT can be implemented using three 2N -point FFT. Thus this
technique is more accurate but requires more computational time.

3.2 Expectation value and Variance of hedging error
with FFT

In their work Angelini-Herzel [2] compute the expectation value and the vari-
ance of the hedging error, for any compatible strategy ϑ, and for a general
Lévy model driving the underlying. Their results are reported in Theorem
(2.1). Our aim here is to rewrite that formulas in terms of a Fourier repre-
sentation and then to reduce the integrals to suitable summations that can
be computed with an FFT algorithm.
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To this goal, we perform the transformation given in (3.10). Moreover,
we explicit the dependence on the risk free interest rate. Remember that s0

and k are the log-values of the underlying spot price at time t = 0 and of
the strike and k̃ = log(K/S0). Let ϑ be a strategy which is compatible with
a contingent claim H as in (2.7) and let c be its initial value. Moreover let

Π(dz) be of the form Π(dz) = K1−zΠ̃(z)dz, with Π̃(z) not depending on K.
Indeed the following results are valid also if the dependence on K is of the
form Kn−z, with n an integer (see [16]), but in that case the formulas must
be multiplied by the suitable power of S0.

The expected value of the hedging error at the maturity of the option can
be written as

E[ε(ϑ, c)] =
e−αk̃

π

∫ ∞

0

e−iuk̃χ(iu + 1 + α)du− erT c, (3.16)

where the integrand is:

χ(z) = es0

[
m(z)N − (e−r∆tm(1)− 1)

N∑
n=1

fϑ
n (z)m(z)n−1

]
Π̃(z). (3.17)

Some remarks have to be made before computing the variance. First
of all the expectation is a Fourier transform in the normalized log-strike
variable k̃ of a kernel of integration χ. The integral is performed only on the
positive real axis because the expectation of hedging error has to be a real
number and this imposes the real part of the function χ to be symmetric,
while the imaginary part is antisymmetric. The parameter α depends on the
payoff studied and for a call is the usual dampen one can find in the integral
representation of the price (see [6]).

The variance of the hedging error does not depend on the initial endow-
ment c that is a deterministic constant, and thus we can compute it for
c = 0:

var(ε(ϑ, c)) = var(ε(ϑ, 0)) = E[ε(ϑ, 0)2]− E[ε(ϑ, 0)]2,

where

E[ε(ϑ, 0)2] =
e−k̃1α1−k̃2α2

(2π)2

∫ ∞

−∞

∫ ∞

−∞
e−ik̃1u1−ik̃2u2K(iu1+α1+1, iu2+α2+1)du1du2,

(3.18)
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and the integration kernel is

K(z1, z2) = e2s0 [v1(z1, z2)− v2(z1, z2)− v3(z1, z2) + v4(z1, z2)] Π̃(z1)Π̃(z2),
(3.19)

with functions v1, v2, v3, v4, given in Theorem 2.1.
Invoking the trapezoid rule, we can approximate the integrals in (3.16)

and (3.18) by sums. Let us start with the expectation value. The integral in
(3.16) reduces to the following sum

E[ε(ϑ, 0)] =
e−αk̃l

π

M∑
j=1

e−i 2π
M

(j−1)(l−1)X(j) (3.20)

for j, l = 1, . . . , M . The vector X(j) is the integrand (3.17) computed in
zj = iuj + 1 + α, with uj = η(j − 1) and multiplied by the grid size η. The
resulting sums are intended computed at the log-strikes k̃l = (l− 1−M/2)λ
where ηλ = 2π/M . To get a better precision without reducing the grid size
η, one can add the Simpson’s weights. The vector to be transformed with
FFT algorithm is

X(j) = χ(iuj + 1 + α)
η

3
[3 + (−1)j − δj−1], (3.21)

where δn is the Kronecker delta function that is unity for n = 0 and zero
otherwise.

For what concern the integral (3.18), remember that a two-dimensional
FFT computes for any two-dimensional complex input array X(j1, j2), with
j1,2 = 1, . . . ,M , the output array

Γ(l1, l2) =
M∑

j1=1

M∑
j2=1

e−i 2π
M

((l1−1)(j1−1)+(l2−1)(j2−1))X(j1, j2), (3.22)

for l1,2 = 1, . . . , M . The trapezoid rule in this case needs to define the
following M ×M grid {(u1,j1 , u2,j2) : j1, j2 = 1 : . . . , M}, with

u1,j1 = (j1 − 1−M/2)η u2,j2 = (j2 − 1−M/2)η,

while the arrival strike grid is {(k̃1,l1 , k̃2,l2) : l1, l2 = 1 : . . . , M}, with

k̃1,l1 = (l1 − 1−M/2)λ k̃2,l2 = (l2 − 1−M/2)λ.
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As usual the strike grid and the integration grid are related by relation ηλ =
2π/M .

The trapezoid rule with the above conditions gives for the integral (3.18)
the following formula:

E[ε(ϑ, 0)2] ≈ e−2αk̃l

(2π)2
Γ(l, l), (3.23)

where Γ(l, l) is just the diagonal part of the two-dimensional array Γ(l1, l2)
that is computed performing a two-dimensional FFT algorithm like in (3.22),
with the array X(j1, j2) equal to

X(j1, j2) = (−1)(j1−1)+(j2−1)K(iu1,j1 + 1 + α1, iu2,j2 + 1 + α2)η
2,

and the kernel K defined in (3.19).
Notice that the computation for both the expectation and the variance

obtained with the FFT machinery leads to results for a whole vector of strikes.

4 Applications

4.1 Numerical Implementation

We implemented the code in MATLAB, using the MATLAB functions ”fft.m”
and ”fft2.m” to compute respectively the one dimensional and two dimen-
sional Fourier transform. We tested our machinery for three different choice
of the number of FFT points M : 512, 1024, 2048, while keeping the grid
integration size fixed to the value η = 0.25. Moreover we tested also the
case M = 2048 with η = 0.125. The tests were performed for different
choices of the model parameters and for all the models of our interest (BS,
VG, NIG, Merton). Our choice of M = 1024 and η = 0.25 was the best
trade-off between accuracy from one hand and no much computational time
from the other hand. This choice corresponds to a log-strike spacing of
λ = 2π/(ηM) = 0.0245, that in turns gives a strike vector around the at the
money with a spacing of about 2 ÷ 3 percent points. The relative accuracy
obtained is at least of order 10−4 ÷ 10−3 for the variance. For strikes out of
the money (K/S0 ≈ 1.15) and pure jumps model like NIG or VG with ex-
treme values of the parameters, the accuracy of the variance can be reduced
and one should need a finer integration grid. The tests were performed com-
paring our results with the Laplace based machinery developed by Angelini
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and Herzel in [2], from one hand. On the other hand, we verified that the
results do not change, ranging the value of M and η within the values given
above.

Parameter α can be fixed to α = 1.5. This is a good value both for
pricing purpose and for the aim to compute variance and expectation of
hedging error within a wide class of models including the ones considered in
this work. We tried also to move α a bit around the value of 1.5 in order
to see the sensibility of results to its value and we noted that the results
are quite stable. Maybe one should try to span a wider range for α but our
experience with pricing suggests that 1.5 is an appropriate value for α.

4.2 Asymptotic analysis

We want to compute the mean E[ε] and the variance var[ε] of the error
produced to hedge an European call when trading in discrete time using the
FFT machinery. For the reasons discussed in Section 2.4, in all the following
applications, we have to think of the expectations in (3.16) and (3.18) as
computed under a risk neutral measure.

As a first analysis we want to perform a computation to observe the
behavior of the variance of the hedging error as the number of trading dates
increases. In the case of the Black-Scholes model and using a standard delta
strategy to hedge the call, some approximated formulas for the variance of the
discretization error are known. In [24] Toft gives an approximation formula
involving the option’s gamma at time t = 0, valid as the number of trading
dates N goes to infinity. Another approximation formula that is well known
by practitioners is provided by Kamal and Derman [17]. In their formula,
the variance of hedging error is proportional to the squared option’s vega
computed at time t = 0. In both formulas the variance goes to zero as
1/N . In [2] it is given an appropriate analysis of the validity of such formulas
comparing the approximated results with the exact results obtained in the
general framework of Laplace representation developed in [16] and [2].

It is well known that in the presence of jumps in the stock prices, the
market is no longer complete. In such a case, even if the hedging portfolio
were re-balanced continuously, the hedging error would not be zero. Thus in
the presence of jumps there are two kinds of hedging errors: the first is due to
the discrete nature of hedging while the second is due to the incompleteness
of the market. Tankov and Voltchkova show in [23] that while the first kind of
error is dominated by the diffusion part of the price process, the second one is
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due to the jumps. In [23] the authors compute the asymptotic distribution of
the hedging error due to its discrete nature for a general Lévy jump diffusion
model.

In our work we analyze in the framework of FFT the asymptotic behavior
of the variance of hedging error for the following models: Black-Scholes, VG,
NIG, Merton. The issue of hedging in the Black-Scholes context was already
extensively studied for example in [2]. Moreover the distribution properties
of the VG process and the NIG process are very similar and in fact they
lead to the same kind of results. For such reason we decide to show only the
results for the NIG model, that is an infinite activity and infinite variation
pure jump process, and for the Merton model that is a jump-diffusion process
of finite activity.

For both Merton and NIG models we show the variance of error produced
in hedging an at the money call as the number of trading dates increases.
The call has a maturity T = 0.25 while the spot value of the underlying is
S0 = 100. Moreover the risk free interest rate is r = 0.04. We performed the
computation for N = [1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 20, 25, 30, 40, 50].

The model parameters are calibrated to the call prices. Indeed at first we
choose the model parameters and then we compute the call prices. In such a
way the model results perfectly calibrated to the prices. Obviously we have
different call prices for Merton and NIG models but that is not important for
us as we are interested in comparing different hedging strategies rather than
different models. The model parameters are [σ, θ, ν] = [0.2,−0.1, 0.1] for the
NIG model and [σ, λ, µJumps, σJumps] = [0.2, 1,−0.1, 0.05] for Merton model.
Thus both the distributions have skewness and excess of kurtosis.

Let us remark that we show only the variance of error and not the expec-
tation because the computation has been performed under a risk adjusted
martingale measure and therefore the expectations are zero, regardless of the
strategy.

In the first panel of Figures 1 and 2 we compare, both for Merton and
NIG models, the asymptotic behavior of different hedging strategies when one
hedges an at the money (ATM) call with maturity T = 0.25. We consider
the Black-Scholes delta strategy computed at the ATM implied volatility.
Then we show the Wilmott ”improved delta” strategy, the ”local optimal”
one (2.6) and the model based delta strategy.

First of all one can note that for both models there is a residual hedging
error due to the incompleteness of the market in the presence of jumps. The
residual error for the ”local optimal” strategy, in the case of NIG model and
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for N = 50, has a variance about equal to 4.24 that is of the same order
of the call price C ' 4.34. In the Merton case such a residual error has a
variance of ' 1.94 to be compared to the price C ' 4.99.

For both the NIG and the Merton models, the Wilmott ”delta improved”
strategy and the BS delta strategy are almost similar and not distinguishable
on the Figures. In the Merton case, the ”Local Optimal” strategy outper-
forms the Black-Scholes delta strategy with a variance smaller of about the
10 percent. On the contrary the model based Merton delta shows a variance
slightly worst than the Black-Scholes delta one.

Also in the NIG case, the model based NIG delta is the worst strategy,
showing a variance of about the 5 percent greater than the Black-Scholes’s
one and of about the 12 percent greater then the ”local optimal” one.

Notice that for both models, the model based delta strategy is the one
with the worst performance. On one hand, it could seem natural that if one
calibrates the model on the market prices and then makes a pricing using
that model, also the delta hedging has to be carried out in that model. Nev-
ertheless our analysis has shown that even the Black-Scholes delta strategy
at the implied volatility performs better and thus one should investigate a
bit more about the meaning of a model based delta.

We remark that our FFT machinery allows us to compute the desired
quantities, and therefore the variance of hedging error, for different values of
strikes, the spacing depending on the choice of the algorithm parameters. As
already said, our spacing around the ATM is about 2÷ 3 percent points. In
the second panel of Figures 1 and 2 we show the dependence on the strikes
of the variance of the local optimal hedging strategy, for different values
of the number of trading dates. We show the strikes from K ' 86.31 to
K ' 115.87, passing trough the ATM value that is K = 100. We also show
the corresponding call prices.

A natural quantity to which compare the standard deviation of hedging
error is the call price. We note that the variance of hedging error reaches
the maximum value for at the money strikes but, if compared with the call
prices, the variance out of the money (OTM) has a greater relative weight.
So for example for N = 50, in the case of the ”local optimal” strategy, and
for the case of NIG model, one has an ATM call price C(K = 100) ' 4.34
with the corresponding standard deviation of hedging error about equal to
2.06 while the price for an OTM strike is C(K = 110.32) ' 0.99 to which
corresponds a standard deviation of the hedging error of ' 1.69. Therefore
while the standard deviation can be of the same order of the call price ATM,
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in the OTM region, the standard deviation can be also greater than the price.
The same thing happens for the Merton model where instead the hedging

error is lower. Thus for example the ATM standard deviation is ' 1.39 for a
call price C(K = 100) ' 4.99 while the standard deviation for a call struck
at K = 110.32 is about 1.01 to compare to the price C(K = 110.32) ' 1.36.

4.3 Robustness to the model parameters

In this section we perform an analysis of sensitivity of the hedging error to
the realized model parameters in the following sense. We start with a vector
%0 of model parameters and compute option prices and hedging strategies;
such a vector may be thought as obtained through a calibration procedure.
Then we let the underlying evolve under the same model, but with a different
set of parameters %. For example, in the case of the Black-Scholes model,
this means that one performs the delta hedging at the implied volatility but
the underlying moves with a different realized volatility (see for example [2]
for such an experiment).

In our work we carry out this kind of analysis for NIG, VG and Merton
models but we report only the results for Merton and NIG models as the VG
case is very similar to the NIG one. Moreover we chose to analyze only the
case of the ”local optimal” strategy (2.6) (continuous line in the Figures 3,
4) performed at the calibrated parameters %0 and the implied Black-Scholes
delta strategy (the dotted-line in the Figures).

Let us notice that the expectation of hedging error in such a case does not
depend on the strategy but it is simply the difference between the expectation
of the payoff computed with the calibrated distribution and the expectation
computed with the realized distribution. This is true as the discounted price
process of the underlying is a martingale.

Figure 3 shows the dependence of the standard deviation of the hedging
error

√
(var[ε]) on the realized parameters for the NIG model. The calibrated

parameters are [σ0, θ0, ν0] = [0.2, 0, 0.2]. We chose to represent the results
for three different moneyness K1 ' 90.65, K2 = 100, K3 ' 110.32 to which
correspond the NIG prices C1 ' 12.58, C2 ' 6.36, C3 ' 2.57. The spot value
of the underlying is S0 = 100, r = 0.04 and the maturity of the option is
T = 0.5. The number of hedging dates is N = 12, meaning that the portfolio
is rebalanced every two weeks.

We suppose the underlying is driven by a NIG process with a realized
set of parameter [σ, θ, ν] which is different from the calibrated one. The
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three panels in Figure 3 represent the standard deviation of hedging error
respectively to σ when θ = θ0 and ν = ν0 (Panel 1), to θ when σ = σ0 and
ν = ν0 (Panel 2), and to ν when σ = σ0 and θ = θ0 (Panel 3).

The reason why we chose to analyze the case of θ0 = 0 is because the
model parameters are directly related to the moments of the distribution of
returns. Indeed, for such a value the skewness of the log-return distribution
implied by the process is zero. In that case, the variance is given just by
σ2 while the percentage excess of kurtosis is exactly ν. In other words,
moving σ, while holding fixed the other parameters, affects only the realized
volatility. Ranging ν around ν0 means to have a realized excess of kurtosis
different from the one implied by the quoted option prices, but a realized
volatility and a realized skewness (actually zero) equal to those implied from
the market. Movements of the parameter θ are the most interesting as they
introduce a realized skewness and a modification of both realized variance
and kurtosis.

First of all notice that the two different strategies considered in our analy-
sis (compare the dotted line and the continuous line) lead to results that are
almost similar if compared to the differences deriving from a wrong choice of
the parameters. Therefore, as already noted in [2], a wrong choice of the pa-
rameters has a stronger impact on the hedging performance than the choice
of the particular strategy adopted.

From Figure 3 we see that the hedging error is strongly influenced by
the difference from the realized and the implied volatility. In fact a mispec-
ification of 0.01 for σ leads to a variation in

√
(var[ε]) of about 0.2, while

the same variation of 0.01 in θ or ν gives a variation on
√

(var[ε]) of about
0.05÷0.07. Notice that the standard deviation of hedging error is fairly linear
in σ and also in ν, apart from small values of ν. Moreover, the first and the
second panel of Figure 3 show that the performance of the hedging can ex-
ploit the fact that the realized variance and percentage excess of kurtosis are
smaller than those used for the construction of the strategy. In contrast with
this fact, from the second panel it emerges that a realized skewness different
from zero, positive or negative, has a negative impact on the performance of
hedging.

We performed the same kind of experiment for the Merton model. We
show our results in Figure 4. The parameters of the model are [σ0, λ0, µ

J
0 , σJ

0 ] =
[0.2, 1, 0, 0.1] to which correspond call prices C1 ' 13.08, C2 ' 7.23, C3 ' 3.25
at the usual strikes K1 ' 90.65, K2 = 100 and K3 ' 110.32. It is not possible
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in the Merton case to separate the effect of kurtosis and variance as in NIG.
And in fact, even if the skewness is zero, as µJ

0 = 0, the variance and excess
of kurtosis move together and we are not able to separate the two effects
simply moving the parameters independently.

In the case of Merton the variations due to a mispecification of all the
parameters but λ, are of the same order, that is 0.1 ÷ 0.2 for a variation of
one point percent of the single parameter. The impact of the parameter λ
is weaker of about two orders. The introduction of some realized skewness,
moving µJ away from µJ

0 , causes a behavior similar to that in the NIG model,
namely impacting negatively on the performance of the hedging error, but
with a stronger effect.

5 Conclusion

We studied the problem of hedging a contingent claim in incomplete mod-
els, when the hedging portfolio is re-balanced at a set of discrete dates.
In particular, we are interested in measuring the final hedging error of a
given strategy. We started with contingent claims with payoffs having an
integral representation to compute the expectation and the variance of the
hedging error using results from [2]. The method, which involves inverting
Laplace/Fourier transforms, is implemented using the FFT technique, which
is a popular algorithm adopted for pricing and calibration purposes. One of
the contribution of this work is to show how to apply the FFT machinery
also to the analysis of hedging error and in particular of its expectation and
standard deviation.

With our apparatus we analyzed the performance of hedging error for
different strategies: the model-delta, the Black-Scholes delta computed at the
implied volatility and the local optimal strategy. The models considered for
the study are the NIG, VG and Merton models but of course the methodology
can be applied to all the class of Lévy models. We first studied the behavior of
each strategy as the number of trading dates increases. Then we analyzed the
sensitivity of hedging error to model parameters, which may be considered
as a robustness test. The analysis shows that hedging adopting different
strategies has in general a less impact on the hedging performance than
that deriving from a mispecification of the model parameters. This kind of
analysis is easier for the NIG or VG models for which the sensitivity on the
parameters is essentially the sensitivity to the realized variance, skewness and
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percentage excess of kutosis. As expected, we see that the standard deviation
of hedging error increases with the volatility of the underlying and the same
happens when increasing the kurtosis. Hedging neglecting the skewness when
the realized one is away from zero, positively or negatively, leads to worst
performance.

There are different future directions that can be developed. First of all
one can extend the methodology to a more general class of affine models and
stochastic volatility models. One can also try to analyze other payoffs (see
[16] and [15]). It should be also interesting to compare the hedging error in
the presence of jumps, computed with our methodology, to the computation
of the second moment of the asymptotic distribution as computed by Tankov
et al. in [23].
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Figure 1 Variance of the hedging error when the underlying is driven by
a NIG process of parameter [σ, θ, ν] = [0.2,−0.1, 0.1]. The maturity of the
option is T = 0.25, the spot value of the underlying is S0 = 100 and the risk
free interest rate is r = 0.04. The first panel shows the at the money (ATM)
variance for different strategies as the number of trading dates increases. The
”Delta BS” and the ”Delta Wilmott” strategies are performed at ATM Black-
Scholes implied volatility. The second panel shows the dependence of the local
optimal strategy variance on different strikes for three values of the number
of hedging dates. Moreover it is shown the price of the option at the same
strikes.
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Merton model: Variance of ATM hedging error for different strategies
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Figure 2 Variance of the hedging error when the underlying is driven by a
Merton process of parameter [σ, λ, µJumps, σJumps] = [0.2, 1,−0.1, 0.05]. The
maturity of the option is T = 0.25, the spot value of the underlying is S0 =
100 and the risk free interest rate is r = 0.04. The first panel shows the at
the money (ATM) variance for different strategies as the number of trading
dates increases. The ”Delta BS” and the ”Delta Wilmott” strategies are
performed at ATM Black-Scholes implied volatility. The second panel shows
the dependence of the local optimal strategy variance on different strikes for
three values of the number of hedging dates. Moreover it is shown the price
of the option at the same strikes.
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Figure 3 Influence of the actual parameters to the performances of the NIG
local optimal (continuous line) and ∆BS (dotted line) strategies. The call
prices correspond to the set of NIG parameters [σ0, θ0, ν0] = [0.2, 0, 0.2]. The
NIG local optimal strategy is computed at the same parameters, while the
∆BS is computed at the BS implied volatilities depending on the strike. The
figure shows three different moneyness K1 ' 90.65, K2 = 100, K3 ' 110.32
to which correspond the prices C1 ' 12.58, C2 ' 6.36, C3 ' 2.57. The other
inputs are: S0 = 100, T = 0.5, r = 0.04 and Nhedging = 12. The underlying
is driven by a NIG process with a realized set of parameter [σ, θ, ν] that is
different from [σ0, θ0, ν0]. The three panels represent the dependence of the
standard deviation of hedging error to σ when θ = θ0 and ν = ν0 (Panel 1),
θ when σ = σ0 and ν = ν0 (Panel 2), and ν when σ = σ0 and θ = θ0 (Panel
3).
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Figure 4 Influence of the actual parameters to the performances of the Mer-
ton local optimal (continuous line) and ∆BS (dotted line) strategies. The call
prices correspond to the set of Merton parameters [σ0, λ0, µ

Jumps
0 , σJumps

0 ] =
[0.2, 1, 0, 0.1]. The Merton local optimal strategy is computed at those para-
meters while the ∆BS is computed at the BS implied volatilities depending
on the strike. The figure shows three different moneyness K1 ' 90.65, K2 =
100, K3 ' 110.32 to which correspond the prices C1 ' 13.08, C2 ' 7.23, C3 '
3.25. The other inputs are: S0 = 100, T = 0.5, r = 0.04 and Nhedging = 12.
The underlying is driven by a Merton process with a realized set of parameter
[σ, λ, µJumps, σJumps] that is different from [σ0, λ0, µ

Jumps
0 , σJumps

0 ]. The four
panels show the dependence of the standard deviation of hedging error due to
movements of each single parameter while keeping the others fixed at their
calibrated values.
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