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Abstract 

The increase of economic integration and an ease of communication has signifi-
cantly improved the liquidity and depth of the Over-the-Counter foreign exchange 
(FX) option market. As a result, a better understanding and modelling of ex-
change rate dynamics is required for financial academics, practitioners, and also 
policy makers. 

In this thesis, we firstly examine the dynamics of the exchange rate via the 
conditional distribution implied from option prices. We identify three sources of 
uncertainty that need to be modelled: the stochastic exchange rate process, which 
gives the random risk-neutral mean; the stochastic volatility, as refiected in both 
historical time series and implied distribution; and the stochastic skewness, which 
can be observed either from the implied higher moments or from its proxy measure 
- risk reversal. An error correction model (ECM) of these higher moments is thus 
proposed to exploit excess returns in the FX underlying market. 

Following the instrumental approach, we endeavour to devise a tractable model 
that addresses all three sources of uncertainty and reproduce the current market 
implied volatility smile. Our review of the local volatility model, stochastic volatil-
ity model and jump models indicates that an individual model, although having 
some advantage in capturing the FX smile features, is insufficient to account for 
the asymptotic behaviour of the entire smile surface. The combined models, which 
use more than one mechanism to produce the FX smile, are interesting yet lack 
of tractability. The model of Carr & Wu [2005] uses two Levy processes to model 
the up and down jump to capture stochastic skewness, however is restricted to 
price European options. The model developed by Albanese and Mijatovic [2006] 
addresses all three sources of stochasticity with tractability. Within an innovative 
framework based on spectral theory and functional analysis, a model combining 
local volatility and Variance Gamma jumps with regime-switching controlled by a 
stochastic volatility process, is defined on a continuous time lattice, thus it is both 
rich enough to calibrate to the smile surface, and flexible enough to price both 
European and exotic options. 

Finally, we successfully develop the methodology to price the FX barrier options 
within this lattice framework. A crucial component of this development is the novel 
adoption of an algorithm to calculate the exponential for nonnormal matrix. 
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Chapter 1 

Introduction 

The current world economy, characterized by the continuous opening of various 

countries' local economies, has significantly widened the foreign exchange (FX) 

market, which is already the largest financial market in respect to trading volume. 

Daily trading volume has exceeded 1.5 trillion U.S. dollar, the upwaved trend 

continues due to the increase of economic integration and ease of communication. 

As a result, a better understanding and modelling of exchange rate dynamics is 

required not only for financial academics and practitioners, but also for policy 

makers. 

The currency option market has recently become prosperous with the increas-

ing needs for the market speculators and hedgers in the underlying exchange rate 

market. Especially, the over-the-counter (OTC) currency option market has ob-

tained significant improvement in liquidity and depth. In the light of the depen-

dency of the option value on the future prices of the underlying assets, currency 

option prices can be used to derive the conditional risk-neutral probability distrib-

ution, which refiects the market participants' future expectation in the underlying 

exchange rates' dynamic process. 

In this thesis, we endeavor to identify the core sources of uncertainty in the 

exchange rates dynamics, and develop a model that can capture the main features 

of the smile surface, and is fiexible enough to price both European and exotic op-

tions. Through the process, we have made three novel extensions or improvements 

to previous work, namely: 



• Develop the Error Correction Model (ECM) of implied risk-neutral higher 

moments to analyze and forecast the exchange rates movements 

• Propose an alternative robust algorithm to calculate the exponential of non-

normal matrix in the Albanese and Mijatovic[4] model. 

• Develop the pricing method for FX Barrier options in the Albanese and 

Mijatovic[4] framework. 

We firstly investigate the implied risk-neutral distributions from the OTC cur-

rency options, and analyze the dynamics of the exchange rates in Chapter 2. The 

first section goes through the development of different techniques in implying risk-

neutral distributions from the options prices. In section 2, Malz[65]'s method, 

which is designed specifically for FX options, is applied to two currency pairs, and 

the dynamics of the exchange rates are analyzed via the resulting implied con-

ditional risk-neutral distribution. We identify three sources of uncertainty: the 

stochastic exchange rate process, which gives the random risk-neutral mean; the 

stochastic volatility, as reflected in both historical time series and implied distrib-

ution; and the stochastic skewness, which can be observed either from the implied 

higher moments or from its proxy measure - risk reversal. An Error Correction 

Model (ECM) is then proposed to help forecasting exchange rates movements, 

which is useful in exploiting excess returns. 

Given these identified sources of uncertainty, we then review various models 

and develop the appropriate one for foreign exchange rates. Chapter 3 starts with 

a review of three individual popular models. The disadvantages of these models 

in capturing only certain features of the smile surface lead the literature to a 

combined approach. However, this suffers from a lack of tractability. The Levy 

processes model by Carr and Wu[25] can capture both stochastic volatility and 

stochastic skewness. Yet it only has semi-closed-form solution for vanilla options, 

while the extension to exotic options appears to be too challenging and remains 

untackled. 

After considering all the pros and cons of various models, the model developed 

by Albanese and Mijatovic[4], which addresses all three sources of stochasticity 

with tractability, is adopted in Chapter 4. Within an innovative framework based 
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on spectral theory and functional analysis, a model combining local volatility and 

Variance Gamma jumps with regime-switching controlled by a stochastic volatility 

process, is defined on a continuous time lattice. This model is both rich enough 

to calibrate to the smile surface and flexible enough to price both European and 

exotic options. During the implementation, we improve this model by using a 

more stable methodology to calculate the exponential for the nonnormal matrix, 

given the results of normality tests. 

In Chapter 5, we successfully develop the methodology to price FX barrier op-

tions within this lattice framework. The model achieves reasonable pricing results 

for both a developed market currency pair (GBPUSD) and an emerging market 

currency pair (USDBRL). Chapter 6 concludes the whole thesis and makes sug-

gestion for future work. 

Our work thus culminates in a robust pricing method for FX vanilla and bar-

rier options, which provides both prices and hedge ratios. The whole pricing and 

hedging process for FX vanilla and barrier options can be both effectively speeded 

up and profitably improved. The practical benefits will occur in both derivative 

pricing and risk management. Such a rich model, nicely calibrated to the market 

in a nearly stationary manner, allows traders to quickly and reliably price deriva-

tives of any maturity. This will greatly improve the trader's competitiveness and 

profitability in the market. Meanwhile, both traders and risk management team 

can easily control portfolio risk with the readily available hedge ratios, making the 

hedging programme much simpler. 
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Chapter 2 

Implied Risk-neutral Distribution 

from the OTC FX Option Market 

In this chapter, we wih firstly illustrate the theory underpinning the practice of 

deriving the risk-neutral distribution implied by European option prices quoted in 

the market, and then briefly review the main techniques in this area. The most 

appropriate method for FX market will be identified and applied in two currency 

pairs. With the resulting implied distributions, we then analyze the dynamics of 

the exchange rates, and identify the key sources of uncertainty. Finally, an Error 

Correction Model is proposed to exploit excess returns. 

2.1 Option prices and the risk-neutral distribu-

t ion function 

It is well-known that under the established risk-neutral valuation framework, the 

price of a European call option with the payoff at maturity T being max [St — K), 

where St is the time-T asset price and K represents the exercise or strike price, 

is the risk-free discounted expectation of its future payoff under the risk-neutral 

measure. From Cox and Ross[31], by denoting C {S, K,t,T) as the observed market 
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value at time t of a European option, we have: 

roo 

Jk 

where EQ denotes the conditional expectation under the risk-neutral measure, and 

is the risk-neutral probability density function (PDF) of the underlying asset price 

at maturity, conditional on the time t price St-

Breeden and Litzenberger[18] then made an important step in demonstrating 

that the risk-neutral PDF is actually the second derivative of the market call 

option price with respect to the exercise price K. In the time-state preference 

framework, they developed a general approach to price a state-contingent claim 

(also known as an Arrow-Debreu security), which has a payoff $1 for each state. 

By constructing a four option portfolio which sells two call options with strike price 

K = ST, and simultaneously buys two call options with strike price K = ST — AST 

and K = ST + ̂ ST-, respectively, where A5r is the step size between two adjacent 

call options, one can get what is called the "butterfly spread" centered on state 

St = K with the payoff: 

[C {ST + AS't, T) — C {ST, T)] — [C {ST, r) — C {ST — t)], 
^ 1''-®- = ^ 

where C {ST, T) denotes the price of a European call option with strike K and time 

to maturity T = T —t . The payoff pattern is shown in Figure 2.1.1. 

Payoff 

Strike 

Figure 2.1.1: Payoff of A5r times the Butterfly spread 
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Prom Figure 2.1.1 one can easily see that as ASt tends to zero, the payoff 

tends to AST , which divided by AST yields 1, meaning that the butterfly spread 

becomes an Arrow-Debreu security paying $1 at the state oi St = K and zero for 

all the other states. 

Further differentiating the butterfly spread price with respect to AST , we 

arrive at a second-order difference quotient: 

[C {ST + AST, 'T) ~ C {ST, "T")] — [C {ST, T) — C {ST — AST, T)] 

(A5r)' 

In the limit when AST tends to zero, the above expression tends to the second 

derivative of the call option price function with respect to the strike price at 

lim 
[C (5"̂  + T) - C (%, T)] - [C (5"̂ , T) - C -r)] (A:, -r), 

This, together with the alternative way of pricing an Arrow-Debreu security as 

payoff ($1) multiplied by the risk-neutral probability density function at St = K, 

gives the final result^: 

(2.1.2) 

This shows the existence of a one-to-one relationship between the option price 

and the risk-neutral PDF evaluated at the same strike K. Therefore, in order to 

get the continuous PDF, theoretically we need the prices of options across the full 

continuum of strikes. However, in reality, we can only get a few discrete option 

quotes, which is far from enough. This gives rise to a rich literature on various 

techniques to address this problem. 

more concise derivation of this result is shown in Appendix A. 
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2.2 Main techniques for est imating risk-neutral 

P D F 

The empirical hterature follows two main directions in the field of estimation 

techniques: one approximates the PDF directly using a parametric functional form 

for (j) (K) , the other starts from smoothing the volatility smile by interpolation 

and extrapolation before deriving PDF from a certain parametric specification of 

the option price function. 

2.2.1 Parametric P D F 

Parametric PDF methods make specific assumptions on the functional form of the 

Risk Neutral Distribution 0 {K), and use Equation 2.1.1 to estimate the parame-

ters by minimizing the difference between the observed option prices and those 

generated by the equation. 

Melick and Thomas [68] pointed out that the parametric PDF approach is more 

general than starting from an assumption on the stochastic process, because a given 

stochastic process implied a unique PDF, but a given PDF is consistent with many 

different stochastic processes for the underlying asset. In practice, the observed 

asset price distributions are very close to a lognormal distribution. Therefore, it is 

plausible to follow Ritchey[78]'s suggestion that (j) (K) ^ can be represented as the 

weighted sum of k-component lognormal density functions: 

k 

= (2.2.1) 

where L K) is the lognormal PDF: 

jiT) = — - 1 — 2 . 2 ) 
KpiV^ir 

^Note that we are valuing the distributions at St = K. To be consistent with the previous 
discussion, we use K instead of St from the original paper. 
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with the parameters: 

1 
ai = InK + -GijT 

= o n / r 

The probabihty weights Oi satisfy the conditions: 

k 

Oi = l, 9 i> Q for all i 
i=l 

The mixture PDF thus implicitly ensures that the call pricing function, which 

fits this PDF, is convex and monotonic decreasing in strike price, consistent with 

the arbitrage-free condition. 

The most popular functional form is the so-called "Double Lognormal", which 

uses a mixture of two lognormal distributions to approximate (^(5'r). This is 

because the small number of options traded in the market limits the number of 

distributional parameters that can be estimated from the data. The Double Log-

normal contains only five parameters (^, ai,^-y a2,/32), which gives the call option 

the following form: 

roo 
C r ) = e - M / - AT) [gl, ( « ! , S - r ) + (1 - 0) Z, (ag, 

Jk 

Similarly, the put option can be represented as: 

fOO 
f T) = / (jiT - [0^ ( « 1 , + (1 - Z, (a2„82; '5'̂ )] 

Jk 

Both put and call options are priced using the same underlying PDF assump-

tion, thus we can use both sets of data. In addition, under the arbitrage-free 

condition, the mean of the implied PDF must equal the forward price of the un-

derlying asset. Therefore, the underlying asset can be viewed as a zero-strike 

option, thus the forward price provides an addition data point in the minimization 
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problem: 

„ E k r) - c.l V E [p (s,Ki, i. r) - Pi]' 
1=1 t=l 

+ + (1 - ^) _ e''(:r-t)g^j 

A A 

where Qand Pi are the observed prices, > 0, 0 < ^ < 1, over the strike 

range Ki. 

The Double Lognormal mixture can incorporate various possible functional 

forms, which can deal with a wide range of possible scenarios. Besides, by focusing 

directly on the possible future values of the underlying asset, this method can avoid 

specifying the dynamics of the underlying assets. Melick and Thomas[68] applied 

the Triple Lognormal technique to analyze the expectations on crude oil prices 

during the Gulf war. 

Rubinstein[80] estimated the parametric PDF in another way to ensure it is 

closest to lognormal distribution in the least squares sense by forcing the present 

values of the underlying asset and all the options priced on it to fall between the 

respective bid and ask prices. This paper made a further step in converting the im-

plied risk-neutral PDF to a "consensus subjective" PDF under the assumption that 

the representative agent maximizes his/her expected utility of wealth according to 

constant relative risk aversion (CRRA). The result showed that the difference be-

tween the two PDFs is negligible because the shape and higher moments are not 

significantly influenced by the risk aversion^. Jackwerth and Rubinstein[49] then 

employed different distance criteria in a similar method. 

2.2.2 Smoothed function 

More papers belong to a large category called "Smoothed Function", which uses 

a smoothed parametric option pricing function or a volatility smile function to 

estimate risk-neutral PDF across the strikes. 

The most intuitive attempt is to estimate the implied risk-neutral PDF by ap-

^ Recent researches indicate that the difference is significant in forecasting the distribution of 
the realizations of the underlying asset. 
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plying the Breeden and Litzenberger[18] result directly to the call option pricing 

function 2.1.1, which is interpolated to yield a twice-differentiable smooth func-

tion that is also consistent with monotonicity and convexity conditions. To achieve 

this, one can either impose a parametric functional form on the call option price 

according to the observed values and solve a least squares problem to estimate 

the parameters, or use Nonparametric Kernel Regression, a statistical technique 

involving locally fitting polynomials across the call option pricing function'^. How-

ever, since the intensive data requirement for nonparametric regression makes it 

impractical for the limited observed option market data, the first technique seems 

to be more practical. Bates[11] uses the cubic spline to interpolate the observed 

call option prices under monotonicity and convexity conditions. But in order to get 

accurate estimation, this method also requires lots of data because of the complex 

functional form needed for call pricing function. 

Shimko[83] first developed an alternative methodology, which interpolates the 

implied volatility function instead of the call price function, based on the argument 

that the former is smoother than the latter. Under the assumption that implied 

volatility is a quadratic function of strike price in the traded range, he first inter-

polates the volatility smile curve and then obtains the call price function by using 

the Black-Scholes formula as a translation device. The risk-neutral PDF is then 

determined by twice differentiating the implied call option pricing function accord-

ing to Equation 2.1.2. Note that since interpolation can only achieve the points 

between the lowest and highest observed prices, extrapolation is necessary to get 

the whole distribution. Shimko[83] extrapolates by imposing lognormal tails onto 

both endpoints of the observable density in such a way that the total cumulative 

probability equals one . However, this kind of extrapolation suffers from at least 

three shortcomings: (1) it arbitrarily imposes a constant volatility structure to the 

smile outside the observed strike range; (2) the transition from the observable part 

of the distribution to the tails may not be smooth; (3) the possibility of negative 

probability. 

Among the various interpolation functions including piecewise linear, hyper-

bolic, parabolic, the best-fit polynomial and spline, the two knot points cubic 

spline seems to fit the data better than the others in most cases. Campa, Chang 

^See Hardle[42], chapter 5. 
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and Reider[22] applies the smoothed spline function to estimate the volatility smile 

in currency options, while Bliss and Panigirtzoglou[16] tests the same technique on 

FTSE 100 index futures and options and concludes that it outperforms the Dou-

ble Lognormal in estimating risk-neutral PDF when the average goodness-of-fit of 

both methods are comparable. 

2.2.3 Other methodologies 

Two other methodologies can be seen in the empirical literature. One is the so-

called Nonparametric Method, which estimates the risk-neutral PDF without any 

parametric assumption on the call option pricing function, PDF, or underlying as-

set price dynamics. The other assumes a certain stochastic process for the under-

lying and then derives the option pricing function to imply the PDF. Ai't-Sahalia 

and Lo[l] uses the first method to estimate the PDF nonparametrically, while 

Malz[66] assumes FX rates follows a jump-diffusion process and recover the pa-

rameters using the quoted risk reversal prices. He obtains a closed-form solution 

for the implied PDF by assuming that the jump-diffusion is Bernoulli distributed, 

which means the jump size is either zero or one. His result shows that under such 

an assumption, the PDF takes the form of Double Lognormal. 

In the field of FX options, however, the special way that the markets (mainly 

over-the-counter) package options provides an easier and more reliable technique 

to deal with the implied PDF. Malz[65] uses low-order polynomial functional forms 

to fit the volatility smile with only three points, thus shows that the existence of 

straddle, risk reversal and strangle enables us to infer the risk-neutral PDF using 

only limited option quotes. Campa, Chang and Reider[22] compare diff'erent esti-

mation methods for implied risk-neutral PDF yet fail to find significant difi'erence 

across the results. Bliss and Panigirtzoglou[16]'s test also provides strong support 

of the superior stability of Malz's method over Double Lognormal method. We 

will illustrate Malz[65]'s method with applications to two main currency pairs in 

next section. 
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2.3 Standard O T C F X Option Quotes and Malz's 

M e t h o d 

The OTC FX option prices are quoted in terms of deltas and volatilities, which 

come from the Black-Scholes/Garman-Kohlhagen formula: 

C (5't, AT, r , (7, n , r/t) = 
In {St/K) + {rj — rft + <7 /̂2) (T — t) 

a^/T — t 
(2.3.1) 

In {St/K) + {vt — rft — a^/2) {T — t) 
r^/T^t 

where rt and rft are the domestic and foreign risk free interest rates, respectively. 

Delta {5 € [0,1]) represents the rate of change of the call option value with 

respect to the spot exchange rate St-

r)C 
Jc (,9*, AT, f, r , (T, rt, r/ ,) = ^ 

In {St/K) -|- {rt — rft -f <7̂ /2) (T — t) 

a\/T — t 
(2.3.2) 

dP 
5p{St,K,t,T,(r,rt,rft) = ^ = 1 - 5c {St,K,t,T,a,rt,rft) (2.3.3) 

As an alternative of the strike to measure the "Moneyness" of the option, 

delta abstracts the changes in the cash market (e.g. the fluctuations in the spot 

and forward FX rates), so dealers only need to recalculate their quotes when the 

implied volatilities change. The strike prices are then set such that delta equals a 

rounded number, e.g. 25 or 75 percent, using Equation 2.3.2 or 2.3.3. 

Given that all the other parameters are the same, there exists a one-to-one 

relationship between the option price and volatility a. The market thus can quote 

the options in units of so-called "Implied volatility", which is obtained by convert-

ing the market determined option price through Black-Scholes/Garman-Kohlhagen 

formula®. 

In the framework of these two concepts, the OTC FX option market mainly 

quotes the three options, combinations: Straddle, Risk reversal and Strangle, the 

^Note from the previous section that the formula is only a translation device, not necessarily 
to be accurate. 
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payoff patterns of which can be seen in Figure 2.3.1. 

Risk reversal 

Arr'yp=o.2.̂  

Strangle 

Figure 2.3.1: Payoff for opt ion combinat ions 

A standard quoted OTC Straddle is a combination of an at-the-money forward 

call and a put with the same maturity and strike price {5c = 0.5), which is equal 

to the current forward price. The quote of the at-the-money forward call can be 

written as: 

atrrif a (0 .5) (2.3.4) 

where refers to the one-month 50-delta call. 

The price of the straddle contains the information about the variance of the 

expected distribution for the FX rate. Quoted in volatility terms, a straddle price 

is called at-the-money implied volatility. 

A standard quoted OTC Risk reversal is a combination of buying a 25-delta 

out-of-money call and selling a 25-delta out-of-money put option. The call and 

the put gain profits at the two directions of the FX rate movement, respectively. 

Therefore, risk reversals reflect the skewness of market expectation on the exchange 

rate distribution. It can be expressed as: 

rrt = a 
(0 .25) 

— a (0 .75) 

where and a (0 .75) ( refer to one-month 25-delta call and put, respectively. 

A standard quoted OTC Strangle is a combination of 25-delta out-of-money call 

and put together with at-the-money call, which has the following payoff function: 

strt = 0.5 (0 .25) (0 .75) 
'f "T Of atrrit (2.3.5) 

The buyer of a strangle benefits from large movements of the underlying ex-
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change rate, as shown in Figure 2.3.1. Therefore, the strangle prices indicate the 

kurtosis of the expected distribution. 

Equation 2.3.4 to 2.3.5 can be rearranged to yield the expressions for the market 

prices of and 

= atmt + strt + 0.5rrt (2.3.6) 

(̂0.75) _ — O.Srrt (2.3.7) 

Malz[65] then obtains a continuous volatility smile by fitting the curve to a 

second-order Taylor approximation around the point 5c = 0.5: 

(5c - 0.5)-1-62strt (5c - 0.5)^ (2.3.8) 

After simple algebraic manipulation of Equation 2.3.4 and 2.3.6 to 2.3.8, we 

have: 

a {5c)t = Gtmt — 2rrt {5c — 0.5) + IGatr* {5c — 0.5)^ (2.3.9) 

This means that the volatility smile is constituted by a linear function of at-

the-money volatility, a negative linear function of the risk reversal price and the 

difference of delta from 0.5, and a quadratic function of the strangle price and the 

difference of delta from 0.5. Given that the shape of any unimodal probability 

distribution can be asymptotically® characterized by its second, third and forth 

central moments, Malz[65] points out that one is able to use these OTC options 

quotes to infer accurate risk-neutral probability distribution. 

The volatility smile function provides the imphed volatility for each delta, from 

which we can get the strike-volatility mapping: 

= atm, - 2rr, IMS,/K) + {r, - rU + / i ) {T - M ^ J 
I L a\/T-t J J 

-t- 165irt •̂ e 
In {St/K) + {n - rft + ay2) {T - t)] 

ay/T — t 
0.5 ^ (2.3.10) 

This equation is implicit for implied volatility , which can only be solved numer-

ically. Then substitute the result into the Equation 2.3.1, we have the generalized 

^Following the original paper, our research only centres on the first four moments. 

22 



Black-Sclioles/Garman-Kohlhagen formula: 

In {St/K) + {n - rft + a {Xf /2) [T - t ) 

a{K)y/T^t 

In {St/K) + [n - r f t - a {Kf /2) {T - t) 

a (K) VT^ 

According to Equation 2.1.2, we differentiate the above equation twice with 

respect to K and multiply it by which yields the risk-neutral PDF: 

(l)(K) = ^nfT-t) {St, K, t, T, a {K), n, rft) (2.3.11) 

This formula can be used to calculate the characteristic moments of the risk-

neutral distribution. Note that the first moment is the forward price: 

The y" central moment is defined as: 

(j) 
poo 

= / {K 
Jo 

The risk-neutral distribution for the percentage changes in FX rates has the 

following higher moments that characterize it: 

The annualized second moment: 

T - t 

Note that it is usually quite close to atmt-

The standardized third moment (Skewness): 

at = 
(2) 
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The standardized forth moment (Excess Kurtosis): 

These higher moments can help to extract the market expectations for the 

future exchange rate movement. 

2.4 D a t a and Implied Distr ibution 

We choose two main currency pairs; GBPUSD and EURUSD to which the Malz's 

method is applied. Historical daily OTC option data, including the quote for 

at-the-money forward (ATMF), 25-delta risk reversal and strangle prices, together 

with risk-free interest rate and underlying, are obtained from UBS Warburg^, from 

23/06/2004 to 20/06/2005 with one-week and one-month maturity. 

GBP and EUR are assumed to be the foreign currency on which the option is 

written, while the USD is the domestic currency. 

Figure 2.4.1 displays an example of the smoothed implied volatility smile as a 

function of strike price (One-month forward rate) using Malz's polynomial func-

tional form®. The one-week smile is lower, which is consistent with volatility 

term-structure, but the pattern is less 'smooth'; such curvature difference reflects 

that the impact of FX jumps on the volatility is more pronounced. This is because 

in the long term, the jumps caused by central banks' policy movements tend to 

'average out', leaving less influence on the smile and making it much smoother. 

Figure 2.4.2 shows the shape of the option-implied risk-neutral PDF of the 

GBPUSD calculated from one-month options data. It can be observed that the 

more dispersed shape of the one-month expected returns on 22>rd June 2004 has 

changed to the more 'standard' bell shape distribution one year later. This may be 

^UBS has a large share in currency options market. Therefore, we assume that the information 
extracted from UBS data is a good proxy for overall market expectation. 

®The result is obtained by solving Equation 2.3.11 using the numerical method named Stef-
fensen's Algorithm. Other numerical algorithm may be used to see if better approximation can 
be achieved. Note that the smile soon flattens out from about 5% change in one-month forward 
rate, which indicates that the potential errors of Malz's method for extreme values are small and 
negligible. 
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a reflection of more stable market expectations, which indicates a smooth market 

with less unexpected events. More examples of the volatility smile and implied 

distributions for GBPUSD and EURUSD are listed in Appendix B. 

Figure 2.4.3 displays the one-year historical path of the spot FX rate and the 

calculated higher moments of the implied risk-neutral PDFs. The two periods of 

significant FX rate changes in the past one year are well reflected in the paths of 

higher moments. Between August and December 2004, the trend of GBP apprecia-

tion was accompanied by the continuous increase in the implied standard deviation, 

skewness and kurtosis, indicating the increase of uncertainty and bullish market 

expectations on the GBPUSD FX rate. And it can also be seen that, while the 

depreciation of GBP started since April 2005, the skewness trended all the way 

down to the negative zone, reflecting bearish market expectations. A similar cor-

relation between the spot rate and higher moments in EURUSD can be observed 

from graphs in Appendix B. 

The above analysis gives rise to two interesting research areas: 1. Prom the 

relationship between the spot FX rate and implied higher moments, a study of the 

explanatory power of the higher moments in excess forward returns can be carried 

out using econometric methods. This is done in the next section. 2. The historical 

paths of the higher moments show that they are stochastic, thus it is important 

to add such stochastic elements to our models for FX derivative pricing and risk 

management. A detailed analysis of the stochastic modeling is carried out in the 

main body of the thesis to reflect real world FX rate movements. 
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Figure 2.4.1: Implied volatility smile (GBPUSD monthly/weekly 20/06/05) 
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Figure 2.4.2: Option implied PDF (GBPUSD monthly) 
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Figure 2.4.3: Spot GBPUSD monthly FX rate and the higher moments of imphed P D F 
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2.5 Excess Forward Returns 

The term 'Forward Bias' describes the fact that spot FX rates may turn out to 

be different from what forward rates have indicated. Mathematically, the bias, or 

excess forward return (j,, at time T can be defined as the difference between the 

spot FX rate at time T and the time t forward rate for T: = St — f f -

Both research literature and empirical evidence have suggested that excess 

forward returns can be obtained in currency markets. Some researchers® point out 

that this may due to the time-varying risk premium, thus it is logical to assume 

that the size of the excess return can be explained by the market expectations 

of the characteristic of the risk. Therefore, the most straightforward econometric 

model is to regress the level of the excess returns on the higher moments of the 

implied distribution: 

Cr = « + j3istdt + /32skewt + P^kurtt + St (2.5.1) 

where stdt^ skewt and kurtt are the standard deviation, the skewness and the 

kurtosis of the option-implied PDFs of the currency pairs at time t. 

Table 2.5.1 displays an example using GBPUSD one-month data. The data 

is overlapping as we are using daily data for one-month-ahead market expecta-

tions. Therefore, standard errors should be adjusted for the heteroskedasticity 

and autocorrelation effects using the method proposed by Newey and West [73]. 

Much previous research done on similar models concludes that the OLS estimated 

parameters are consistent, and the t-statistics are unbiased after the adjustment. 

Therefore, the results suggest that the skewness and the kurtosis are significant 

at 90% and 95% confidence level, respectively, while the standard deviation is in-

significant. All three coefficients for the higher moments exhibit correct directions. 

The overall regression can explain 31.7% of the variation in changes of excess re-

turns. However, as can be seen from the test summary part, this regression fails 

all tests, which means the data violate standard OLS assumptions and it is better 

to model them in a different way. 

Noting that the data are all time-series, we turn to examine the stationarity 

'See Lyons[61], Malz[65] and Gereben[39]. 
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Table 2.5.1: Regression Results of Model 2.5.1 
Variable Coefficient ytd.Error t-Statistic 
Constant -0.48123 0.22095 -2.1780** 
stdt 0.60273 0.70148 0.85922 
skewt -0.2363 0.13942 -1.6949* 
kurtt 1.0472 0.32376 3.2346** 

0.31743 RSS 0.347699 
Log-likelihood 436.862 DW 0.184 
Number of observations 237 Number of parameters 4 
Mean (Excess Return) 0.0020066 Var (Excess Return) 0.002149 
AR 1-2 test: F(2,231) = 526.78 0.0000 
ARCH 1-1 test: F ( l , 231) = 290.13 0.0000 
Normahty test: C h e (2) = 11.98010.00251** 
Hetero test: F(6,226) = 3.131110.00571*' 

of the time-series data, which is necessary in order to get meaningful regression 

results. Our stationary tests show that the four time-series, namely excess return, 

standard deviation, skewness and kurtosis are all /(I) processes^". In addition, the 

Augmented Dickey-Fuller (ADF) tests of the residuals indicate that the residuals 

of the above regression pass the tests at 90% confidence level. The ADF test is 

formulated as following; 

k 

~ 7 / ^ t - i + ^ ^ Hq ' - 7 = 0 

i=i 

The test results suggest that the time-series are cointegrated. According to 

the Granger Representation Theorem, there exits a valid long-run equilibrium 

relationship between these variables, and this relationship can be expressed as an 

Error Correction Mechanism (ECM). We then model the ECM as follows^ 

ACt_i + + /3^Astdt-i + l3^Askewt + /3^Askewt-i(2.5.2) 

+^eAkurtt + ^^Akurtt-i + /Sg/J-t-i 

where A means first order difference, and t — 1 indicates first order lag term. Table 

2.5.2 shows the regression results. 

^"/(l) means the first-order difference of the time-series is stationary. 
^^Theoretically, by following the General to Specific method, we should start as many lags 

as possible to pass the diagnostic tests. However, since financial time series data are usually 
1st order autocorrelated, we directly start with only one lag for each variable, and the result of 
diagnostic tests indicates that such model is well-specified. 
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Table 2.5.2: Regression Results of Model 2.5.2 
Variable Coefficient Std.Error t-ytatistic 

-0.031707 0.07126 —0.445 
Astdt -1.06986 0.3948 -2.71** 
AsMt- i 0.676811 U.4UK4 1.66* 
/Iskewt 0.0720503 0.05470 1.32 
Askewt-i -0.025522 0.05296 -0.482 
Ukurtt -0.417942 0.1585 -2.64** 
Akurtt-i 0.120419 0.1622 0.743 
A - i -0.039904 0.02367 -1.69* 
Sigma 0.0130445 RSS 0.03862 
Log-Kkelihood 690.376 DW 1.96 
JN umber of observations 235 Number of parameters 8 
Mean (Excess Return) -0.000115 Var (Excess Return) 0.000179 
AR 1-2 test: F(2,225) = 1.8264|0.1634| 
ARCH 1-1 test: F ( l , 225) = 0.17891 0.6727] 
Normality test: C/ii^ (2) = 0.034382 0.9830 
Hetero test: f (16,210) = 1.121510.33671 

It can be seen from the test summary results that this model passes all OLS 

assumptions tests, indicating that the model is valid. However, only 4 out of the 

8 parameters are significant at the 90% confidence level, suggesting further model 

improvement by omitting skewness from the long-run relationship. 

2.6 Summary 

With the Malz[65]'s method, which is specifically designed for FX market, we have 

estimated the implied risk-neutral distribution from option prices. The results are 

used in two research areas. Firstly, we follow the econometric method to investigate 

the explanatory power of the implied higher moments in excess forward returns. 

The resulting ECM model we proposed provides some econometric evidence of 

such explanatory power. However, more detailed econometric modeling and more 

data should be used before we can come to a robust conclusion. This gives rise to 

further research interest in the area beyond our thesis. Secondly, the stochasticity 

of the moments that characterize the distribution indicates that they are important 

sources of uncertainty, which should be considered in derivative pricing models and 

risk management. We will analyze the modelling techniques to capture the key 

features of the implied volatility smile and the implied distribution, namely the 

stochastic higher moments, in the rest of the thesis. 
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Chapter 3 

\ \ 

Models which Capture the FX 

Smile - A Review 

3.1 Derivative Model l ing - Theory and Practice 

3.1.1 Model l ing in Derivative Pricing and Hedging 

Black and Schole's seminal paper [15] initialized the practice of using mathematical 

formula to describe the stochastic process of the financial asset, from which the 

price of the derivative of the asset can be obtained. During the past 30 years, 

mathematical modelling has played a key role in derivative pricing and hedging: 

to value illiquid derivative securities whose prices are not observable in the market, 

and to calculate future hedging costs for derivatives. 

By the end of 1990s, two types of model have been developed and existed in 

the market: models for forecasting, and models for replication. The first type is 

mainly used in Hedge funds, while the second type, used in derivative pricing and 

hedging, is our focus. We will investigate a modelling approach for FX option 

pricing which is consistent with the smile characteristic discussed in Chapter 2. 

3.1.2 Market Real i ty and Modell ing Approach 

It is well-known that market incompleteness is a common fact rather than an ex-

ception. In addition, markets are not frictionless due to the ejdstence of transaction 
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costs, bid-offer spreads, and discrete trading. These imply that in practice, perfect 

rephcation is impossible and traders have to consider both the initial hedging cost 

and the future re-hedging cost for pricing. 

According to Rebonato[76], two main modelling approaches prevail currently: 

(1) The fundamental approach - if two models fit similarly to market plain-vanilla 

options, choose the model with the implied process closer to the statistically ob-

served underlying process. (2) The instrumental approach - examine whether the 

model-implied option price evolution is consistent with reality. Under this ap-

proach, the trader will prefer a process that can produce the desired feature of the 

volatility smile surface. Some recent research even goes to the extreme of leaving 

process specification behind and directly modelling the dynamics of the volatility 

smile surface. Theoretically, the users of the instrumental approach who pay lit-

tle attention to the true process of the underlying (which is difficult to find and 

justify) will be a 'money machine' for the other traders. However, in practice, the 

difiiculty in trading for real arbitrages prevents them from playing this tragic role. 

Therefore, the instrumental approach is more widely used in the market. 

In this thesis, we will follow the instrumental approach to find a process which 

can recover the current and future prices of the FX vanilla options in a plausible 

way. In other words, the process will be able to produce the proper dynamics of 

the FX smile surface. Empirical facts (e.g. the analysis of the first part of the 

thesis) show that the volatility smile for FX is more variable than that of equity 

and interest rates. It has stochastic skewness and kurtosis, and can even change 

to a 'smirk'. Therefore, neither pure diffusions nor pure jump processes can be 

sufficient to account for the asymptotic behavior the entire smile surface, especially 

the out-of-money option volatilities. Therefore, we should consider more than one 

mechanism in producing the FX smile, as suggested by Rebonato [76]. 

We will firstly review individually three popular models: the local volatility 

model, the stochastic volatility model and the jump diffusion model in the following 

sections. These models have difi'erent advantages in capturing the features of the 

FX volatility smile, but their disadvantages prevent them from working properly 

alone. Therefore, we will try to 'combine' these three models to produce a model 

capable of better capturing the smile dynamics, including stochastic volatility and 

skewness, and finally apply this model to price exotic options. 
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3.2 Local Volatility Model 

3.2.1 Introduction 

The local volatility model forms an important subclass in the stochastic volatility 

models. In such models, volatility is associated with the underlying variable at each 

state, hence the term "local". The volatility is uniquely determined conditional 

on the future realization of the underlying process. In other words, the volatility 

is restricted to change according to the functional dependence on the underlying, 

the so-called "Restricted-volatility". Mathematically, the stochastic process of the 

underlying can be described as: 

dSt — [r (t) - q (i)] Stdt + OL {St, t) Stdzt (3.2.1) 

where St represents the time t underlying price, r {t) is the time t instantaneous 

forward rate, q (t) is dividend yield (or the time t instantaneous forward rate for the 

foreign country in FX market), Cz, (<%,() is the local volatility which functionally 

depends on St and t, and dzt is the increment of Wiener process. 

As the volatility term is a deterministic function of the underlying, such a 

model specification does not require additional randomness to be covered, and the 

market is complete. Therefore, the whole local volatility model class has several 

advantages: (1) it can always recover the exogenous plain-vanilla option prices in 

the market (capture the current FX smile effect); (2) the ability to uniquely price 

exotic options by portfolio replication; (3) the possibility of producing closed-form 

solution due to its simplicity. 

In the literature, there are three main modelling streams which differ in the 

way they specify the local volatility function cr̂  (5t,t). We will review the key 

literature of these three models in the following sections. 

3.2.2 Implied Volatility Function 

The implied volatility function (IVF) model can be literally interpreted as implying 

the local volatility function from the market quoted plain-vanilla option prices -

it is designed to fit exactly the current volatility surface. The model requires the 
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smooth option prices as input, thus depends on the successful interpolation of 

the observed discrete price points. Therefore, most of the literatures discussed in 

Chapter 2 make certain contribution in these area by either providing the possible 

interpolation methods or estimating the implied probability density for similar 

pricing purposes. 

Derman and Kani[34][35], Rubinstein [80] extract the information for the lo-

cal volatility function ctl {St,t) from observed and interpolated option prices by 

building an implied recombining binomial tree, which can recover the input prices 

exactly. Jackwerth[48] then generalizes this method by loosening the probability 

restrictions in Rubinstein[80]. However, as fully discussed by Rebonato[76], the 

implied tree model tends to suffer from numerical difficulties and comes up with 

very implausible estimates of the local volatility surface^. 

Rather than the binomial tree algorithm, Dupire[36] uses observed option prices 

to specify continuous implied stochastic dynamics for the underlying, and estimates 

the local volatility function aL{St,t). The theoretical underpinning is Breeden 

and Litzenberger's [18] result^ that the underlying PDF at a specific strike price 

and maturity date can be express as the compound second-order derivative of 

the option price with respect to the strike price. Starting from Equation 3.2.1 

and using the forward (Fokker-Planck^) equation, both Dupire[36] and Andersen 

and Brotherton-Ratcliffe[7] show that cr̂  {St,t) can be expressed in a closed-form 

formula: 

, , g +1(.T)C (K, T) + K [r (T) ~q{T)] SS-m 

Therefore, given the market plain-vanilla option price C {K, T) with strike K 

and maturity T, this formula will give the relevant local volatility GL {S,t) that 

will prevail when St = K and t — T. 

Compared with the implied tree, his method improves the numerical efficiency 

for the estimation of local volatility because it avoids numerical constraints such as 

^Rebonato[76] Chapter 12. 
2See the discuss in Chapter 2 and Appendix A for Equation 2.1.2 
^ Given the drift and volatihty of the process, Fokker-Planck equation describes the evolution 

of the future price (or distribution density). 
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imposing tree recombination. However, the term in the denominator, can 

cause numerical trouble for both deep in-the-money and out-of-the-money options 

as C{K,T) tends to be very small. Andersen and Brotherton-Ratcliffe[7] thus 

change Equation 3.2.2 to a new formula in terms of implied volatility. Yet the nu-

merically better formula still has the same big problem as its previous version, as 

pointed out by Wilmott[90] and many others in their papers, and thoroughly dis-

cussed by Rebonato[76]. The task is ill-posed in practice since the estimated local 

volatility is unstable, and very sensitive to small changes in the input smile sur-

face, which varies with the interpolation and extrapolation methods used. These 

numerical methods can easily generate numerical noise and financially introduce 

arbitrage. We have seen in Chapter 2 that even though there is a rich literature on 

interpolation for implying market information, none of them have demonstrated 

that it outperforms all the others in terms of stability. This persists as the funda-

mental disadvantage of the IMF method. 

3.2.3 Displaced Diffusions Model 

Displaced diffusion assumes that a new quantity, St+a, follows a geometric Brown-

ian process rather than the original St-

d {St + a) ^ (3.2.3) 
Ot + o. 

where the constant a is the displacement coefficient, and a a are the percentage 

drift and volatility of % -t- a. 

This modelling approach was first introduced by Rubinstein [79], and well-

discussed in Marris [67]. It carries the advantages of simplicity and a possible hnk 

to CEV process. Generally there are two types of modelling formula for forward 

price which can simplify the diffusion process because of the absence of the drift. 

The one that links with the CEV is: 

dFt = [ y F t -I- ( 1 - 7 ) F o ] a^dzt ( 3 . 2 . 4 ) 

as shown by Marris [67]. Rebonato[76] pointed out that if 7 is set equal to the 

exponent ^ in CEV process (See next section), these two approaches will produce 
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extremely similar implied volatilities. Thus displaced diffusion can be a computa-

tional proxy for the CEV process. However, such an approximation fails with the 

deep out-of-the-money options. 

3.2.4 C E V Model 

Model Description 

Constant Elasticity of Variance (CEV), discussed by Cox and Ross [31] in detail, 

is the most popular local volatility model, where the local volatility function is 

specified explicitly as an exponential function of the underlying: 

dSt = [r (t) - q (()] Stdt + atS^dzt (3.2.5) 

where /? is a positive constant and atSt~^ represents the volatility of the stock 

return, which is UL in formula 3.2.1. It includes two special cases: /3 = 1 for 

geometric Brownian motions and /5 = 0 for arithmetic Brownian motions. 

In the range of 0 < ^ < 1, CEV can capture the so-called "Leverage effect", 

introduced by Black[14] and widely discussed in many recent papers. According 

to empirical observation, the underlying price is negatively correlated with the 

volatility. Therefore, in the above specific range for /3, which is a typical assump-

tion in the equity case, the hedge ratios produced by CEV model reflect the ability 

to vega-hedge with the underlying asset. In the FX context, however, we need to 

know what will happen if the domestic and foreign countries are switched. In 

other words, the views from the investors from both countries are equally impor-

tant. Therefore, it is necessary to consider the symmetric interval [—1,1] so that 

we can use a general functional form of the SDE which is invariant when changing 

between domestic and foreign markets: 

dSt = {n - rft) Stdt + at{StYdzt (3.2.6) 

One key advantage of the CEV model is its analytical tractability. With such 

a complicated SDE which can predict skews, it is still possible to get the closed-

form solution for European options. A more convenient practice is to derive the 
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option pricing formula for /3 £ (0,1), and then apply the "Put-call symmetry"'' 

to finish the part (—1,0). The special case when ,5 = 1 can be simply solved by 

Black-Schole's formula, and /5 = 0 can be solved using the formula for arithmetic 

Brownian motion. 

By using Laplace transform and Fourier representation for modified Bessel 

functions^, we can get the resulting formula for the European call: 

+ (3.2.7) 

where %^(z,&/u) is the cumulative probability of a non-central distributed 

variable, with noncentrality parameter v, k degree of freedom and quantile z. The 

variables a, b and c are given by: 

I 5-2(1-/3) 
a=~ : -TT , b=- c = 

( l - , 9 ) ^ f ' 1 - / 8 ' (l-,8) '<^ 

The put price can then be derived by the put-call parity: 

P(t ,^) = (3.2.8) 

_e-rA(r-()g^2 (a^6-H2,c) 

Finally, with the help of put-call symmetry, we can derive the pricing formula 

for the case ^ G (—1,0): C S, K,a,r,rf) = SKP {—I3,t,l/S,l/K,a,rf,r), 

and we apply the put-call parity again to get P (/5, t, S, K, a, r, r f ) . 

Data cind Calibration 

We apply the CEV model to historical GBPUSD and EURUSD exchange rate 

data on 19/10/2005. According to the discussion in Chapter 2, the quote in FX 

market allows us to imply the 25-delta call and put volatility from the quote of 

^Put-call symmetry is a special case of Put-call duality, which is based on the change of 
numeriaire through Girsanov's Theorem. 

®For detailed derivations, see Schroder, M. 1989. Computing the Constant Elasticity of Vari-
ance Option Pricing Formula, Journal of Finance, Vol 44, No.l, and Lipton, A. 2001. Mathe-
matical Methods for Foreign Exchange, Chapter 10. 
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ATM, 25-delta risk reversal and strangle, using formulas 2.3.6 and 2.3.7. We then 

calculate the strike and option prices from such quotes, and calibrate the CEV 

model by minimizing the sum of square of errors: 

11 

^ ^ (<̂ 0, o") - (3.2.9) 
i=i j=i 

where v {sq,kij,ti,ri,rfi,^,a) is the CEV model price for both call and put 

using the closed-form formula 3.2.7 and 3.2.8 respectively, and Vij is the relevant 

market price, from 2-week to 30-month®. We find that for both currency pairs, 

the calibrated ^ is greater than 1, while volatilities are less than but close to 

the implied volatility. Figure 3.2.1 displays the market implied term structure of 

option price and the CEV model result for GBPUSD currency pair. Figure 3.2.2 

shows the market data and the result for EURUSD. The merit of the CEV model 

is easily seen: both figures show that the model can fit the market data well. 
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25 del ta ca l l a t m f 25 delta put C E V 2 5 c a l l — — — C E V a i m f C E V 2 5 p u t 

Figure 3.2.1: Term structure of option prices for GBPUSD 

®The 1-week data are not quite consistent with the other data in the CEV model, so we only 
start from 2-week data. The 3-year and 4-year data from UBS are flat, which is not consistent 
with the normal smile. Thus we have 3 instruments (ATM, 25-delta call and 25-delta put), each 
of which has 11 terms. 
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Figure 3.2.2: Term structure of option prices for EURUSD 

3.2.5 Summary 

Local volatility models are quite popular among practitioners in equity, FX and 

interest rate (CEV) modelling because of their ability to capture the smile effect 

and good fit to the market data, while keeping the tractability. However, as 

criticized by Andersen[6], Rebonato[76], Albanese[2] and many other researchers, 

such models suffer from the dynamic inconsistency. This can be explained in 

two ways: (1) The local volatility function is not stationary, implying that future 

smiles will be quite different from the current ones, and recalibration is necessary 

whenever the market data change. In reality, however, the market smile tends to 

be stationary. (2) The model implied volatilities of the same strike tend to stay 

the same while the underlying price changes. Empirically, the so-called "Sticky-

strike" result only appears occasionally, yet the "Sticky-delta" phenomenon, in 

which the implied volatilities of the same delta stay approximately constant as the 

underlying evolves, is observed frequently in the normal market[33]. Therefore, 

pure local volatility models are not adequate for our modelling purpose, especially 

in FX, where the jump is a common phenomenon rather than an exception. 
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3.3 Stochastic Volatility Model 

3.3.1 Introduction 

Stochastic Volatility (SV) is the one of the key terms in financial economics. Em-

pirical studies have demonstrated that the volatility of financial time series is not 

only non-constant, but also cannot be described by a deterministic function of 

time, or even a function of time and the underlying. The graphs in Chapter 2 

vividly show the stochastic evolution of the standard deviation through one year. 

SV models specify an additional stochastic process for the volatility of the under-

lying, so as to better capture the dynamics of the option data or high frequency 

return data. 

Prom the hedging perspective, the presence of the new uncertainty (risk) as-

sociated with stochastic volatility can only be neutralized by using an additional 

traded asset which depends on volatility. Otherwise, the market with the underly-

ing only is incomplete, since volatility is not traded. Rebonato[76] shows that the 

strategy of hedging with the underlying and an option does not work because a 

no-arbitrage unique price can only be obtained if the hedger knows the full process, 

which is not practical at all. In addition, the complex specification results in the 

intractability of the model - a closed-form solution is only possible for special 

processes. 

More recent research even shows that more and more complicated volatility 

dynamics are necessary to model financial data (see Rebonato[76] and Albanese 

and Kuznetsov[2] for example). At the same time, estimation issues generate 

another stream of literature, which includes much econometric work. We will 

briefly review these main fields in the next section, followed by a more detailed 

discussion of two tractable special cases and their application in option pricing. 

3.3.2 Literature Rev iew 

Heterogeneity in the variance was accepted as a fact even at the time when Black 

and Scholes[15] published their seminal paper based on a homogeneity assumption. 

They point out that the evidence of non-stationary of variance should call for 

more future work. A rich literature ensues to address the issue, in which the first 
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published SV paper is written by Taylor [86]. In his discrete time model, the risky 

part of the daily returns is set to follow a product process. 

Johnson and Shanno[51] studies the option pricing issue in time-varying vari-

ance models, while Wiggins[89] uses the stochastic volatility model to examine the 

option valuation. Among all the other similar works, Hull and White[47] seems to 

be the most widely-known one, which we will discuss in the next section. 

In the last decade, SV extensions have been widely witnessed in the litera-

ture. Bates[13] influentially demonstrates that it is necessary to add jumps to the 

standard SV models, particularly under Markovian volatility. Eraker, Johannes 

and Polson[37] examine SV models incorporating jumps in both underlying and 

volatility process, and develop an efficient technique for parameter estimation. 

Furthermore, some researchers suggest a different jump modelling approach us-

ing Ornstein-Uhlenbeck (OU) type process. Barndorff-Nielsen and Shephard[10] 

study the financial application of the non-Gaussian OU-based models and possi-

ble closed-form solutions. Nicolato and Venardos[74] investigate the OU class in 

derivative analysis and the related market incompleteness, and derive a closed-form 

solution for vanilla options when the structure preserves Martingale property. 

The other stream of literature extends the SV model by using a long-memory 

dynamic to describe cr. Breidt, Crato and Lima[19] propose incorporating an 

ARFIMA process into a standard SV process. This discretely models the log 

of volatility by fractional ARMA process. Comte and Renault[29] work on the 

continuous-time moving average fractional process, which reconciles ARMA and 

Brownian motion and thus uses fractional integration of Brownian to model the 

log of volatility. 

In the field of estimating the SV model parameters, there are roughly two 

streams: Generalized Method of Moments (GMM), and the Markov Chain Monte 

Carlo (MCMC) simulation^ based approach. 

Taylor[86] first calibrates his SV model using the method of moments. Melino 

and Turnbull[69] then use the GMM method to estimate the SV model parame-

ters for FX data. Andersen and Sorensen[8] systematically study which moments 

should be heavily weighted in SV models using the GMM method, and similar 

^MCMC samples from the last step of a constructed Markov chain, which has the desired 
distribution. The quality of such simulation improves with the increase of the number of steps. 
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studies are done by both Sorensen[84] and Hoffmann[45]. However, Ruiz[81] shows 

that in practice, GMM is not as efficient as Quasi-Maximum Likelihood (QML) 

combined with Kalman filter. 

For MCMC, early application can be found in Jacquier, Poison and Rossi[50]. 

Subsequently, Kim, Shephard and Chib[55] widely discuss several types of MCMC 

algorithms. In addition, they introduce a "particle filter", the first filter in this 

field. This facilitates model comparison and model testing. 

In summary, the literature for SV model is both extensive and intensive. In 

the following section, we will concentrate on the SV models in option pricing. 

3.3.3 Option Pricing 

By describing financial data in a more realistic manner, SV models provide a 

good basis for option pricing modelling. Important papers like Hull and White[47] 

appear as early as 1987. Stein and Stein[85] introduce the first analytic stock 

option pricing formula, while Heston[44] provides another closed-form solution 

and extends it for bond and FX options. In more recent research, Nicolato and 

Venardos[74] carry out a detailed study on OU SV models based on Barndorff-

Nielsen and Shephard[10]. Of all these, Hull and White[47] and Heston[44] appear 

to be the most popular and influential through time. 

Hull cind White SV Model 

Taking the leverage effect into account, Hull and White[47] assume that the un-

derlying S and its variance V follow risk-neutral processes: 

dS = {r — q) Sdt + VVSdzs (3.3.1) 

(fy = + (3.3.2) 

where the mean-reverting rate 9, long-term variance rate VL, volatility of variance 

^ and elasticity parameter a are all constants, and the Wiener processes zs and 

Zy are correlated with coefficient p. 

Hull and White show that their model can produce both a smile and a skew 

in option implied volatility, and the result is quite consistent with the FX market 
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implied volatility pattern. Their study indicates that by assuming constant rather 

than the real stochastic volatility, Black-Scholes tends to overprice at-the-money 

or close to the money options, and under price deep in- or deep out-of-the-money 

options [47], They also provide the analytic formula for vanilla call option when p = 

0: CHW — /o°° c (y) g (y) dV, where V is the average variance rate, c (17) is the 

Black-Scholes price as the function of V, and g (V) is the risk-neutral probability 

density function. 

Heston SV Model 

Heston[44] points out that SV models assuming no correlation between volatil-

ity and the underlying asset (e.g. Wiggins [89]) can not capture the important 

skewness effect, which is generated by correlation. Compared with the Hull-White 

approach which has to rely on Monte Carlo simulation, he models the volatility 

rather than the variance and comes up with a general closed-form solution with 

the help of characteristic functions: 

dSt = jJ-Stdt + y/^Stdzi (3.3.3) 

dy/^t = ~l3y/^tdt 4- Sdz2 (3.3.4) 

where drift fj, and 13, volatility of volatility 5 are constants, the Wiener processes 

and Z2 have correlation p {dzidz^ = pdt). The volatility actually follows an OU 

process, which is used in Stein and Stein[85]. 

Heston guesses the Black-Scholes type solution for the vanilla options, and 

subsequent researches show that the general formula for FX options is: 

(t) = ,̂  ((̂ ) - (^)] (3.3.5) 

where (0) and P_ {4>) are the conditional cumulative probabilities that the 

option expires in-the-money, solved via the inverse Fourier Transform of the char-

acteristic functions. 

This closed-form solution is used to calibrate to market vanilla options, the 
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resulting Heston model can then be applied to price exotic options via a finite 

difference method or, using Monte Carlo simulation. 

CcJibration 

As mentioned in the literature review, it is quite common to estimate the para-

meters from a time series of historical data, using econometric techniques such as 

Generalized Method of Moments (GMM) and Monte Carlo (MCMC) simulation. 

In addition, Efficient Method of Moments (EMM) is also popular. These methods 

are used to fit the empirical return distributions to the marginal distributions, and 

suitable for intractable SV models. However, we cannot estimate the market price 

of risk. For those with closed-form solutions, a different smile-based method can 

be used: we can find the parameters by minimizing the sum of square of errors 

between the market and model implied volatility smile. For example, for Heston 

model, we need to solve the following optimization problem: 

mm 
K,9,a-,p,vo 

Y^(ai - (7i(K,0,a,p,vo)f (3.3.6) 
i=l 

where is the market implied volatility for a single maturity. Since market price 

of risk is embedded in the volatility smile, this method frees us from estimating it. 

3.3.4 Summary 

Empirical testing of SV models shows that they can fit the market implied volatil-

ity smile for the medium maturities quite well, but fail for the short and ex-

tremely long maturities[88]. In particular, such models tend to have difficulties 

in producing smiles steep enough to capture the short-term behavior of the mar-

ket implied volatilities, unless one assumes time-dependent parameters or large 

instantaneous volatilities. However, these remedies either generate a non-time-

homogeneous smile surface or become inconsistent. Rebonato[76] also points out 

that it is not practical to overcome this shortcoming by using a high reversion rate 

and a high volatility of volatility, which is not a "free parameter". Therefore, pure 

stochastic volatility models are not suitable for our modelling purpose either. 
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3.4 J u m p Model 

3.4.1 Introduction 

The FX market is quite sensitive to government policy and economic news. His-

torical market data of many currency pairs suggest that jumps usually occur in 

response to certain economic events. A jump model is devised to account for such 

possibility. 

Literature in this field shows that two different modelling approach can be 

used to capture the market character: A jump diffusion model specifies both the 

continuous and discontinuous components presented in the dynamics of the ex-

change rates, such as the well-known model by Merton[71], and Bates[13]; the 

Variance-Gamma (VG) model uses stochastic time-change to reflect the impact of 

unpredictable events, as introduced by Madan and Seneta[62]. We will analyze 

the these models in the next two sections. 

3.4.2 J u m p Diffusion Model 

A jump diffusion model is a mixture of jump process and Brownian motion diffu-

sion. Merton[71] provides one of the earliest descriptions of the jump process in 

option pricing, while Glasserman and Kou[40] look at its application in interest 

rate modelling. In the FX context, Lipton[58] gives a detail description of one 

special case in Merton's general model, namely the log-normal jump amplitude, 

and models the FX spot rate with the SDE: 

^ = (q! — Xk) dt 4- (rdzt -t- — l) dN^ (3.4.1) 

where the Poisson process Nt is assumed to be independent of the Wiener process 

Zt, and the logarithm of jump size is described as an i.i.d distributed random 

number J with the probability density / (J). The probability of more than one 

jump between t and t + dt is assumed to be negligible. A is the average number 

of jumps per unit time in the real world, — 1 is the percentage change in the 

exchange rate before and after the jump, and K represents the expected size of the 

percentage jump amplitude. One trivial advantage over the CEV model is that 
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the jump diffusion model is the same when switching between the domestic and 

foreign markets. 

Assuming that jump amplitude J is normally distributed, we can get the vanilla 

call option pricing formula: 

CjD {S, K, r , a, r, r f ) = ^ 
71=0 

n! 

with 

A' = = cr̂  + r„ = r + A - A' + 
T T 

Although Formula 3.4.2 results from the special distribution assumption, it is 

quite representative and can be used to analyze the implied volatility pattern of 

jump diffusion models. With certain experimental parameters, we evaluate implied 

volatilities for the call options, and the result is displayed in Figure 3.4.1. 

(3.4.2) 

, 71 (//+ 1/^/2) 

0.8 0,84 0.88 0.92 0.96 1 1.04 1.08 1.12 1.16 1.2 

Strike 

3M — — 6M ' - " 12M - - — ' 24M 

Figure 3.4.1: The J u m p Diffusion model implied volatility, with parameters: S = 0.95, 
(7 — 0.05, r = 0.05, rf = 0.03, A = 0.5, = 0.05, v = 0.1. 

It is obvious that the model implied volatility smiles for the long maturities 

tend to flatten out very quickly, which is not consistent with the market data, and 

thus is the main shortcoming of the pure jump diffusion model. 
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3.4.3 Variance G a m m a Model 

Introduced by Madan and Seneta[62], the Variance Gamma (VG) model is a pure 

jump model without a diffusion component, yet it can fit the current option prices 

time-homogeneously, as well as stochastic volatility and/or jump diffusion models. 

VG is financially motivated by the idea that "economic time", which is affected by 

the irregular arrival of unpredictable events, does not flow evenly. Mathematically, 

this is translated into a stochastic time change, i.e. using a mechanism to randomly 

accelerate or slow down time. Importantly, as normal time flows, this mechanism 

must always increase the time. A good candidate for this is the gamma process: 

7 = 7 (f; 1, z/), and the VG process is the Brownian motion evaluated at t = 

z (t; g, 0-, I/) = B ("y (t; 1, z/) ; 9, a) = (t; 1, z/) + dz ("y (t; 1, i/)) (3.4.3) 

where 6 is the Brownian motion drift, z is a Wiener process, and the mean 1 in 

the gamma process guarantees that when u = Q the new time 7 becomes the clock 

time t. 

One key property of the gamma process is that it evolves discretely through 

the time with high (low) probability for small (Igrge) increments. The increment 

g over a finite interval h, has the distribution: 

where F (x) is the gamma function. 

In their most important paper in the VG literature, Madan, Carr and Chang[64] 

systematically develop the VG framework and use it to model the logarithm of 

stock prices. According to their model construction, the VG process is a Brownian 

motion conditional on a particular time change g, thus it is normally distributed 

with density function ^{X \ g): 
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We can then get the unconditional density function ft (%) over the time interval 

t by using Formula 3.4.4 with // = 1 to integrate Formula 3.4.5 over all time 

changes: 

f OO 

Jo 
(3.4.6) 

ay/2'Kg 
exp 

" ' r ( i ) 

With the normally distributed variable X{t), Mandan et al [64] specify the 

risk-neutral process of the stock price at time t as: 

St SQ exp ~\~ X (tj ̂ rrh'i ^rm ^rn) ~t~ ^rn^] (3.4.7) 

where the subscript rn indicates that those are risk-neutral parameters, and = 

^ In (1 — OrnVrn — which is Set to ensure the equality between the ex-

pectation of the stock price return and the risk-neutral return. 

Due to its linear dependence on the stock price, the payoff has the same proba-

bility as X (i; a, v, 9), and the price of a vanilla call option with strike price K can 

thus be obtained by using Formula 3.4.6. Madan and Milne[63] further make use 

of the fact that the call price is normally distributed, conditional on the realized 

time change g, and give the Black price as: 

C{g) = (1 - ci)-exp 
g (a 4- g)"" 

$ + {a + s) (3.4.8) 

-Kexp {-rt) (1 - C2)" exp ^ + oi^/g 
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with 

« = (a, ( = s = 

s { K u 1 - Cg j 

V {a + s) va 2 

% = - - - 2 , % j 

The unconditional call price is finally calculated by numerically integrating 

over the density of g: 

(7yG(5%ar) = / (7(9)^i-r7Trd2 (3.<L9) 
Jo 

Using special functions, Madan, Carr and Chang[64] further develop a semi-

closed form formula: 

+ (3.4.IO) 

—Kex.-p{—rt)'^(d\f^—^,asA^ 
V y 1 — C2 u I 

with ci, C2 and d defined as before, and the probability distribution function 

^ (a, 6,7) is expressed in terms of the modified Bessel function of the second kind 

and the degenerate hypogeometric function of two variables, see Madan et al [64] 

for detailed description. 

We apply Madan and Milne's method using parameters estimated in Madan et 

al [64] to examine the volatility smile produced by VG model. The result in Figure 

3.4.2 shows that VG model can generate a steep enough volatility smile for short 

maturities, however, the smiles soon flatten out as the maturity increases. This is 

quite similar to what we have obtained from Jump diffusion model, indicating a 

general shortcoming of jump models. 
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Figure 3.4.2: The Variance G a m m a model implied volatility, with parameters: S — 105, 
r — 0.05, a = 0.1213, 0 = —0.436, ly = 0.1686. 

3.4.4 Summary 

With different mechanisms, both Jump diffusion and Variance Gamma models 

can capture the jump feature in the FX market, which appears as heavier left 

and right tails compared with the Black-Scholes model. This explains the growing 

popularity of jump models in FX and credit derivative modelling. 

In contrast to the SV model, the Jump diffusion model generates deterministic 

future smiles which are independent of the future realization of the underlying 

price, because of the memoryless property of the Poisson process. It is then left 

to market reality and the trader's view to justify whether this is an appealing 

property. The VG model also produces perfectly deterministic smiles. However, 

as pointed out by many researchers and revealed in our numerical studies, implied 

volatility smiles produced by jump models tend to flatten out too rapidly, although 

the short-term skews are closed to those in the market. Therefore, pure jump 

models cannot fulfill the modelling demand of generating realistic market volatility 

smiles. 
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3.5 Combined Model 

3.5.1 Introduction 

The review of three popular FX smile modelling approaches leads us to the conclu-

sion that although they are each appealing in some way, their disadvantages pre-

vent them from being adequate individually. Therefore, the direction of research 

towards unifying volatility model, i.e. combining the models to take advantage of 

them, has been in the literature for a while. Bates[13] examines stochastic volatil-

ity model with jump, the most common practice in model unification. Carr et 

al [27] produce a leverage effect by specifying correlation between the jumps and 

the stochastic volatility factor in their time-changed Levy processes model. Fur-

thermore, Britten-Jones and Neuberger[20] combine the local volatility, stochastic 

volatility and jump-diffusion models, Albanese and Kuznetsov[2] prove that the 

mixture of the three volatility models can capture the complex features of exotic 

option prices in a tractable way. We will briefly review the most representative 

Bates[13] model. 

3.5.2 Bates Model 

Bates[13] model combines the Heston[44] stochastic volatility model and the Merton[71] 

jump diffusion model: 

— Xk) dtWdz + kdN (3.5.1) 

dV = (a — PV) dt + a^VVdzy 

cov {dz, dzy) = pdt 

Xdt, In (1 -|- /c) ~ În (l -I- fc) — — prob {dN = 1) 

where fi is the instantaneous expected appreciation of the FX rate, A is the annual 

jump frequency, k is the random jump intensity conditional on a jump occurring. 

It generalizes the stochastic volatility model 3.3.3 by adding jumps dN, or gener-

alizes the jump diffusion model 3.4.1 by allowing the diffusion volatility y/V to be 

stochastic. Skewness can be captured either by the non-zero correlation p between 
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FX rate and volatility process, or by non-zero average jumps. Excess kurtosis 

can be generated by the volatility of volatility or sufficient jumps. Therefore, the 

disadvantage of one individual modelling approach can be compensated by the 

other: at short maturity, the steep smile pattern can be captured by the jump 

diffusion, while at the longer maturities, it is generated by the stochastic volatility 

specification. 

Bates obtains the pricing kernel by firstly solving the moment generating func-

tions Fj then applying the inverse Fourier transform to the complex-

valued characteristic function Fj (i^lS'ojT). However, the model suffers from cer-

tain deficiencies, the most severe of which is the parameter instability, especially 

with the term structure of implied volatilities. The model also fails to capture the 

different skewness across various maturities. Reasonable extensions or different 

modelling approaches are desired. 

3.5.3 Summary 

Combined models, by taking advantage of different individual models, can pro-

duced some of the implied volatility surface properties that fit the market ob-

served data. However, there are many issues regarding the appropriateness of the 

combination and numerical implementation. For example, currently, the degree of 

mixture between the stochastic volatility and jump diffusion is still an important 

topic in consistently pricing exotic options. These richer models are usually very 

difficult to implement. 

In addition, the combination of stochastic volatility and jump diffusion can 

generate only deterministic skewness for the risk-neutral distribution. The skew-

ness in the market, either observed by its proxy - risk reversal, or implied from the 

quotes as shown in Part I, is actually stochastic. The ability of a model to capture 

this important feature is quite desirable. Within the existing combined models 

framework, we can obtain stochastic skewness by either randomizing the mean 

jump size (k) or the correlation between FX rates and increments in volatility (p), 

yet neither of these are tractable. 

The deficiencies of the combined models and the difficulties in their extension 

lead us to escape the constraints of the current framework and look at the modelling 
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approach in a more general way, as well as to search for a more 'novel' idea in model 

specification, which can fit the market data well and produce a consistent volatility 

smile surface. 

3.6 Carr's Stochastic Skewness Model 

3.6.1 Model l ing Stochastic Skewness - Motivat ion 

Main Sources of Uncertainty 

From the previous reviews and market observation, we can recognise at least three 

sources of uncertainty in FX rates and their implied distribution. These need to 

be considered and reflected in currency option pricing. The first source is the 

stochastic exchange rate process, which gives the random risk-neutral mean. The 

Black-Scholes/Garman-Kohlhagen model, which assumes constant volatility and 

interest rate, can account for this underlying uncertainty. The second source, 

stochastic volatility, is widely observed in the market from either historical time 

series data or implied from option quotes, and has become an essential requirement 

in modelling. Both stochastic volatility models (e.g. Heston[44]) and combined 

models (e.g. Bates[13]) can handle this issue in addition to the first and generate 

deterministic skewness. The third source is stochastic skewness, which reflects the 

random movement of the risk-neutral distribution asymmetry over time. Carr's 

model aims to address all three sources of uncertainty with tractability. 

Evidence of Stochastic Skewness 

From Figure 2.4.3 in Chapter 2, the skewness of the implied risk-neutral distribu-

tion is indeed stochastic. Alternatively, to avoid any distortion due to numerical 

instability, we can directly examine the market quote for risk reversal, which is 

a proxy for skewness. Figure 3.6.1 shows the historical quotes for a 25-delta risk 

reversal and strangle, in two currency pairs. 

It can be observed that the risk reversal, which measures the skewness, varies 

randomly over calendar time. Thus the skewness of the risk-neutral distribution is 

stochastic and needs to be built into the model. It is interesting to point out that 
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Figure 3.6.1: 1-Month 25-delta Risk Reversal and Strangle (Daily Da ta from 19/10/04 

to 19/10/05) 

the strangle, as a proxy for kurtosis, is quite stable over time, which contradicts 

the calculated kurtosis of the implied distribution. Due to the possible numerical 

instability of Malz's method, it is better to rely on the strangle observation and 

conclude that kurtosis is stable enough to be excluded as a source of uncertainty. 

3.6.2 Generalized Modell ing Approach 

Instead of struggling in the tractability of the combined model, Carr and Wu[25] 

suggest looking at the option pricing issue in a more general framework, i.e. the 

wider class of Levy Processes. 

Levy Processes 

To generate an empirical non-Normal distribution for log returns of most financial 

assets more flexible stochastic processes, which generalize Brownian motion, are 

needed. Such processes, with independent and stationary increments, which give 

general infinitely divisible® distributions, are called Levy processes. 

Definition 3.6.1 A stochastic process in M is called a L6vy process if: (Xt) 

starts at zero and has independent and stationary increments, and the trajectories 

^If, for every positive integer n, the characteristic function of distribution (j) (u) is also the nth 
power of a characteristic function, the distribution is infinitely divisible. 
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of {Xt) is cadla^. 

For example, the arithmetic Brownian motion (ABM) is the only continuous 

Levy process; the compound Poisson process, the pure jump Gamma process, and 

the generalization of pure jump CGMY[27] are all Levy processes. 

One of the key concepts in Levy processes related calculation is the character-

istic function: 

Definition 3.6.2 The characteristic function (j) of a distribution, or a random 

variable X, is the Fourier transform of the distribution function F {x) — P {X < x) : 

/

+00 

= (3.6.1) 
-OO 

Equivalently, it can be defined as the Fourier transform of the probability 

density function (PDF) q (x): (u) = (x) dx — E . 

In option pricing, the pricing kernel g (x) is actually the discounted risk-neutral 

PDF. The price Vq of a claim paying / {XT) at maturity T can be obtained via 

risk-neutral valuation: VQ = f {k) g [k) dk. 

From the Inverse Fourier transform theorem, we can express the payoff function 

in terms of its Fourier transform: / (^) = ^ {u) du = (j)f {—u), thus 

Vo can be recalculated as: 

/ +00 1 r+oo 

- - / (3X12) 
• OO j — OO 

1 f~ °̂° 
= <pf{u)(l)g{-u)du 

Here (—«) = BQ (T) (—%), which is the product of the discount factor and 

the characteristic function. 

The option pricing problem is thus rephrased in terms of the characteristic 

function and the Fourier Transform. As long as the characteristic function is 

®In mathematics, a cadlag function is a function defined on K (or a subset of R) that is 
everywhere right-continuous and has left limits. Cadlag functions are important in the study of 
stochastic processes that include (or even require) jumps, unlike Brownian motion, which has 
continuous sample paths. 
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available in a closed form, the option price can be evaluated either in closed form 

or semi-closed form via a fast Fourier transform. Levy processes, which provide 

more general and flexible model specification, are specified directly in terms of the 

characteristic function of the stochastic variable via the Levy Khintchine Theorem. 

These processes open a new route to tractability for complicated models, which can 

generate stochastic volatility and skewness from the specification of characteristic 

functions. 

Levy Khintchine Theorem 

Theorem 3.6.3 All Levy processes have a characteristic function: 

JT [e'"*"*] == Z :> 0 (3.6XS) 

where the characteristic exponent [u) is given by: 

ip (u) = iau — + J — l) ^ {dx) 

R - { 0 } 

The Levy process is specified by the Levy triplet {a, a), namely the diffusion 

coefficient (constant volatility) a, the Levy measure i {dx) and the constant drift 

rate a. 

Without any restrictions. Levy processes can go negative, while in practice 

futures prices must be nonnegative. Therefore, it is better to start with the as-

sumption that the log of futures price relative, is a Levy process which initiates 

from 0: Xt = In {Ft/Fo). To avoid arbitrage, the futures price Ft = F^e^* must be 

a positive martingale under the risk-neutral measure. 

Assume there is another Levy process Lt, which has 0 drift and the sample 

path of its jump component has finite variation. By the Levy Khintchine theorem, 

we have: 
t 

E = 
/ ( e « " = - l ) £ ( d x ) 

!R-{0} = (3.6.4) 

^°The Levy measure i{dx) describes the arrival rate of jumps of size {x,x-\-dx). It should 
be nonnegative and no measure for the origin: I ({0}) = 0, and integrate x^ around the origin; 

f (dx) < oo. 
3t-{0} 
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where: ^ (tf) = - In ̂  = ^ - / (e*"' - 1) ^ (((z). 
!R-{0} 

Assuming finite expectation and evaluating the characteristic function 3.6.4 at 

u = —i, we get: 

E[e^'] = (3.6.5) 

E [e*^(-')+^] = 1 

Let b = tp (—i) = —^ — f — 1) i {dx), and Xt = bt + Lt is then a L6vy 
R-{0} 

process with being a positive martingale starting at 1. The spot price thus has 

the desired risk-neutral martingale property: 

(3.6.6) 

From the above analysis, we notice that the characteristic function of Xt is 

determined by the characteristic exponent ijj (u), which is determined by the Levy 

measure i{dx). Model tractability then comes from carefully choosing i{dx) so 

that J (e'"^ — 1)£ {dx) can be evaluated in closed form, resulting in a closed 
3 ? - { 0 } 

form characteristic function. 

Subordination 

In general, there are three methods to define Levy processes parametrically, namely 

subordination, direct measure specification and specifying the density of incre-

ments to be infinite. In Carr and Wu[25], as well as CGMY[27], stochastic volatility 

is obtained by using stochastic time as the subordinator. 

Definition 3.6.4 The Levy process with monotonic increasing paths is called 

the subordinator. Let {0,i,b) be a generating triplet for Zt, then for each u < 0 

moment generating function of Zt has a form: E where l{u) = 

bu 4- (e"® — 1)1 {dx) is called the Laplace exponent. 

A new Levy process Yt can be generated by subordinating the Levy process 

Xt{a,i,a), of which the characteristic exponent is ip{u), with the subordinator 
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Zt{0,i,b), of which the Laplace exponent is l{u). The resulting characteristic 

function for Yt = Xzt is: 

E (3.6.7) 

Prom the definition, Levy processes have independent and stationary incre-

ments, hence squared returns are also independent. However, empirical research 

shows the opposite. Subordination has to be used to generate correlated incre-

ments. The most natural choice of subordinator is the time, thus the term 'Time-

change'. Stochastic time-change means using a stochastic clock with correlated 

increments as the subordinator, consequently, the Levy processes run on such a 

clock will inherit the correlation in their increments. 

Let T be a subordinator independent of the Levy process Xt, for Yt = Xr, the 

characteristic function is: 

(3 6.80 

= E 
= 

where Lrt (V'x (•")) the Laplace transform of time Tj, evaluated at the character-

istic exponent of Xj. A closed form characteristic function is then available if both 

the Laplace transform and the characteristic exponent have closed form solutions. 

Time-Change and Stochastic Volatility 

For European options valuation, only total variance through the lives of the options 

matters, thus we can obtain stochastic volatility by randomizing the time on which 

the process is run, and the total variance is measured. The Heston[44] model can 

be viewed as stochastically time-changed Brownian motion: 

= { ' ' 'd-rf) t + WTt --^Tt, vt = ( 3 . 6 . 9 ) 

dvt = k{6 — Vt) dt 4- ayy/^tdZt, dWtdZt = pdt. 

where WT^ is the time-changed Brownian motion, and the stochastic time-change 

is Ti = f^v^ds. 
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For more general Levy processes, stochastic volatility can be similarly induced 

by stochastically time-changing a Levy martingale. 

Stochastic Skewness 

From the characteristic function definition of the Levy Khintchine theorem, it can 

be seen that Levy processes have a continuous component and a jump compo-

nent. In modelling, it is more convenient to place the infinite activity in the jump 

component rather than in the continuous counterpart, because of the flexibility in 

jump process. For example, we can model the up and down moves separately and 

independently within finite variation. Taking advantage of this flexibility, Carr and 

Wu[25] model the positive and negative jumps separately using two independent 

Levy martingales, so as to get skeWness, and the stochasticity in both volatility 

and skewness is induced by time-changing the two Levy martingales. 

~ ~ '''/) ^ + (-^r« ~ (3.6.10) 

L^r — = a'\J^dW^ + J — 1) {dx, dt) — (x) dxv^dt] <— Right skew 

L^l — + J (e® — 1) [iJ,^ {dx, dt) — (x) dxv^dt] Left skew 

is a Levy martingale that generates positive skewness via a combination of 

diffusion and positive jumps, and is the Levy martingale that generates the neg-

ative counterpart. These two can generate the short-term smile effect in a implied 

volatility surface. Random clocks and subordinating the two Levy martin-

gales determinate stochastic total volatility — \T^ + T/"] and stochastic skewness 

(measured by risk reversal) — [T/̂  — T/"], thus the smile will persist, reducing the 

convergence to the normal distribution due to the Central Limit theorem. and 

are determined by the parameters of the two time-changed Levy processes re-

spectively. In addition, the market observed positive correlation between changes 

in risk reversal (ARR) and underlying returns can be captured by correlating the 

clock-driving Brownian motion and the Levy diffusion component. 

In the detailed expression, fj,^ and are the counting measures assigning mass 

to the positive and negative jumps respectively. The Levy density k^ (x) has the 
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range x E (0,oo), while (x) has the range x G (—oo,0). The activity rates, 

and v^, follow mean reverting square root processes and are chosen to have long 

run means of one: 

(3.6.11) dv![ = K(1 — vl) dt + a^y v^dZ^, j = R, L. 

3.6.3 Option Pricing under Stochastic Skewness 

Choice of Levy density k (x) 

In order to get a closed form characteristic function, the Levy density k (x) has to 

be wisely chosen. Carr and Wu[25] suggest using the simple yet flexible exponen-

tially dampened power law to model the Levy density^ 

|2.|a+i) a? > 0, ^ (z) =< 
0, X < 0. 

0, z > 0, 
_M 

A |x c + l 
(3.6.12) 

For both up and down jumps, the model uses the same parameters (A, VJ) G M"*", 

and the parameter a, which determines the fine structure of the sample paths, is 

set to be less or equal to 2 for parsimony^ The characteristic exponents for the 

Levy jump components Lf — and ~ are calculated as: 

Right: 

Left: 

^ ^ + A r ( - a ) 

—mAF (a) 

^ f + A r ( - a ) 

—mAF (a) 

2 
VJ 

1 - 1 
VJ 

2 
VJ 

LU 

VJ 

iT-
+ 1 

VJ 
+ iu 

(3.6.13) 

where ip^ = {iu + u^). 

^^This specification comes from CGMY[27], which captures much of the market observed 
evidence in equities and exchange rates. 

^^The condition a < 2 is necessary to maintain finite quadratic variation. 
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Therefore, the integral in the returns characteristic function: 

y ^ (3.6.14) 

SR-{0} K-{0} 

can be evaluated in closed form. 

Complex Change of Measure 

According to the subordinator properties, if the two LAvy processes are indepen-

dent of the stochastic clocks, i.e. the underlying processes are independent of 

the subordinators, the characteristic function of the return, which is the Laplace 

transform of the time evaluated at the characteristic exponent (as shown in for-

mula 3.6.8), can be obtained in closed form. In Carr and Wu[25]'s model, however, 

the Levy processes are correlated with the stochastic clocks so as to generate posi-

tive correlation between ARR and returns. According to Carr and Wu's previous 

paper[24], this correlation induces a new measure, which is defined as a complex-

valued exponential martingale, to get the form of a Laplace transform for the 

stochastic clock: 

dM, 
exp zu LrpL (3.6.15) 

Just as the change from P to Q builds risk aversion into the probabilities, the 

change from Q to M incorporates the required correlation into the probabilities. 

Under this measure, the characteristic function of the log return can be calculated 

as: 

_ g«u(rd-ry)t^ 

_ ^IU(RA-RF)TJ^M 

(3.6.16) 

Since the activity rates are chosen to follow the special processes as in formula 
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3.6.11, the Laplace transforms for the stochastic time are exponential affine: 

(ifj) = exp ( -6^ (t) (t) - {t) {t)) , (3.6.17) 

where: 

y (t) 

c)'(t) 

rf 

(l.-

2R)^ — {RJ^ — (l — ' 

K 

2alip\ = K — iup^aay, j = R,L 

Therefore, the characteristic function 3.6.16 for exchange rates returns is avail-

able in closed form. 

Parameters Estimation 

Model parameters are estimated using quasi-maximum likelihood method. To cap-

ture the time-series dynamics of implied volatility, the exchange rates returns and 

activity rates dynamics must be specified under the objective measure P. Using 

an unscented Kalman filtering method^^, which can generate efficient forecasts and 

updates on the conditional mean and variance for both states and measurement 

series, Carr and Wu[25] construct the likelihood function based on the assumption 

of normally distributed estimation errors: 

N 

^ 4+1 (0) (3.6.18) 
T=I 

— —2 ^2 (ivt+i ~ yt+i)^ {vt+i — yt+i)j 
T=I 

Kalman filter is a recursive estimator which can estimate the current state of a dynamic 
system with only the estimated state from the previous time step and the current measurement. 
Compared with the widely used Extended Kalman Filter (EKF), the Unscented Kalman Filter 
(UKF) avoids the linearization steps by using a set of discretely sampled points that can capture 
the mean and variance of the state distribution. UKF is more efficient and accurate than EKF 
in nonlinear estimation. See Julier and Uhlmann[53]. 
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where G is the parameter set, and {yt}t^i is the time series data set. 

3.6.4 Summary 

Carr and Wu[25]'s stochastic skewness model can, in principle, capture the key ob-

served features of an implied volatility surface across both moneyness and maturity 

over time. The advantage is easily seen from the results of both the log likelihood 

ratio test and the root mean squared pricing errors. In both tests, the model 

outperforms the 'traditional' models like Heston's stochastic volatility model and 

Merton's jump diffusion model. 

However, for tractability, several assumptions are made about the parameters 

of the complicated time-changed Levy processes, which restrict model flexibility 

in capturing the asymmetry on FX rate distributions, and more importantly, flex-

ibility in calculating exotic options prices. 

The parsimony of this model is achieved by assuming asymptotic conditional 

symmetry in the return distributions, resulting in using the same parameters for 

both the positive and negative Levy components. This assumption can be strongly 

rejected for emerging market exchange rates. Estimation using different parame-

ters displays large standard errors, thus such an extension requires further research. 

The bigger issue comes from the fact that the analytical tractability of this 

model only exists for European options. For the increasingly actively traded ex-

otic options, whether the necessary pricing formulae, in terms of characteristic 

functions, are available in closed form or semi-closed form is still unknown to the 

authors. It is clear that any small changes in the option payoff functions will 

induce technical difficulties in getting the characteristic function. 

3.7 Summary 

Our review of the main models demonstrates that the individual models fail to 

capture the various features of a FX implied volatility surface, while combined 

models and the L6vy processes based model suffers from a lack of tractability. We 

need a model that can capture the statistical features of the volatility surface and 

that is flexible enough to be extended to price exotic options. 
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Chapter 4 

Spectral Methods in FX 

Modelling 

4.1 Introduct ion 

Stochastic skewness in the risk-neutral distribution of FX log returns, as displayed 

and discussed in both Chapter 2 from the implied PDF and Chapter 3 from the 

time series data of risk reversal (as the skewness measure), is the extra uncertainty 

that needs to be modelled in addition to the stochastic underlying and the volatil-

ity. However, it can not be specified explicitly, as with the stochastic volatility 

process, because this may induce internal model arbitrage. The dynamics of a 

model have to be rich enough to capture the stochasticity in skewness intrinsi-

cally so as to be arbitrage-free. The combined models can not tackle this with 

tractability. 

Carr and Wu [25] go beyond Brownian motion and jump diffusion, and pro-

pose using Levy processes which is defined by a characteristic function, thus the 

Fourier transform and the Laplace transform could possibly achieve tractability 

given the complicated model specification. They use two Levy processes to model 

up and down jumps separately, and capture the stochastic volatility and skewness 

by randomizing the time underneath. However, the analytical tractability of such 

a model is restricted to pricing only vanilla options. 

In the area of stochastic calculus, there are many technical difficulties likely to 
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arise in the development of a proper and flexible model. Albanese and Mijatovic[4] 

thus innovatively move away from the stochastic calculus framework, which has 

dominated the mathematical finance ever since Black, Scholes and Merton pub-

lished their seminal paper, to spectral theory and functional analysis. This new 

modelling framework is naturally built on the continuous-time lattice, one of the 

efficient numerical methods that can handle lots of exotic structures simultane-

ously. Therefore, one only need to focus on the model specification to capture 

various features of implied volatility surface, then the pricing task is relatively 

straightforward. 

The main idea of this new method is to choose a generator of the Markov chain 

so that in the limit of an infinite number of states, it converges to the generator 

of the underlying continuous process. As proved by Albanese and Mijatovic[5], 

under the Black-Scholes model, the probability kernel of the process in the dis-

crete state-space converges to the PDF of the continuous state-space at the rate 

of O {H?)I and delta and gamma converge at the same rate as option prices under 

a certain discretization scheme. The model starts from specifying the FX forward 

rates by the CEV process, described by a corresponding Markov generator, which 

is discretized to be applied on a continuous-time lattice. Jumps are then added to 

capture the short-dated skew and a stochastic volatility process is specified to gov-

ern the switch between different local volatility regimes, thus obtaining stochastic 

volatility and stochastic skewness simultaneously. 

We will firstly review the essential mathematics of the continuous-time Markov 

generator and functional analysis in spectral theory in Section 4.2. The model is 

explained in Section 4.3, with vanilla option pricing and Greeks in Section 4.4. 

Calibration is carried out for two currency pairs in Section 4.5. 

4.2 Generating Function in Spectral Theory 

4.2.1 Continuous-t ime Markov Generator 

A stochastic process is Markovian if the conditional probability distribution of the 

future states only depends on the current state and not any of the past states. 

Due to the central role of conditional probability in derivative pricing, the Markov 
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property provides a mathematically convenient tool. 

Definition 4.2.1 The stochastic process {Xt}t>o^ which takes values in some count-

able state space 0., has the Markov property if 

P i^tn — y\^ti — — Xn—l) = P = y\Xt„-l = a^n-l) 

for all y,xi, - • • , Xn-i E Q and any sequence of times ti < t2 • • • < tn-

One well-known example of Markov process is stock prices under risk-neutral 

measure. Another concept closely related to conditional probability is the transi-

tion probability. 

Definition 4.2.2 The transition probability p {x, s; y, t) is defined as: 

P(^)<51 Y^I) — P{XT = Y\XS ~ X) 

for any x,y ^ Q, and s < t. The set of all transition probabilities for fixed time s 

and t is called the Markov probability kernel. 

The Markov chain is called time homogeneous if: 

P {Xt = y\Xs = x) = P [Xt-s = y\XQ = x) 

for all s, t, X, y. In this framework, we assume all Markov chains are time homoge-

neous. 

Let Pt be an N X TV matrix with Pi (x, y) = p {x, 0; y, t), the family {Pt : t > 0} 

is called the transition semigroup of the chain Xt. 

Theorem 4.2.3 The family {Pj : t >0} is a stochastic semigroup which satisfies 

the following conditions: 

1. Po==I, the identity matrix. 

2. Pi has non-negative entries (i.e. p {x,0]y,t) > 0 for all x,y 

3. Pi has row sums equal to 1 (i.e. ^ p {x, 0; y, t) = 1 for all x E Q,). 
yen 
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J^. P( satisfies the Chapman-Kolmogorov equation (i.e. Pt+s = PtPsj. 

The proof of this theorem is shown in Appendix C. 

The Markov generator can be defined, conditional on the assumption of con-

tinuity of the transition probabilities p {x,0-,y,t) with respect to time t, for all 

x,y EO,. 

Definition 4.2.4 A stochastic semigroup {Pt} is called standard if 

limPt = I, 
T—^0 

equivalently, 

limp {x,0-,x,t) = 1, for all X E 

]imp{x,0;y,t) = 0, for all x,y E fi,x ^ y 

The semigroup is standard if and only if its elements p {x, 0; y, t) are continuous 

functions of t. 

In order to understand the local behaviour of a Markov chain, we need to 

understand the behaviour of the Markov probability kernel p{x,0-,x,t) for small 

time interval St. 

Assuming the probability of two or more jumps in the time interval (0,5t) is 

o((5t), two scenarios can be identified^: (1) Nothing happens, with probability 

p(x,0]x,dt) + o{St), the error term caters for the possibility that the chain may 

move out and then back to state x; (2) The chain moves to state y, with probability 

p {x, 0; y, 6t)+o {5t), the error term now accounts for the possibility of several jumps 

occurring within 6t. 

Theorem 4.2.5 For the standard stochastic semigroup {Pt}, there exists an N x 

N matrix C — C{x, y) such that the following holds for small time interval St: 

1. p {x, 0; y, St) = C{x, y)St + o (St), for all x,y E Q,,x ^ y. 

' 2. p {x,0-,x,St) = 1 + £{x,y)5t + o (St), for all x E Q. 

^ For detailed proof, see Grimmett and Stirzaker [41]. 
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The matrix £ is called the Markov generator of the semigroup {Pt}, a proof 

of its existence can be found in Chung [28]. 

Corollary 4.2.6 Let x,y G f2 and L be the Markov generator of the Markov chain 

X. Then the following holds: 

1. 0<C{x,y)<ooifx^y. 

2. —oo<C(x,y)<Oifx = y. 

3. All row sums equal to 0. 

Therefore, for square matrix C, all the elements off the diagonal are nonnega-

tive, while all the elements on the diagonal are non-positive. This theorem gives 

us an intuition into the relationship between Markov generator and the transition 

probability. In derivative pricing, the exact functional relationship is established 

by Kolmogorov's equations. 

Theorem 4.2.7 (Kolmogorov's equations) Let {Pj} be a standard transition semi-

group with a Markov generator C, then it is a unique solution to the: 

1. forward equation: P^ = Pt£, 

2. backward equation: P^ = £Pt, 

subject to the boundary condition Pq = I Furthermore, we can express P^ 

in the following way: 

]>, = I t Z ! = e'f (4.2.1) 
^—/ r>,\ „ n! 
n = 0 

Formula 4.2.1 provides the functional form of the conditional probability den-

sity function for the Markov chain in terms of the Markov generator, on which 

the pricing model is specified. Therefore, we can summarize the properties of the 

Markov generator: 

Corollary 4.2.8 A real N x N matrix C = C{x, y) is a Markov generator of a 

semigroup P^ = if and only if 

C. {x, y) >0 for x ^ y and C {x, y) = 0 for all x. 
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4.2.2 Essential Principles in Functional Calculus 

In the modelhng process, we need to calculate various functions of the Markov 

generator £, which is a real matrix (a linear operator). Functional calculus, as a 

theory allowing one to apply mathematical functions to mathematical operators, 

is then required. 

Assume L is defined on the N-dimensional Euclidean space , and admits a 

complete set of eigenvectors such that it can be expressed as £ = UAU~^, where 

A is a diagonal matrix with eigenvalues Aq, • • • , A^r: 

Âg • • • 0 ^ 
A = ; • • . • 

^0 • • • Ajv J 

The matrix U maps eigenvector zf, (associated with eigenvalue A*) into the zth 

element for each index i in {1, • • • , TV}. 
Let (j) (x) be a real function of a real variable x, given by its Taylor series 

OO 
<p(x) = UnX"'. If the convergence radius of the series is larger than the norm of 

n = 0 

£, one can define: 

OO 

== On/:" (4.2.2) 
n = 0 

OO 

n = 0 

/ OO 

U U-' 

\n=0 J 

U(T> (A) U-^ 

Formula 4.2.2 is the basis of functional calculus, which plays a key role in this 

framework for the Markov generator. 
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4.2.3 Exponential and Normal i ty of Markov Generator 

According to formula 4.2.1, the transition probability matrix Pf is calculated as 

the exponential of the Markov generator. In practice, there are many methods for 

calculating the exponential of a matrix, including the matrix eigenvalues, approxi-

mation theory, the matrix characteristic polynomial, and differential equations, as 

reviewed by Moler and VanLoan[72]. 

Matrix Diagonalization and Normality 

Albanese and Mijatovic[4] use the matrix diagonalization method and apply the 

functional calculus formula 4.2.2. The key is to find an A for which is easy to 

compute, and: 
0 \ 

\ 0 • • • y 

However, the validity of this method depends on the symmetry, or normality, 

of matrix £. In linear algebra, matrix A is symmetric if: — A, where is the 

matrix transpose. The finite-dimensional spectral theorem is concerned about the 

property of this type of matrix: 

Theorem 4.2.9 Any symmetric matrix whose entries are real can be diagonalized 

by an orthogonal matrix. In other words, the eigenvectors of a symmetric matrix 

are orthogonal. 

If £ is not symmetric, i.e. £ does not have a complete set of linearly indepen-

dent eigenvectors, we cannot diagonalize it as £ = because any round-off 

errors from eigenvalue computation will be magnified in the calculation for 

Therefore, we need to check the symmetry of £ first. Since a symmetric real ma-

trix is a normal matrix^, several measures for matrix normality can be used. For 

example, the condition number, defined by k = • ||v4|| in any consistent 

norm, indicates nonnormal matrix when it is large. Another measure, pseudospec-

tra, is introduced by Trefethen[87]. It looks at the eigenvalue movement on the 

real matrix is normal if: A = AA^ . For a symmetric matrix, A^ = A, thus it is 
natually a normal matrix. 
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pseudospectrum space, at the perturbation of a small positive number e. A matrix 

with large condition number is not normal. But the rule for 'how large is enough' 

is not clear. In comparison, the decision rule for pseudospectra is quite clear and 

straightforward. In the model building section, we will use the EigTool software 

designed by Wright [91] to get the pseudospectra for the Markov generator in this 

model, and analyze the relevant matrix normality. 

Scaling and Squaring 

For a non-normal matrix, the exponential has to be calculated by alternative meth-

ods (see [72]). One of the most effective methods, which is used by Matlab, is called 

scaling and squaring, based on a Taylor or a Fade approximation. We propose us-

ing this method to replace the diagonalization scheme in the original paper when 

it is necessary, so as to achieve robust results and improve efficiency. 

In a small time interval 5t, the transition probability matrix can be approxi-

mated by a first-order Taylor expansion: 

where I is the identity matrix, and the error is of order 

As C is time homogeneous, PT can be approximated by: 

•Pr ~ 

where ^ is an integer. The method can be quite reliable and efficient if an integer 

m just larger than ^ is chosen so that is a power of 2, thus PT can be calculated 

by repeated squaring. 

To implement this algorithm, we firstly need to choose a time interval t, which 

is small enough so that Pt, calculated by Taylor expansion 4.2.3, satisfies all four 

conditions specified in Theorem 4.2.3. Then an integer n is found such that 2" 

is just larger than the value j . Finally a new small time interval r = ^ is used 

in Formula 4.2.3 to get the transitional probability matrix PT, and PT can be 
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calculated by repeated squaring: 

P2T = PT- PT 

PIT = P^T • P2T 

P t — P{n—1)T ' P{n—1)T 

where n = logg (^) times of matrix multiplication is computed. 

A New Algorithm 

Clearly, if T is large, the computation time is long. In calibration, however, we 

have to calculate the transitional probability matrix for maturities ranging from 1 

week to 5 year. If the above methodology is applied to each maturity, the program 

will be very inefficient. 

Based on the time homogeneous property of £, we develop an innovative al-

gorithm, which uses the calculated PT for the previous maturities, and minimizes 

the matrix multiplication time. We start with the smallest maturity available, 1 

week, for which we use the full Scaling and Squaring method to obtain Piw, then 

P2W = Piw • Piw- For 1 month, we can make use of Piw and Pzw-, the rest of the 

time interval (31 — 7 — 21 = 3 days) is small enough to use Scaling and Squaring 

again in a fraction of the time (for just a few matrix multiplication), and the final 

result is the product of these three matrices. 

This algorithm makes maximum use of the calculated probability matrix, so 

that the need for duplicated matrix multiplication is minimized and the whole 

routine is efficient. 

4.3 Mode l for the F X Rates 

The FX spot rate Xt is described by a stochastic process with local volatility, 

jumps and stochastic switching between different volatility regimes, which is trig-

gered by FX rate getting certain levels. Assuming that both domestic and foreign 

interest rates are deterministic functions of time, r'^ {t) and {t) respectively, the 
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actual modeled quantity is the FX forward rate: Ft — since it is 

numerically more convenient to simulate a driftless stochastic process (i.e. Martin-

gale) on a lattice. The building block is the Markov generator, for which functional 

analysis is applied. 

4.3.1 The Conditional Local Volatility Processes 

Markov Generator for the CEV Process 

The model consists of m local volatility regimes^. It starts with specifying a 

local volatility process in one regime a, which governs the local dynamics of the 

forward rate Ft- CEV is chosen for modelling Ft, which is defined by the following 

stochastic differential equation (SDE): 

dFt = Va (Ft) dWt, where (Ft) = max (4.3.1) 

where Wt is the standard Brownian motion, and contents cTq,, and a a are 

determined by calibration for each regime a. The parameter a a is relevant to 

the size of the instantaneous variance of the process in 4.3.1, and o-q, is used to cap 

the local volatility. 

In order to carry out economically sensible calibration with a view to the market 

pricing, it is worth noting the influence of in skewness. = 1 will give the 

Black-Scholes case, in which the smile is flat. If < 1, the implied volatility is a 

decreasing function of strike, or equivalently, the risk-reversal is negative. In the 

case when I3^> 1, the risk-reversal becomes positive, making the implied volatility 

surface slop upwards. 

Since the probability kernel of a diffusion process can be expressed in terms of 

Markov generator, the above CEV process has the following differential operator 

(Markov generator), for any twice differentiable real function u of F: 

(£„«) (F) = (F) (4.3.2) 

3 The original paper uses only 5 volatility regimes to calibrate the market implied volatility 
surface, and empirically demonstrates the adequacy. 
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The transition probabihty density function p (G, t; F,T) = P {FT = F\Ft = G) 

is the solution of the backward Kolmogorov PDE: 

+ Cp = 0 (4.3.3) 

with boundary condition p (G, T; F,T) = d {G — F), where S (x) is the Dirac delta 

function''. This PDE implies that all the information needed to obtain p (G, t; F, T) 

is contained in the Markov generator defined by 4.3.2. 

To get enough flexibility in pricing both vanilla and exotic options, the model is 

built on the continuous-time lattice. From the definition and properties of Markov 

generator in the last section, we can see that it is easy to generalize it to this 

situation. Firstly, discretization of the forward rate is needed so that a lattice 

can be built to approximate the process by a natural discretization of the Markov 

generator La- Let fZ be a finite set {0, • • • , # } which contains the first N integers 

with 0, and let F : —> E be a non-negative function satisfying the following two 

conditions: -F (0) > 0 and F {x) > F {x — 1) for all x in — {0}. Thus the forward 

rate process Ft can take any of the values F (x), where time t < T. 

To ensure that the dynamics of the discretized forward rate process corresponds 

to the dynamics specified by the SDE 4.3.1, we need to reinterpret the Markov 

generator given by 4.3.2 in a discrete setting. Since £„ is equal to a Laplace 

operator multiplied by a scalar function, its discrete version can be obtained 

by the natural discretization of Laplace operator: 

+ + f o r a ; E n - { 0 , W } , , . 
(/A ^ Q I " J 

for all functions u on CI. This definition imposes absorbing boundary conditions on 

the Markov chain, at both end of the domain fi. The boundary conditions make it 

easy to detect if the size of the domain Q, which is one of the model parameters, is 

not large enough. Thus we can specify a sufficient size to calibrate to the market 

Dirac delta function 5 (x) is defined as; 

r / \ r oo, for a; = 0 
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data, preventing the process ever reaching the boundary. 

Given the discrete version in 4.3.4, the generator can be defined as a 

{N + 1) X (iV + 1) tridiagonal matrix with elements {x,y), where x, y E Cl. 

According to the Markov generator properties, JC^ must satisfy the conditions; 

(̂ > y) ~ Q) (4.3.5) 

^ (3=, ?/) (F W - f (z)) = 0, (4.3.6) 
yen 

(2;, 2/) (f^ (!/) - (z))' = (F (a;))' . (4.3.7) 
YSN 

Condition 4.3.5 guarantees probability conservation, as shown in Corollary 

4.2.8, over the infinitesimal time interval 6t. It is actually the first-order derivative 

of the equation ^ P (F^ = F (y) {Fp = F (x)) = 1 with respect to time t. The 
yen 

remaining two conditions are there to match the instantaneous first and second 

moments® of the discretized process Ft- Equation 4.3.6 insures that the dynamics 

of the forward rate is Martingale, i.e. it is driftless, while equation 4.3.7 is there 

to make sure that the instantaneous variance of the discretized forward process is 

the same as the diffusion defined in the SDE 4.3.1. 

In addition, we need to specify the process at the boundary, following 4.3.4, so 

that the process F^ satisfies the boundary conditions if it goes that far. This can 

be achieved by setting all the elements in the top and bottom row of the matrix 

to be 0: 

{x, y) = 0, for all y e O, x e {0, . 

which does not intervene with the three conditions above and thus is a well-defined 

generator for the Markov chain F^. 

^It is commonly accepted that the first two instantaneous moments of any diffusions determine 
its finite-dimensional distribution functions completely [54]. Therefore, once the two moments 
are matched, the discretized version becomes a valid approximation for Ft-
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Probability Kernel 

With the above defined Markov generator, one can obtain the probability kernel 

by applying the spectral theory for operator. For this framework, it is sufficient to 

use only the spectral resolution method in the special case of the finite-dimensional 

matrix Firstly we take the eigenvalue problem for matrix {x,y)\ 

C^Un = (4.3.8) 

where the vectors are the eigenvectors of the linear operator Bind A„ are 

the relevant eigenvalues. The next crucial step in constructing this model is to 

check the normality of the matrix If it is normal, we can diagonalize it as 

= UMJ~^ and apply an arbitrary function which is defined on the spectrum 

of the generator by the formula: 

Then the calculation of (j) (A) is quite simple; 

(AQ) • • • 0 
^(A) = (4.3.10) 

y 0 • • • (j) {XN)j 

Formula 4.2.1 implies that the transition probability matrix Px-t = 

is the solution for the backward Kolmogorov equation, with the boundary con-

dition PQ = I, where I is the identity matrix. Therefore, the probability kernel 

p (x, t] y,T) = P {FT = F (y) \Ft = F (x)) can be expressed in terms of the gener-

ator as; 

p {x, t] y, T) = (x, y) = {x) (y), (4.3.11) 
n = 0 

where the vectors Vn are the columns of the matrix 

However, if the matrix fails the normality test, we have to use the Scaling 

and Squaring method mentioned in last section to calculate the exponential 
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4.3.2 Adding Jumps 

It has been generally discussed and accepted that pure diffusion models cannot 

explain smiles in short-dated implied volatility smile effects, as studied in Chapter 

3 of this thesis. Unexpected jumps are certainly presented in the FX market and 

influence the prices for short-term out-of-the-money options. In order to success-

fully calibrate to the market implied volatility surface, jumps must be introduced 

to the pure diffusion CEV process. 

With spectral theory, this can be easily done in a general way. Since the mar-

ket expectations for up and down jumps are known to market makers and are 

almost always quite different from each other, we need to have different distribu-

tions of jump sizes for them in the model. The Variance Gamma[62] (VG) model 

can capture such market features because its characteristic function is complex. 

Therefore, Albanese and Mijatovic[4] try to impose the infinite-activity jump® in 

their model, by subordinating the diffusions using stochastic time changes, which 

is given by a non-decreasing stationary process Tt with independent increments: 

Eo (4.3.12) 

where is a Bernstein function that characterizes the subordinator T<. 

In the VG model, the function (j) (A) takes the form: 

,̂ (A) = ^ l o g ^ l + A ^ ^ (4.3.13) 

with the mean-reversion rate jj, (usually taken to be 1) and variance rate v. This 

model adds the VG jump and thus uses (j) (A) defined in 4.3.13. 

Phillips [75] has shown that, given a general Markov processes Xt with gen-

erator £ and the subordinator Tt, the time-changed process Xxt has the Markov 

generator C — ~(f> (—£), where (f) is the Bernstein function for Tt. 

Based on the previous CEV process with generator £", we can produce asym-

metric jumps by specifying two VG Bernstein functions with different parameters 

® As mentioned in Chapter 3, building infinite activity into the jump component rather than 
into the diffusion part will give us more flexibility to model the up and down jumps seperately 
and independently. 
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and u_|_ for the up jump, and /x_ and V- for the down jump. Then the two 

Markov generators can be computed separately; 

( - / : 5 = (-A) (4.3.14) 

where A is the diagonal matrix with eigenvalues A„ and the Bernstein functions 

(f)̂  are given by: 

(A) = ^ log (1 + A — ) . (4.3.15) 
V / 

To compute the matrix logarithm, we need to check matrix normality using 

pseudospectra, as with the matrix exponential. If the matrix is normal, we can 

diagonalize it and follow the functional calculation 4.3.9. 

With the above mentioned MatLab library EigTool, we computed the eigenval-

ues and perturbations of a small positive number e, for the input generator matrix, 

which is a pure CEV process (with a = 8.9%, /9 = 3, a = 60%). In Figure 4.3.1, the 

dots around 0 are the eigenvalues of the matrix, the coloured boundaries represent 

the distance that a small positive perturbation e = 10" can move the eigenvalue 

to, where a = 0.4, 0.6, 0.8 and 1 in our example. According to Trefethen[87], if 

a matrix is normal, the perturbation e will not move the eigenvalue to a distance 

greater than e. Graphically, the value of the boundary on the Y-coordinate should 

be less or equal to e. For this CEV generator matrix, it can be seen clearly that 

each perturbation e cannot move the eigenvalues of £ by a distance greater than 

e. For example, the outmost curve shows that the perturbations of norm 10̂  will 

only move the eigenvalues to a distance roughly within 10. This result is not acci-

dental, since the Markov generator of a pure CEV process is a tri-diagonal matrix, 

in which the elements of the upper-diagonal and lower-diagonal are very close to 

each other. Therefore, we can safely conclude that the matrix is normal, or very 

close to normal, for which diagonalization can be applied to calculate the matrix 

logarithm with formula 4.3.15. 

Thus we have two diffusion processes, corresponding to two different generator 

C+ and each of which is a square matrix. The upper diagonal matrix £+ 

contains the (scaled) probabilities of jumping up in the infinitesimal time interval 

5t, while the lower diagonal matrix C- is for the probabilities of down jumps. A 
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dim = 76 

Figure 4.3.1: Boundaries of Pseudospectra for the CEV Markov Generator £ . 

new combined generator can then be defined from £+ and 
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The new process with jumps would satisfy the Martingale condition 4.3.6 by 

adjusting the elements just above and below the diagonal of the matrix £„. For 

example, if the z-row has a positive drift, we can add some probability to the 

element [x, x — 1) so as to satisfy condition 4.3.6; when the drift is negative, 

we can add probability to the element C,^ [x, x -\-1). 

Notice that a linear deterministic time change, which comes along with the 

stochastic time change, may distort the instantaneous variance by a constant fac-

tor. We need to multiply each row of the new generator by a constant which is 

chosen to make condition 4.3.7 hold. In this way, we can eliminate the effect of 

the deterministic time change since the starting instantaneous variance v (F {x))^ 
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is recovered. 

The last constraint is for the diagonal elements d(x,x), which should be chosen 

so that the condition 4.3.5 (probability conservation) is satisfied: 

d{x,x) = - (4.3.17) 
j/eH—{x} 

Now, we have a well-defined Markov generator for a diffusion process with 

jumps, which is a martingale and thus suitable to model the FX forward rate under 

a risk-neutral measure. 

4.3.3 Stochastic Volatility for Reg ime Switching 

Stochastic volatility and skewness are obtained by stochastically switching between 

different jump-diffusion regimes, controlled by a stochastic volatility process. The 

stochasticity of volatility is sensitive to the current level of the underlying, therefore 

it is possible to relate the model to particular market views (e.g. smile and skew 

features of the implied volatility surface), commonly based on expected future 

trading levels of the underlying. In this model, such levels can be set explicitly as 

the volatility regimes, each of which are modeled separately by a corresponding 

jump-diffusion that can describe the volatility surface. 

Let V be the set {0, • • • ,m — 1} of all possible volatility regimes. For each 

regime 7 G V, a Markov generator is define by the matrix element (a,/?), 

where a,^ G V, so that the continuous-time diffusion process given by mean-

reverts to the state 7. 

In addition, a single global stochastic volatility Markov generator, which will 

favour a certain regime 7 given the level of the FX forward rate Ft, can be specified 

by using the so-called partition of unity method. We choose a strictly increasing 

sequence of the forward rate levels such that if the forward rate process Ft is 

close to the level F^, the market views of the smile and skew agree with the ones 

implied by the process from last section. The partition of unity is then defined 
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as a sequence of m functions ; M —> [0,1], with the important property: 

^ (F) = 1 for all F G R. (4.3.18) 
7 = 0 

With the sequence of forward rate levels such a function can be explicitly 

defined as piecewise linear functions in the following form: 

-F e [-Kr-i.-FJ 

^ ( f ) = i F e R.f-y+il (4-3.19) 
0 otherwise. 

At the boundary when 7 £ {0,m — 1}, this definition needs to be slightly 

modified as: 

f 1 F<Fo r 0 F< Fm-2 

[0 F>Fu (1 F>Fm-i. 

(4.3.20) 

We can thus define the global Markov generator, which is able to change its 

properties conditioned on a substantial move of the forward rate: 
m—1 

= (4.3.21) 
7 = 0 

where a ,P e V and F (x) is forward rate process function defined on D. 

As in any other stochastic volatility model, the Markov generator C should 

specify the probabilities of going from any state {x,a) in f2 x 1/ to any other state 

(y, /3) of the same set in the infinitesimal time interval St. This can be achieved 

by using the Kronecker delta function: 

Finally, the Markov generator for the dynamics of FX forward rate in this 
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model is specified as: 

(z, a; %/, (z, i/) (a, (4.3.23) 

Prom the properties of the Kronecker delta, the matrix £ is a genuine Markov 

generator, and by definition, it does not allow for simultaneous jumps of the regime 

and the volatility variables, thus ensuring that the forward process Fp, the dy-

namics of which is specified by £, is still a martingale: 

^ ( f (%/) - F (a:)) ?/) (a, (4.3.24) 
{Y,L3)^NXV 

= M ) C k ! / ) + ( f (a:) - F (i)) {a, /J) = 0 
yen /Sev 

4.3.4 Determinist ic Time Change 

Up to now, the model described is completely stationary, i.e. the implied volatility 

surface does not have explicit time dependence, thus the calibration result is not 

quite satisfying. To get a closer match to the 25-A and at-the-money implied 

volatilities, a minimal deterministic time change has to be introduced, which is 

achieved by specifying an increasing function / : [0, T] —> [0, oo) which determin-

istically transforms calendar time t to financial time / (f). 

For each currency, the deterministic time change function / (t) is identified in 

such a way that for all quoted maturities, the at-the-money options are correctly 

priced. Then the entire interval between now and five years can be obtained by 

linear interpolation. We will see in next section that such deterministic time change 

will enter the probability kernel of the model in an isolated and controlled manner. 

Note that because the model can already capture the prominent features of the 

implied volatility surface before time change is introduced, the difference between 

the calendar time t and financial time / (t) is quite small. 
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4.4 Option Pricing and Hedging 

4.4.1 Pricing European Options 

In this framework, which is defined under a risk-neutral measure^, the problem of 

pricing European options of maturity T is reduced to calculating the transition 

probability p{{x,a) ,t] {y,P) ,T) for the FX forward rate process Fp, as defined 

in the last section in terms of Markov generator £. Taking the deterministic 

time change into account, for which the financial time is defined as s = f (t) 

(and S = f (T) for calendar time T), the transition probabilities for going be-

tween the states {x,a) and (y,/?) in the time interval [5,5] can be expressed as 

u ((x, a), s; (?/, /3) ,S), thus the stochastic matrix induced by the Markov generator 

is ,5; (i/,;)) ,5")). 

According to the model building process in Section 4.3.1 (see formula 4.3.3), 

the probability matrix Ug satisfies the backward Kolmogorov equation: 

^ + = 0 (4.4.1) 

with the boundary condition % = I (I is the identity matrix on the vector space 

where k = m{N + 1)). The solution of equation 4.4.1 can then be expressed as 

Us-s = which can be explicitly calculated by either the spectral decom-

position or the scaling and squaring method of the operator C, which is a. k x k 

matrix. 

If the matrix decomposition is available, we can calculate the transition prob-

ability, which depends on the calendar time, in terms of financial time as follows: 

p((a;,a),<;(2/,;g),r) = (4.4.2) 
m{N+l) 

= ^ (z, a) Vn {y, /5) 
n = l 

where is the eigenvector, and Vn is the inverse of the eigenvector matrix. 

The important and surprising fact from formula 4.4.2 is that, the pricing kernel 

^Under risk-neutral measure, the value of any security at time t is equal to the discounted 
expectation of the value of the same security at time T, for all t <T. 
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Figure 4.4.1; Boundaries of Pseudospectra for the Markov Generator ZI, Computed with 
the GBPUSD Parameters. 

depends on the financial time in a very isolated way, which makes the pricing 

problem less difficult to cope with. 

However, before using this formula, we have to check the normality of the ma-

trix. This time the input matrix is the complete generator for this model, which 

results from 5 CEV processes coupled with Variance Gamma jumps and stochas-

tic regime-switching in between. We use certain parameters for the GBPUSD 

currency pair as a test. From Figure 4.4.1, we can see that the each perturbation 

e (e = 10"^, 10~°'®, 10"°'^, 10"°'^, 1) can move the eigenvalues of £ by a dis-

tance greater than e. For example, the inmost curve shows that the perturbations 

of norm 10"^ will move the eigenvalues to a distance as large as 8, which is much 

greater than 0.1. This suggests that the matrix is not normal, thus diagonalization 

error will be severely increased in the calculation of matrix exponential. There-

fore, we have to use the alternative Scaling and Squaring method to compute the 

transitional probability matrix, as shown in formula 4.2.3. 

With the calculated probability matrix P{T-t), in which each element is p {{x, a) , t; {y, /3) ,T), 

the current price Ct of a European option with payoff h (XT) at maturity T, where 
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Xt is the underlying FX rate at time t, can be calculated as: 

c, = p({x,a) .f,{y,p) 
(:;,;8)enxy 

(4.4.3) 

where the point x from (1 is chosen in such a way that the forward-spot relation 

holds; F (x) = e ( T ) ) T ^ and ct in V is the volatility regime we are in at 

time t. 

4.4.2 Hedge Ratios (Greeks) 

The last task for building the model framework is to find the hedge ratios (i.e. 

Greeks) for the derivative Co, which appears to be quite simple because all the 

numerical work has been done by the above mentioned algorithm and the relevant 

pricing and hedging informations are available in the continuous-time lattice. The 

delta and gamma of Co can be defined using symmetric differences as follows: 

^ Co (x + 1, a) + Co (x - 1, g ) - 2Co {x, a) 
I ' ^ I ' -J 

where x is the lattice point in fi, corresponding to the spot level So of the FX 

rate at time 0 (5*0 = fo). For Ct (x + l,a), or any other value of Cj (y, a) with a 

different starting point y, the probability density function is given by a difi'erent 

row of the matrix Ux, which is directly available as the result of the previous pricing 

algorithm for Ct {x,a). Therefore, the entire delta and gamma profiles of Ct can 

be calculated by using matrix-vector multiplication and then applying the above 

formulae to piece the Greeks together. 

Similarly, vega can be obtained by taking the symmetric difference in the sto-

chastic volatility domain V: 

V (x, a) = Cok« + l ) - C . k a - l ) (4,4,8) 
Ca+1 — CTa-l 

which should be reasonably adjusted if it is in the volatility regime on the boundary 
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of the domain V®. Note that the parameter A a, in which A is in the domain V, is 

actually the base volatility in the CEV process defined in Section 4.3.1. We can 

get the whole vega profiles using the same techniques for delta and gamma, as 

mentioned before. 

4.4.3 Validation - The Black-Scholes' Case 

In financial modelling, a more complicated model is usually tested against the 

simple Black-Scholes model, which is encompassed by the new model. In this 

continuous-time lattice framework, we can produce the Black-Scholes benchmark 

by setting only one regime (no regime switching), in which the CEV process has 

parameter /3 = 1, and no jumps. 

Model validation can be carried out using imaginary data. However, to have a 

better feeling for the market, useful for later calibration, we use the actual current 

GBPUSD currency implied volatility surface as the example®. The market quotes 

of Black-Scholes implied volatility for five strikes, namely 10 delta put, 25 delta 

put, at-the-money forward, 25 delta call and 10 delta call, with seven maturities 

are used as the volatilities for the CEV process with = 1 in the model. The 

model thus computes the relevant option prices, and implied volatilities are then 

calculated and compared with the actual inputs. 

Table 4.4.1 demonstrates the convergence of model implied volatilities to the 

Black-Scholes (market quoted) implied volatilities with the increasing number of 

lattice points. In most of the cases, the model can converge to a Black-Scholes 

closed-form solution at 1 basis point accuracy with only 300 lattice points, while 

400 points can guarantee convergence of any case. 

We further compute the hedge ratios (Greeks) for the at-the-money-forward 

(ATMF) options of three maturities, 6 months, 1 year and 2 year, using 300 lattice 

points. Figure 4.4.2 shows the delta of these European options, calculated with 

the lattice model, while in comparison. Figure 4.4.3 gives the delta calculated 

using Black-Scholes delta formula 2.3.2. It can be seen that the delta lines are 

®0n the boundary of domain V, there is no data available for ctq-i, we should calculate the 
vega with some other methods. In the current model with 5 regimes, such problem won't affect 
the results. Therefore, we can leave the alternative methods to the future research. 

® Since the test result is not sensitive to the choice of data, any currency pairs can be used. 
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very similar at the ATMF points. Although the differences increase when the 

spot moves to the more out-of-the-money cases, taking into account of the fact 

that delta hedging is only effective with a small movement of the underlying, the 

model calculated delta actually converges to the Black-Scholes delta at around 

ATMF point. Similarly, Figure 4.4.4 displays the model computed gamma, which 

has nearly identical shape to the Black-Scholes' gamma in Figure 4.4.5, especially 

around the at-the-money point. 

These test results thus validate the practicability of the model, we can now 

move on to calibrate it to the market volatility surface, in order to price exotic 

options. 
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Table 4.4.1: GBPUSD Option Implied Volatilities with Various Number of Lattice Point 
N, in Black-Scholes Case (Bold type indicates convergence to BS volatility) 

Maturity Strike BS Vol JN = 75 100 200 300 400 
10-A-Put 7.20% 7.10% 7.15% 7.19% 7.19% 7.20% 
25-A-Put 7.03% 6.84% 6.98% 7.02% 7.02% 7.03% 

IM ATMF 7.08% 6.85% 7.02% 7.07% 7.07% 7.08% 
25-A-Cail 7.38% 7.18% 7.32% 7.37% 7.37% 7.38% 
10-A-Call 7.65% 7.53% 7.60% 7.63% 7.64% 7.65% 
10-A-Put 7.03% 6.98% 7.00% 7.02% 7.03% 7.03% 
25-A-Put 6.85% 6.78% 6.82% 6.84% 6.85% 6.85% 

3M ATMF 6.93% 6.85% 6.90% 6.92% 6.93% 6.93% 
25-A-Call 7.25% 7.17% 7.22% 7.24% 7.25% 7.25% 
10-A-Call 7.63% 7.57% 7.60% 7.62% 7.63% 7.63% 
10-A-Put 7.25% 7.22% 7.23% 7.25% 7.25% 7.25% 
25-A-Put 6.90% 6.85% 6.88% 6.89% 6.90% 6.90% 

4M ATMF 6.95% 6.89% 6.93% 6.94% 6.95% 6.95% 
25-A-CaU 7.27% 7.20% 7.24% 7.26% 7.27% 7.27% 
10-A-Call 7.86% 7.83% 7.84% 7.86% 7.86% 7.86% 
10-A-Put 7.01% 6.98% 6.99% 7.01% 7.01% 7.01% 
25-A-Put 6.80% 6.75% 6.78% 6.79% 6.80% 6.80% 

6M ATMF 6.90% 6.85% 6.88% 6.89% 6.90% 6.90% 
25-A-Call 7.25% 7.19% 7.22% 7.24% 7.25% 7.25% 
10-A-Call 7.66% 7.63% 7.64% 7.66% 7.66% 7.66% 
10-A-Put 7.00% 6.98% 6.98% 6.99% 7.00% 7.00% 
25-A-Put 6.81% 6.77% 6.79% 6.80% 6.81% 6.81% 

9M ATMF 6.90% 6.86% 6.88% 6.89% 6.90% 6.90% 
25-A-Cail 7.29% 7.24% 7.26% 7.28% 7.29% 7.29% 
10-A-Call 7.70% 7.65% 7.67% 7.69% 7.70% 7.70% 
10-A-Put 7.08% 7.06% 7.07% 7.08% 7.08% 7.08% 
25-A-Put 6.85% 6.82% 6.83% 6.85% 6.85% 6.85% 

lY ATMF 6.90% 6.87% 6.88% 6.89% 6.90% 6.90% 
25-A-Call 7.25% 7.22% 7.23% 7.25% 7.25% 7.25% 
10-A-Call 7.78% 7.75% 7.76% 7.78% 7.78% 7.78% 
10-A-Put 7.23% 7.24% 7.24% 7.23% 7.23% 7.23% 
25-A-Put 6.95% 6.94% 6.94% 6.95% 6.95% 6.95% 

2Y ATMF 7.00% 6.98% 6.99% 6.99% 7.00% 7.00% 
25-A-Call 7.40% 7.39% 7.39% 7.40% 7.40% 7.40% 
10-A-Call 7.88% 7.90% 7.90% 7.89% 7.88% 7.88% 
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Model ATMF delta 

Figure 4.4.2: ATMF delta for 6-month, 1-year and 2-year, calculated with 300 lattice 
points in Black-Scholes case. 

BS ATMF delta 

Figure 4.4.3: ATMF delta for 6-month, 1-year and 2-year, calculated using Black-Scholes 
closed-form formula. 



Model ATMF Gamma 
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Figure 4.4.4: ATMF gamma for 6-month, 1-year and 2-year, calculated with 300 lattice 
points in Black-Scholes case. 

BS ATMF Gamma 
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Figure 4.4.5: ATMF gamma for 6-month, 1-year and 2-year, calculated using Black-
Scholes closed-form formula. 
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4.5 Calibration 

The model should be calibrated for different currency pairs. Here we take one 

'core' market currency pair GBPUSD and one 'emerging' market currency pair 

USDBRL as examples, to illustrate the calibration procedure and demonstrate 

model flexibility. 

As explained in the first part of this thesis, the most liquidly traded instruments 

for certain maturity in the FX market are the at-the-money-forward call, the 25 

delta call and the 25 delta put. We obtain market data for the entire implied 

volatility surface from Bloomberg on an arbitrary day (here 04-Jan-2007), and set 

the parameters in this model in such a way that the whole surface is reproduced 

by the model correctly. In order to preserve the correct smile and skew through 

time, in other words, to make sure that the model generated surface is stationary, 

we calibrate with main criterion of minimizing explicit time dependence. Such 

stationarity guarantees that the forward smile and skew will have the proper shape 

even after some movement of the underlying exchange rate. 

In the calibration, we use an inhomogenous lattice with 76 = + 1 points, 

which is used to accommodate possible values of the forward rate Ft, and m = 5 

local volatility regimes so as to capture the stochasticity of the skewness in these 

currency pairs. 

The calibration procedure is difi'erent from the normal optimization method. 

It depends on the user's understanding of the market, so as to avoid the difficulty 

of explaining the non-sensible parameters that may result from a 'black box' op-

timization routine. Firstly, we calibrate the starting regime (2 in our case) and 

the neighbouring regimes to the short-term market implied volatilities (1-week to 

6-month), based on the market information of certain parameters, and the user's 

judgement about the potential influence of different parameters. Then the regime 

0 and regime 4 are calibrated to the longer term implied volatilities. The criterion 

is to minimize the diff'erence between the model implied volatilities and the market 

implied volatilities^". 

conditional optimization scheme, which translates the user's view of market to the restric-
tion of certain parameters, can be carefully designed and implemented. However, due to the 
programming difficulty of dealing with such a large amount of parameters, we have to rely on 
this calibration method now, and leave the optimization routine to the future research. 
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4.5.1 G B P U S D 
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Figure 4.5.1: Term Structure of Implied Volatilities for GBPUSD. 

The calibration is started with a detailed observation of the term structure of 

the implied volatilities plotted in Figure 4.5.1. As shown by the dots, the value 

of a risk reversal, which measures the skewness, is consistently positive through 

the maturities. This implies that the right-hand tail of the risk-neutral implied 

distribution must be fatter than the left, and suggests that the CEV parameter 

/?o, should be positive. Especially for the starting regime, which has a dominant 

influence, (3̂  should be a number larger than 1 to keep the skews of the local 

volatility regimes decreasing in strike. However, there is almost no skew between 

the ATMF and 25 delta put, which means we need to consider compensating the 

positive skew introduced by the large /3„. This can be done by using a < 1 

in the neighbouring regime to bounce back, or imposing a down jump by having 

non-zero jump intensity u~, or both. 

In addition, a diffusion process cannot generate such a large skew for short 

maturity, due to the embedded expectation of sudden movement in the FX market. 

In order to produce the high volatility difference between 25 delta call and ATMF, 

an up jump is required, which is generated by non-zero jump intensity z/+. Also 

notice that with the increase of maturity, the price of the 25 delta call appreciates 
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relative to the ATMF price. This is due to the fact that vega risk for the out-of-

the-money options increases with time. However, given the relative low volatility 

for this currency pair, this appreciation is not remarkable. 

With such understanding of the risk-neutral dynamics of the FX rate, we can 

calibrate to the market step by step. Table 4.5.1 specifies the model parameters 

that optimally match the model implied volatilities to the market term structure 

of implied volatilities. 

Table 4.5.1: Parameters for GBPUSD local volatility regimes and jump intensity 

OL (Ta /3„ ^ Oi Fa 
0 9.90% 0.4 60% 0.0% 1.0% 92 
1 9.60% 1.5 60% 1.0% &0% 97 
2 8.90% 3.0 60% &1% 0.5% 102 
3 9.50% 0.6 60% 0.9% 5.0% 106 
4 10.50% 1.0 60% 0.0% 2.0% 110 

These parameters are chosen such that there is no explicit time dependence in 

their calculation, but the option prices can be approximately reproduced by the 

model. The final fitting of the result is then obtained by using a deterministic time 

change, as reported in Figure 4.5.4. The local volatility level <Tq. are identified 

by investigating the ranges of the implied volatilities, changes in the skew, and 

underlying movements. The relative forward rate Fa (as percentage of the current 

level) is selected as the level on which regime-switching is most likely. 

The GBPUSD spot exchange rate is 1.944 at the time of calibration. We start 

at regime 2, in which = 3 is relatively large. And 13a declines for the lower 

Fa regimes, while it goes down sharply to 0.6 for regime 3 and then comes back a 

little bit for regime 4. These changes are necessary to generate the positive skew 

between 25 delta call and ATMF, and nearly flat skew between ATMF and 25 

delta put, since the five regimes interact. 

In Figure 4.5.1, the lines are model implied term structure of volatilities. It can 

be seen that the calibration is quite good for shorter maturities. This is because in 

the FX market, a model without stochasticity in interest rates is efficient mainly 

for maturities shorter than 2 year, our calibration puts more weight on fitting the 

data for shorter maturities. 

The extrapolated implied volatilities for out-of-the-money options are displayed 
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in Figure 4.5.2, while Figure 4.5.3 shows the model implied risk-neutral PDF. We 

can see that the right tail of the distribution is indeed fatter than the left. The 

hedge ratios. Delta, Gamma and Vega, for 6-month, 1-year and 2-year are reported 

in Figure 4.5.5, Figure 4.5.6 and Figure 4.5.7, respectively, all of which have the 

desired shapes. 
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Figure 4.5.2: Extrapolated Implied Volatilities for GBPUSD European Options using 
Generic Strikes. 

Figure 4.5.3: GBPUSD Probabili ty Distribution Function under the Forward Measure. 
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C a l e n d e r T i m e 

Figure 4.5.4: Deterministic Time Change / (t) (in years) as a Function of Calender Time 
t for GBPUSD. 

GBPUSD ATMF Delta 

Figure 4.5.5: GBPUSD ATMF delta for 6-month, 1-year and 2-year, calculated with 
calibrated parameters. 
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GBPUSD ATMF Gamma 

Figure 4.5.6: GBPUSD ATMF gamma for 6-month, 1-year and 2-year, calculated with 
calibrated parameters. 

GBPUSD ATMF Veg 

Figure 4.5.7: GBPUSD ATMF vega for 6-month, 1-year and 2-year, calculated with 
calibrated parameters. 
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4.5.2 U S D B R L 

To demonstrate the flexibihty of the model, we also use it to calibrate one of the 

emerging market currency, Brazilian Lira (BRL), which is quoted against USD, 
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Figure 4.5.8: Term Structure of Implied Volatilities for USDBRL. 

Prom Figure 4.5.8, we can clearly observe large positive risk-reversal through 

time. In particular, the skew between the 25 delta call and ATMF is much greater 

than that between ATMF and 25 delta put. This leads us to consider using (3^ 

much larger than 1 to start with, coupled with a nonzero up jump intensity z/+ 

much greater than those for GBPUSD. Notice that the price appreciation for 25 

delta call against ATMF with the increase of maturity is more obvious for this 

'emerging' market currency, because of its much higher volatility. This suggests 

using a higher up jump intensity for regimes with further away from the 

current level. For the down jump intensity u~, since the high and can 

already generate a large positive skew between all three quotes, it is not necessary 

to have a value for u~. 

Table 4.5.2 reports the parameters that work best^^ for USDBRL, which are 

also selected with no time dependence in their calculation. The external determin-

istic time change function, which is required to get exact fit, is shown in Figure 

'^The resulting term structure of model implied volatilities fits the market quotes quite well 
in Figure 4.5.8. 
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4.6.3, which is quite different from that of GBPUSD, indicating the difference 

between 'core' market and 'emerging' market. 

Table 4.5.2: Parameters for USDBRL local volatility regimes and jump intensity 

A O-a /3„ cr„ FC. 
0 30.0% 2.4 100% 0.0% 40.0% 88 
1 2&0% 3.0 100% &0% 20.0% 95 
2 10.0% 4.0 10#% 0.0% 10.0% 100 
3 20.0% 3.5 100% 0.0% 2&0% 110 
4 30.0% 2.5 100% 0.0% 4&0% 128 

The model implied term structure of volatilities are shown in terms of lines 

in Figure 4.5.8. Again, the calibration is putting more weight on the shorter 

maturities, yet the result for the long maturities is also satisfactory. 

Figure 4.6.1 illustrates the extrapolated implied volatilities for out-of-the-money 

options. The strictly positive skew through all strikes is clear for maturities longer 

than 1-year. Figure 4.6.2 shows the model implied risk-neutral PDF, which is also 

well behaved in that they have only one maximum, indicating the risk neutral 

dynamics of the FX rate is completely controlled by the skewness and kurtosis of 

their tails. The hedge ratios. Delta, Gamma and Vega, for 6-month, 1-year and 

2-year are reported in Figure 4.6.4, Figure 4.6.5 and Figure 4.6.6, respectively, all 

of which are different from those for GBPUSD. This may be explained by diflferent 

underlying factors in these two markets, especially the policy risk in 'emerging' 

market. 
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4.6 Summary 

In this chapter, we have introduced a spectral theory based modelling framework 

by Albanese and Mijatovic[5], with a discuss of the financial underpinning and 

the mathematical derivation. During the numerical implementation, we propose 

the adoption of an alternative algorithm in calculating the exponential of non-

normal matrix, and design a novel routine to improve the numerical efficiency. The 

model validation in Black-Scholes' case demonstrates its validity, and the model is 

calibrated to two very different currency pairs. The results, including the sensible 

implied volatilities surfaces, implied distribution functions and hedge ratios, show 

that this model can indeed capture the stochastic volatility and the stochastic 

skewness of the implied risk-neutral distribution in the FX market. Therefore, we 

will use the model and further extend it to price one of the exotic options - barrier 

options in next chapter. 

100 



Figure 4.6.1: Extrapolated Implied Volatilities for USDBRL European Options using 
Generic Strikes. 

Figure 4.6.2; USDBRL Probabili ty Distribution Function under the Forward Measure 
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Calender Time 

Figure 4.6.3: Deterministic Time Change / (t) (in years) as a Function of Calender Time 
t for USDBRL. 

Model ATMF delta 

Figure 4.6.4: USDBRL ATMF delta for 6-month, 1-year and 2-year, calculated with 
calibrated parameters. 
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Model ATMF Gamma 

Figure 4.6.5: USDBRL ATMF gamma for 6-month, 1-year and 2-year, calculated with 
calibrated parameters. 

Model ATMF Vega 

Figure 4.6.6: USDBRL ATMF vega for 6-month, 1-year and 2-year, calculated with 
calibrated parameters. 
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Chapter 5 

Pricing F X Barrier Options 

5.1 Barrier Options 

5.1.1 I n t r o d u c t i o n 

Barrier options are options that are initiated (knocked in) or terminated (knocked 

out) depending on whether the underlying asset's price reaches a certain barrier 

level. Thus they are called path-dependent options, whose payoffs are determined 

by the actual paths of the underlying assets. 

In the OTC market, a number of barrier options are quite liquidly traded, 

mainly because of their barrier features, which make the options relatively cheaper 

than the standard ones, and more importantly, which give the investors the flexi-

bility to incorporate their views about the future market movement in terms of the 

barriers. Especially in the FX market, most of the investors usually generate their 

views and forecast of the exchange rates movement from the macroeconomic fac-

tors such as government policy, interest rate differentials and GDP. These views 

thus have value for both a trading and hedging programme with options, com-

ing from effectively selecting the cheaper 'right' barrier options according to the 

forecast. 

There are various types of barrier options, based on their own characteristics. 

For the fundamental single barrier options, four types are widely traded and recog-

nized, namely Up and In, Up and Out, Down and In, Down and Out, which total 

to eight in the form of calls and puts. More exotic forms of barriers, including dou-
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ble barriers, Parisians, and partial time barriers, are also traded in the market to 

provide more flexibility. All these varieties can take either American or European 

forms. 

In this chapter, we innovatively develop the pricing methodology for the FX 

single barrier European options within the Albanese and Mijatovic[5] lattice frame-

work, the idea of which can be applied to the more exotic types. We will modify 

the Markov generator to incorporate the barriers, and design the algorithm to price 

16 barrier options simultaneously. The lattice pricing model is then validated in 

the Black-Scholes' case against the closed form solutions by Haug [43]. Finally we 

use the calibrated parameters from the previous chapter to price various barrier 

options for the previously mentioned two currency pairs. 

5.1.2 P r i c i n g 

For path-dependent options, the lattice seems to be the most flexible and suitable 

pricing method, since it can store path information at lattice points. In the simplest 

Black-Scholes framework, however, analytical closed form formulae are available 

for 16 cases, depending on whether the barrier is greater or less than the strike 

price for the 8 types of options. 

Closed Form Solution 

Based on the lognormal assumption of the future probability distribution for the 

underlying asset price, Merton [70] firstly developed the closed form solution for the 

down and out call option. Reiner and Rubinstein [77] then provided the formulae 

for all 8 types of barrier options, which are generalized by Haug [43]. Here, we 

will summarize all 16 pricing formulae given by Haug [43], to serve as a model 

validation benchmark in the next section. 

When the barrier H is less than or equal to the strike K, the 4 call options can 
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be priced using the following formulae: 

'H 

SO % 

2A-2 

$ (y - a V r ) (5.1.1) 

Cdo — ^BS ('DI 

Cui — Cgg 

Cuo = CBS — Cui = 0 

where 

A = 

y 

r — rf + 0-^/2 

AVF 

while the 4 relative put options are priced as: 

Pdi = [$ (y) - $ (yi)] | Pdi — —SQC -rfT 

+Ke- -rT 1 

Pdo = PBS - Pdi 

Pui = PES - Puo 

Puo = —Soe -rfT 

(5.1.2) 

2A-2 

$ ^y - aVr^ (yi- (TVT^ I 

H 
$ {-XI) - ( ^ ) $ ( -y i ) 

2A 

+Ke -rT $ (-Xi + AVRJ - F —J 0 (-YI + CRVRJ 

2A-2 

where 

AVR 

YI 
r V r 
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In the case when H > K, the call options can be valued with: 

^DO 

CBS — CDO (5.1.3) 

-ATe -rT 

f H\ 
^(3^1)- { ^ j $(%i) 

/ TT \ %A —Z 

$ - c r \ / r j - f — j $ ^ y i - c r \ / r j 

C-WI — 

2A 

1 $ (%:) - j ($ (-y) - t 

-Ke-''^ |«> (ii - i r V f j - [# (-y + ( r V f ) - $ (-51 + ctVf^ 

Cuo = CBS — Cu 

while for the put options: 

PA 

Pdo 

Pui 

Puo 

PBS 

PES -Pdi = 0 

PBS — Pui 

(5.1.4) 

= ~SOE -vfT I ( - Y ) + KE-^[!L 
2 A - 2 

$ [-Y + 

In addition, it is important to know the frequency of observation of the under-

lying price S to determine whether the barrier has been reached. All the previous 

16 formulae are derived by assuming that S is monitored continuously, which is 

not always the case in reality. In some of the contracts, the terms may state that 

the asset price is only periodically measured, e.g. once a day. Broadie, Glasserman 

and Kou [21] come up with an adjustment for the barrier level, which effectively 

correct the formulae in the discrete sampling case: 

H = He° Tyjrjm (5.1.5) 

where m is the number of times the underlying asset is observed, a = 0.5826 for 

Up options, and a = —0.5826 for Down options. 
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Lattice Methods 

Lattice or trees can handle path-dependency property easily. For example, in the 

classic binomial tree method, introduced by Cox, Ross and Rubinstein [32], the 

up and down movements of barrier options are modelled the same as for other 

options: 

d = u = ^ (5.1.6) 

P = 

d 

u — d 

where u and d represent the up and down magnitude of the movement respectively, 

p and 1 — p are the probability of moving up and down respectively. 

The difficulty then comes from specifying the barrier on the tree. The real 

barrier, which is a straight line, does not lie on the 'zigzag' tree structure. Hull 

[46] illustrates the concept of inner and outer barriers on the tree, between which 

lies the true barrier. The price for the option with true barrier is the interpolation 

of the two prices obtained from assuming the inner and outer barrier are the true 

barrier. 

Alternatively, when the initial price is not close to the barrier, the option can 

be valued by ensuring that the lattice nodes lie on the barrier, which is achieved 

by specifying conditions for u: 

== (5.1.7) 

for some positive or negative N. 

A more refined lattice, the trinomial framework, which is an extension of the 

binomial lattice, converges more quickly. For pricing barrier options, Ritchken and 

Kamrad [52] introduce a modified trinomial lattice, in which the up, middle and 

down magnitudes are modelled as: 

u = XaVr, m = 0, d — —XaVT (5.1.8) 
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with probabihties: 

1 nVT 1 1 iiVT 

where the drift fi — r — rf — and the control term A determines the space 

2 ^ 2Ar ' 2X2 gAr 

between the price layers. Levitan [57] further proposes the formula for A: 

A = (5.1.9) 

where no represents the number of consecutive down movements heading towards 

the lowest lattice point. Such a setting is demonstrated to have fast convergence 

towards the actual value. 

Other Techniques 

A popular alternative method to the standard lattice model is the adaptive mesh 

model, introduced by Figlewski and Gao [38], which can be used even when the 

initial price is close to the barrier. The geometry of the tree is designed so that 

the nodes lie on the barriers, and the probabilities on the branches are chosen to 

match the first two moments of the process. It is essentially a lattice transposed 

on top of another lattice, and can be implemented in a Monte Carlo framework. 

Because of the numerous paths constructed, a similar extension can be applied to 

American barrier option as well. 

More advanced models incorporating jump diffusion, have been investigated 

in the literature. One important contribution is Leisen [56], who discretizes the 

underlying asset space instead of the usual time space to add jump risk. This 

bypasses the difficulty of specifying a barrier on the preset nodes. This is applied 

in our new framework. 

In addition, the Monte Carlo framework is widely applied for valuing bar-

rier options, in which various techniques are used to get faster convergence. For 

example, a Brownian bridge is used to limit the effects of high-dimensional com-

ponents, variance reduction techniques such as importance sampling are used to 

reduce computational time. 
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5.2 Barriers on the Continuous-t ime Lattice 

In this new framework, the valuation of barrier options is different from the major-

ity of the techniques mentioned before, because of the different initial specification 

of the underlying diff'usion process in terms of the Markov generator. 

The Markov generator describes the behaviour of the diffusion process in infin-

itesimal time. The existence of a barrier restricts the movement of the underlying 

to certain states, thus modifies the behaviour of the process. Therefore, we need to 

modify the relevant Markov generator, which effectively describes the new process. 

Technically, this can be done by incorporating a barrier on the Markov generator. 

5.2.1 B a r r i e r o n t h e M a r k o v G e n e r a t o r 

Modified Markov Generator 

The various barrier options can be categorized into two groups: In and Out. There 

is a no-arbitrage relationship between their values V7„, Vout and the vanilla option 

value V: 

t fn -k tt).; = 1/ (5.2.1) 

On a lattice, it is relatively easier to specify the 'Out' barrier options, just by 

setting the value or probability of the nodes beyond the barrier to be zero. Then 

the corresponding 'In' barrier options can be calculated using formula 5.2.1. On 

this continuous-time lattice, we will similarly focus on valuing the 'Out' barrier 

options, for which the transitional probabilities of going to the points beyond the 

barrier should be zero. 

However, as mentioned before, we should incorporate the barrier on the Markov 

generator to refiect the change of the diffusion process, rather than directly reset-

ting the transitional probabilities, since the Markov generator is the driver of the 

process, while the transitional probabilities are the results. Theorem 4.2.5 estab-

lishes the relationship between the Markov generator C{x,y) and the transitional 

probability p{x,0-,y,t) for a short time 5t, for all x,y E Q, and t E R+. It can 

be easily proved that for C{x,y) = 0, the resulting p{x,0-,y,t) = 0. Therefore, 

to obtain zero transitional probabilities beyond the barrier, we can modify the 

relevant Markov generator to be zero. 
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Table 5.2.1: Modified Markov generator for Up-and-Out barrier options, with barrier 
level H and the number of lattice point N 

0 1 2 H-1 H N 
1 £"(1,1) 0 0 
2 r " (2,1) r"(2,2) f n ( 2 J ? - l ) 0 0 

H-1 {H-1,1) / :"( .H' - i ,2 ) {H-1, H-1) 0 0 
H 0 0 0 0 0 

N 0 0 6 0 6 

The continuous-time lattice discretizes the underlying FX rate space, with the 

discrete Markov generator C^[x,y) describing the infinitesimal time movement 

from FX rate point x to point y. Therefore, the barrier level H, which is also a FX 

rate, can be specified directly on the lattice. If the barrier is not a lattice point, 

we can advisably choose a proper discretization scheme for the continuous Markov 

generator so as to make sure that one of the lattice point represents the barrier 

level. Then we can make the following modification to the generator: 

(x, H) = 0, for X e 

= 0, for 3 / e n 

(5.2.2) 

Visually, Table 5.2.1 illustrates such changes for an Up-and-Out barrier option. 

Transitional Probability Computation 

According to Formula 4.2.1, the transitional probability can be calculated as the 

exponential of the matrix tC. Among various method to calculate matrix exponen-

tial, the diagonalization method only works when the matrix is normal. However, 

as can be seen in Table 5.2.1, the matrix representing Markov generator is not 

symmetric, which is thus nonnormal. More valuably, we use the pseudospectra to 

check the normality. We test the matrix C produced by the calibrated GBPUSD 

parameters as an example. Figure 5.2.1 reports the eigenvalues and perturbations 

computed by EigTool. It can be seen clearly that each perturbation e can move 

the eigenvalues of £ by a distance greater than e. For example, the outmost curve 
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shows that the perturbations of norm 10̂  will move the eigenvalues to a distance 

as large as 20. These indicate that the matrix is nonnormal, we cannot diagonal-

ize matrix C as L = UAU~^, and Formula 4.2.2 cannot be used to compute 

We have to use the alternative Scaling and Squaring method, as explained in the 

previous chapter. 

d i m = 3 8 0 

0.6 

0 . 4 

Figure 5.2.1: Boundaries of Pseudospectra for the Barrier Markov Generator C, Com-
puted with the Calibrated GBPUSD Parameters . 

5.2.2 Val ida t ion - Black-Scholes Case 

Before applying the calibrated model parameters, we firstly validate the modified 

Markov generator by pricing barrier options under Black-Scholes assumptions, and 

compare the results with those computed by the closed-form formulae in Section 

5.1.2. 

For validation purposes, we can use imaginary data as the input. We obtain 

the Black-Scholes case in the model by setting ^ = 1, one regime only. With other 

necessary parameters S = 2, r = 5%, rf = 5.5%, cr = 20%, we firstly evaluate the 

barrier options with a lower barrier H = 1.96. Since S > H, the Up-and-Out call 
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and put options are both knocked out, and the Up-and-In call and put options 

become the normal European options. Therefore, we only need to focus on the 

Down-and-In and Down-and-Out options^. 

Table 5.2.2 shows the pricing results from the model and closed-form formulae^. 

With only 400 lattice points, the model can price the all the four 'down' barrier 

options with results very close to the closed-form formulae. As is the case with 

other lattice models, the result will be improved if we increase the lattice points, 

although this will increase the computational time. 

As mentioned before, the Greeks, which are the important hedge ratios for 

model risk consideration, can be computed using finite difference methods, and 

these are reported in Table 5.2.3. They have some interesting differences from 

those of the vanilla options. For example, for Down-and-Out call options with 

strikes below the barrier, the gammas are negative; and for Down-and-In call 

options, the deltas are negative for all strikes. 

Similarly, we examine the Black-Scholes case with the same parameters but a 

higher barrier H = 2.02. Now that S < H, the Down-and-Out call and put options 

have been knocked out, and the Down-and-In call and put options have become 

the European options. We only need to evaluate the Up-and-In and Up-and-Out 

options^. 

Table 5.2.4 reports the pricing results, which are again very close to the closed-

form solutions with only 400 lattice points. The relevant hedged ratios are reported 

in Table 5.2.5. 

^BSDOC:Closed-form Down-and-Out Call; DOC: Down-and-Out Call; BSDIC: Closed-form 
Down-and-In Call; DIC; Down-and-In Call; BSDOP: Closed-form Down-and-Out Put; DOP: 
Down-and-Out Put; BSDIP: Closed-form Down-and-In Put; DIP:Down-and-In Put. 

^The strike is specified as the percentage of forward price. 
^BSUOC: Closed-form Up-and-Out Call; UOC: Up-and-Out Call; BSUIC: Closed-form Up-

and-In Call; UIC:Up-and-In Call; BSUOP: Closed-form Up-and-Out Put; UOP: Up-and-Out 
Put; BSUIP; Closed-form Up-and-In Put; UIP; Up-and-In Put. 
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Table 5.2.2: Barrier Options with S > H, 400 Lattice Points in Black-Scholes Case. 

Strike BSDOC DOC BSDIC D i e BSDOP DOP BSDIP DIP 
90% 0.0818 0.0824 0.1187 0.1176 0 0 0.0015 0.0015 
95% 0.0555 0.0558 0.0556 0.0547 0 0 0.0115 0.0116 

IM 100% 0.0293 0.0293 0.0165 0.0162 0.0002 0.0002 0.0456 0.0460 
105% 0.0099 0.0099 0.0031 0.0030 0.0071 0.0074 0.1055 0.1059 
110% 0.0021 0.0021 0.0004 0.0004 0.0256 0.0263 0.1760 0.1761 
90% 0.0688 0.0694 0.1365 0.1348 0 0 0.0071 0.0073 
95% 0.0504 0.0507 0.0741 0.0727 0 0 0.0254 0.0258 

2M 100% 0.0321 0.0321 0.0324 0.0317 0.0001 0.0001 0.0645 0.0653 
105% 0.0165 0.0164 0.0116 0.0113 0.0028 0.0030 0.1244 0.1255 
110% 0.0068 0.0067 0.0034 0.0033 0.0114 0.0120 0.1969 0.1981 
90% 0.0628 0.0634 0.1485 0.1463 0 0 0.0141 0.0144 
95% 0.0480 0.0483 0.0879 0.0861 0 0 0.0372 0.0381 

3M 100% 0.0333 0.0333 0.0454 0.0443 0 0.0001 0.0786 0.0800 
105% 0.0200 0.0199 0.0207 0.0201 0.0015 0.0017 0A378 0.1396 
110% 0.0105 0.0103 0.0084 0.0081 0.0067 0.0072 0.2094 0.2115 
90% 0.0544 0.0551 ai746 0.1712 0 0 0.0345 0.0357 
95% 0.0445 0.0448 0.1181 0.1153 0 0 0^1652 0.0672 

6M 100% 0.0345 0.0346 0.0752 0.0731 0 0 0.1097 0.1125 
105% 0.0250 &0%W 0.0454 0.0439 0.0005 0.0007 0.1672 0.1708 
110% 0.0170 0.0168 0.0260 0.0251 0.0025 0.0029 0^351 0.2395 
90% 0.0504 0.0511 0.1939 0.1895 0 0 0.0524 0.0545 
95% 0.0425 0.0430 &1402 0.1364 0 0 0.0868 0.0900 

9M 100% 0.0347 0.0348 0.0978 0.0948 0 0 0.1324 0.1368 
105% 0.0271 0.0270 0.0660 0.0637 0.0003 0.0004 0.1888 0.1943 
110% 0.0203 0.0202 0.0433 0.0416 0.0013 0.0017 0.2542 0.2607 
90% 0.0477 0.0485 0.2095 0.2&W 0 0 0.0679 0.0712 
95% 0.0411 0.0416 0A580 0.1534 0 0 0.1045 0.1090 

lY 100% 0.0346 0.0348 0A162 0.1124 0 0 0.1508 0.1567 
105% 0.0282 0.0282 0.0836 0.0806 0.0002 0.0003 0.2063 0.2136 
110% &0223 &0222 0.0590 0.0566 0.0008 0.0011 0.2697 &2M# 
90% 0.0415 0.0425 0.2526 0.2449 0 0 0.1149 0.1228 
95% 0.0374 0.0381 0.2071 0.2000 0 0 0.1549 0.1648 

2Y 100% 0.0333 0.0337 0.1682 0.1618 0 0 0.2015 0.2137 
105% 0.0292 0.0294 0.1356 0.1299 0 0.0001 0.2543 0.2688 
110% 0.0253 0.0254 0.1085 0.1036 0.0003 0.0004 0.3127 0.3294 
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Table 5.2.3: Greeks for Barrier Options with S > H, 400 Lattice Points in Black-Scholes 
Case (Bold type indicates the difference of Greeks from vanilla options) 

Strike DOCA D o c r DICA D i c r DOPA D o p r DiPA D i P r 
90% 2.0066 -0.0633 -1.0434 0.0758 0 0 -0.0323 0.0125 
95% 1.3710 -0.0235 -0.5559 0.0689 0 0 -0.1803 0.0454 

IM 100% 0.7405 0.0153 -0.2339 0.0535 0.0050 -0.0010 -0.4938 0.0697 
105% 0.2648 0.0280 -0.0604 0.0210 &1648 -0.0281 -0.9559 0.0771 
110% 0^1608 0.0138 -0.0094 0.0044 0.5964 -0.0821 -1.5405 0.1003 
90% 1.7102 -0.0228 -0.8118 0.0431 0 0 -0.0925 0.0202 
95% 1.2555 -0.0084 -0.5173 0.0474 0 0 -0.2527 0.0390 

2M 100% 0.8029 &0058 -0.2953 0.0425 0.0021 -0.0002 -0.4854 0.0486 
105% 0.4166 0.0143 -0.1339 0.0269 0.0705 -0.0062 -0.7786 0.0474 
110% 0.1746 0.0129 -0.0480 0.0125 0.2832 -0.0220 -1.1475 0.0474 
90% 1.5674 -0.0124 -0.7169 0.0341 0 0 -0.1358 0.0217 
95% 1.1981 -0.0045 -0.4989 0.0383 0 0 -0.2871 0.0338 

3M 100% Ô KOO 0.0033 -0.3222 0.0360 0.0012 -0.0001 -0.4798 0.0394 
105% 0.5009 0.0088 -0.1793 &0267 0.0414 -0.0024 -0.7061 0.0380 
110% 0.2634 0.0098 -0.0860 0.0161 0.1732 -0.0094 -0.9821 0.0353 
90% ij;66i -0.0043 -0.5999 0.0243 0 0 -0.2066 0.0200 
95% 1.1123 -0.0015 -0.4691 0.0267 0 0 -0.3296 0.0252 

6M 100% 0.8591 0.0012 -0.3521 0.0262 0.0005 0 -0.4664 0.0274 
105% 0.6210 0.0036 -0.2463 0.0227 0.0162 -0.0005 -0.6144 0.0268 
110% OJWll &0&# -0.1610 0.0178 0.0700 -0.0020 -0.7828 &0&W 
90% L2663 -0.0023 -0.5470 0.0199 0 0 -0.2403 0.0176 
95% 1.0652 —0.0008 -0.4501 0.0215 0 0 -0.3445 0.0207 

9M 100% 0.8643 0.0007 -0.3597 0.0213 0.0003 0 -0.4553 0.0221 
105% 0.6722 0.0020 -0.2748 0.0196 &Cm94 -0.0002 -0.5715 0.0218 
110% 0.5021 0.0029 -0.2011 0.0167 0.0404 -0.0008 -0.6990 0.0204 
90% 1.2007 -0.0014 -0.5132 0.0172 0 0 -0.2590 0.0157 
95% 1.0314 -0.0005 -0.4352 0.0184 0 0 -0.3503 0.0179 

lY 100% &8&# 0.0005 -0.3607 0.0183 0.0003 0 -0.4452 0.0188 
105% 0.6990 0.0013 -0.2892 0.0173 0.0064 -0.0001 -0.5431 0.0187 
110% 0.5505 0.0020 -0.2249 0.0154 0.0272 -0.0004 -0.6481 0.0178 
90% 1.0477 -0.0005 -0.4350 0.0117 0 0 -0.2832 0.0113 
95% 0^895 -0.0001 -0.3903 0.0123 0 0 -0.3466 0.0121 

2Y 100% 0^815 0.0002 -0.3458 0.0124 0.0001 0 -0.4102 0.0126 
105% 0.7259 0.0005 -0.3017 0.0121 0.0026 0 -0.4742 0.0126 
110% 0.6257 0.0008 -0.2596 0.0115 0.0106 -0.0001 -0.5403 0.0124 
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Table 5.2.4: Barrier Options with S < H, 400 Lattice Points in Black-Scholes Case. 

Strike BSUOC u o c BSUIC UlC BSUOP UOP BSUIP UiP 
90% 0.0120 0.0119 0.1885 0.1881 0.0009 0.0009 0.0006 0.0006 
95% 0.0026 0.0026 0.1084 0.1079 0.0056 0.0057 0.0059 0.0059 

IM 100% 0 0 0.0458 0.0455 0.0172 0.0173 0.0287 0.0289 
105% 0 0 0.0131 0.0129 0.0313 0.0315 0IW13 &0818 
110% 0 0 0XM25 0.0024 0.0455 0.0456 0.1561 0.1568 
90% 0.0054 0.0052 0.1999 0.1989 0.0030 0.0030 0.0041 0.0043 
95% 0.0010 0.0010 0.1235 0.1225 0.0088 0.0089 0.0166 0.0169 

2M 100% 0 0 0.0645 &0&M 0.0179 0.0181 &&W6 0.0473 
105% 0 0 0X%81 0.0276 0.0281 0.0282 0.0991 0.1003 
110% 0 0 0.0102 0.0100 0.0383 0.0384 0.1701 0.1718 
90% 0.0032 0.0031 0.2081 0.2066 0.0047 &0&W 0.0094 0.0097 
95% 0.0006 0.0005 0.1353 0.1339 0.0104 0.0106 0.0268 0.0275 

3M 100% 0 0 0.0787 0.0775 0.0182 0.0184 0.0604 0.0616 
105% 0 0 0.0407 0.0400 &0266 0.0268 0.1127 0.1146 
110% 0 0 0.0188 0.0184 0.0350 0.0351 0.1811 OA&M 
90% 0.0013 0.0011 0.2278 0.2252 0.0077 0.0079 0.0268 0.0278 
95% 0.0002 0.0002 0.1623 0.1599 0.0127 0.0129 0̂ 1526 0.0543 

6M 100% 0 0 0.1097 0.1077 0.0185 0.0187 0.0912 &0&M 
105% 0 0 0.0704 0.0688 &0245 0.0247 0.1431 &1## 
110% 0 0 0.0430 0.0419 0.0306 0.0307 0.2070 0.2116 
90% 0.0007 0.0006 0.2436 0.2401 0.0093 0.0095 0.0431 0.0450 
95% 0.0001 0.0001 0.1826 0.1793 0.0136 0.0139 0.0731 0.0760 

9M 100% 0 0 0.1324 0.1296 0.0185 0.0188 0.1139 0.1181 
105% 0 0 0.0931 0.0908 0.0235 0.0237 0.1656 0.1710 
110% 0 0 0.0636 0.0617 0.0285 0.0286 0.2270 0.2337 
90% 0.0005 0.0004 0.2567 0.2525 0.0102 0.0105 0.0577 0.0607 
95% 0.0001 0.0001 0.1990 0.1950 0.0142 0.0145 0.0903 0.0945 

lY 100% 0 0 0.1508 0.1472 0.0184 0.0187 0.1324 0.1380 
105% 0 0 0.1118 0.1087 0.0228 0.0230 0.1837 0.1908 
110% 0 0 0.0812 0.0787 0.0271 0.0273 0.2434 0.2521 
90% 0.0002 0.0001 0.2938 0.2873 0.0118 0.0122 0.1031 0.1106 
95% 0 0 0.2444 0.2381 0.0147 0.0152 0.1401 0.1497 

2Y 100% 0 0 0.2015 0.1956 0.0178 0.0182 0.1837 0.1955 
105% 0 0 0.1648 0.1594 0.0209 0.0213 0.2335 0.2476 
110% 0 0 0.1338 0.1289 0.0240 0.0243 0.2890 0.3055 
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Table 5.2.5: Greeks for Barrier Options with S < H, 400 Lattice Points in Black-Scholes 
Case (Bold type indicates the distinct difference of the Greeks from the 
vanilla options) 

Strike UOCA u o c r UiCA u i c r UOPA u o p r UiPA UiPi" 
90% -0 .5786 -0 .0382 1.5418 0.0507 -0.0468 0.0062 0.0145 0.0063 
95% -0.1236 -0 .0103 0.9387 0.0557 -0.2880 0.0139 0.1077 0.0315 

IM 100% 0 0 0.5072 0.0688 -0.8611 &0039 0.3723 0.0649 
105% 0 0 0.2043 0.0490 -1.5567 -0 .0163 0.7656 0.0654 
110% 0 0 0.0514 0.0182 -2.2529 -0 .0366 1.3089 0.0549 
90% -0 .2570 -0 .0098 1.1554 0.0300 -0.1533 0.0059 0.0609 0.0143 
95% -0 .0468 -0 .0020 &7850 0.0410 -0.4442 0.0065 0.1916 00325 

2M 100% 0 0 0.5077 0.0484 -0.8986 0.0013 0.4153 0.0471 
105% 0 0 0.2827 0.0412 -1.3995 -0 .0059 0.6914 0.0471 
110% 0 0 0.1266 0.0254 -1.9006 -0 .0130 1.0363 0.0384 
90% -0 .1509 -0 .0041 1.0015 0.0258 -0.2386 0.0044 0.1028 0.0173 
95% -0 .0257 -0 .0008 0.7249 0.0346 -0.5265 0.0038 0.2393 0.0300 

3M 100% 0 0 0.5079 0.0393 -0.9139 0.0007 0.4354 0.0386 
105% 0 0 0^216 0.0355 -1.3269 -0 .0032 0.6622 0.0388 
110% 0 0 0.1774 0.0259 -1.7399 -0 .0071 0.9310 0.0330 
90% -0 .0561 -0 .0008 0.8224 0.0208 -0.3911 0.0021 0.1845 0.0178 
95% -0 .0087 -0 .0001 0.6520 0.0253 -0.6403 0.0014 0.3107 0.0237 

6M 100% 0 0 0.5070 0.0274 -0.9281 0.0002 04622 0.0272 
105% 0 0 0.3747 0.0263 -1.2246 -0 .0012 0.6264 0.0275 
110% 0 0 0.2601 0.0226 -1.5211 -0 .0025 0.8084 00252 
90% -0 .0301 -0.0003 &7494 0.0179 -0.4712 0.0013 0.2309 0.0164 
95% -0 .0044 0 0.6195 0.0208 -0.6894 0.0008 0.3449 0.0199 

9M 100% 0 0 0.5046 0.0221 -0.9290 0.0001 0.4740 0.0220 
105% 0 0 0.3974 0.0216 -1.1729 -0 .0006 0.6107 0.0222 
110% 0 0 0.3010 0.0196 -1.4168 -0 .0014 0.7583 0.0210 
90% -0 .0190 -0 .0001 0.7065 0.0159 -0.5198 0.0008 0.2609 0.0149 
95% -0 .0027 0 0.5989 0.0179 -0.7156 0.0005 03653 0.0174 

lY 100% 0 0 0.5016 0.0188 -0.9250 0 0.4801 0.0188 
105% 0 0 04098 0.0186 -1.1371 -0 .0004 0.6004 0.0190 
110% 0 0 &3256 0.0174 -1.3492 -0 .0009 0.7284 0.0183 
90% -0 .0057 0 0.6183 0.0113 -0.6015 0.0003 0.3183 0.0110 
95% -0 .0007 0 0.5499 0.0121 -0.7464 0.0002 0.3999 0.0120 

2Y 100% 0 0 04858 0.0126 -0.8957 0 04856 0.0126 
105% 0 0 0.4242 0.0126 -1.0456 -0 .0002 0.5740 0.0128 
110% 0 0 0.3661 0.0123 -1.1955 -0 .0003 0.6658 0.0126 
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5.3 Pricing Experiment 

5.3.1 G B P U S D 

With the parameters cahbrated to the market, we can directly apply the previous 

validated model to price barrier options for GBPUSD currency pair. At the current 

spot level of 1.944, we try to price the 'Down' barrier options with a lower barrier 

1.864 (approximately 96% of the spot price), and the 'Up' barrier options with a 

higher barrier 1.984 (about 102% of the spot price). In order to see the special 

properties of barrier options, we also produce the relevant European call and put 

option values and Greeks for comparison, listed in Table 5.3.1. 

Table 5.3.2 shows the pricing results for Down and Out call and Down and 

In call, together with the delta, gamma and vega for hedging purposes. Several 

interesting barrier option properties can be observed clearly. For example, the 

price for the k = 90% (in-the-money for call) Down and Out call option decreases 

sharply with the maturity. This is because given the low volatility of GBPUSD 

(about 7%), the chances of hitting the barrier 96% is relatively small for a short 

maturity like one month, thus the in-the-money call still retains most of its value 

as the vanilla call. However, with the longer maturity, it is more likely that the 

barrier will be hit, thus the price decreases faster than that for vanilla options, 

creating a bigger difference between them. Another obvious difference is that the 

delta for Down-and-In call with strike below the barrier is negative, this is because 

with the decrease of the underlying, the option is more likely to be 'knock-in' and 

have value. Notice that the absolute value of delta also increases with maturity, 

the explanation is similar. 

Table 5.3.3 reports the prices for Down-and-Out put and Down-and-In put 

options, together with their hedge ratios. Compared with the information in Table 

5.3.1, we can see a few differences, the most obvious being the delta for Down-

and-Out put option. Instead of the negative value for vanilla put delta, the deltas 

for maturities longer than six months are all positive. This can be explained by 

the trade-off between being in-the-money and being knocked-out. With the longer 

maturity, the put option has a higher probability of hitting the barrier and being 

knocked out. When the strike increases, on the one hand, the option value increases 
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because it is further away from the barrier and thus more likely to stay alive; on 

the other hand, the value decreases because it is less likely to be in-the-money. If 

the former effect is greater than latter one, the option value will have a positive 

relationship with the underlying, thus the delta is positive. 

For the barrier higher than spot. Table 5.3.4 and Table 5.3.5 display the option 

values and Greeks for Up and Out and Up and In calls and puts, respectively. It 

is interesting to notice that the delta profile for Down and In put is quite similar 

to that for the Up and Out Put, while Down and In call and Up and Out call both 

have universal negative delta for in-the-money options. The absolute values of 

vega for deep in-the-money calls and puts are very large, due to the low volatility 

of this currency pair. 

5.3.2 USDBRL 

Similarly, we apply the model to price the USDBRL barrier options, with the 

parameters calibrated to the vanilla option quotes. For comparability with the 

GBPUSD results, we price the options with the same percentage barrier level, 

namely 96% for the 'Down' options and 102% for the 'Up' options. Based on 

the current market spot price of 2.145, we are effectively pricing with a lower 

barrier 2.056 and a higher barrier 2.190. For analytical convenience, we also display 

the corresponding European option prices and hedge ratios in Table 5.4.1. In 

comparison with the GBPUSD result in Table 5.3.1, we find that the volatility 

difference between these two currency pairs is most clear in the price for in-the-

money put and its vega. For the low volatility GBPUSD, with the increase of 

maturity, the value decreased by the higher probability of getting closer to be out-

of-the-money is not large enough to cancel out the increase of time value, thus the 

put option price rises. If the volatility increases, the option will more likely go out-

of-the-money, thus the vega is negative. However, for USDBRL which has much 

higher volatility, the deep in-the-money put price is distinctly decreasing with the 

maturity, since the increase of time value cannot compensate for the sharp decrease 

of value due to the higher chances of being out-of-the-money. Given the already 

higher volatility, the small increase of volatility will however increase the option 

value, thus giving positive vega. 

119 



Table 5.4.2 provides the results for Down and Out call and Down and In call. 

The trend of both option value and hedge ratios are quite similar to those in 

GBPUSD case, except for the scale of vega profile. For Down and Out call, the 

vegas for both currency pairs increase with maturity for in-the-money options. 

However, due to the lower volatility, GBPUSD has a much larger vega increase, 

resulting in large positive vega in long maturity like 2-year, while USDBRL vega 

still remains negative. And opposite result can be seen in the vega for Down and 

In call. Also notice that for the short maturity out-of-the-money call in the Down 

and In case, GBPUSD has no value because of the small chance of getting knocked 

in with some value, while USDBRL can have none-zero value even at maturity as 

short as 2 months, because of much higher volatility. In comparison, in the Down 

and In put case, the short maturity out-of-the-money put for GBPUSD is easier 

to retain some value (e.g. k = 95% for 1-month), as can be seen in Table 5.4.3. 

The pricing results for the Up and Out and Up and In calls and puts are shown 

in Table 5.4.4 and Table 5.4.5, respectively. As expected, the vegas for all four 

options are much smaller than their GBPUSD counterpart. 

5.4 Summary 

In this chapter, we innovatively develop the pricing methodology for the FX barrier 

options within the lattice framework proposed by Albanese and Mijatovic [4]. In 

calculating the exponential of the non-normal Markov generator matrix, we again 

apply the algorithm we proposed in the last chapter. The model is validated 

in the Black-Scholes' case against the closed-form pricing formulae provided by 

Haug [43]. The validity of our method is confirmed by the very small differences 

between the model prices and those from the closed-form solutions. Finally, with 

the parameters calibrated from last chapter, the model achieves reasonable pricing 

results for both a developed market currency pair (GBPUSD) and an emerging 

market currency pair (USDBRL). 

120 



Table 5.3.1: GBPUSD European Options and Hedge Ratios with 76 Lattice Points and 
5 Regimes (Bolded numbers are compared with the barrier options coun-
terparts in the following tables) 

Strike Call CallA Calir Calk Put PutA Putr Putw 
90% 0.1937 0.9958 0 10.7964 0 0 0 0 
95% 0.0970 0.9870 0.0088 11.3725 0.0001 -0.0088 0.0088 0.5774 

IM 100% 0.0158 0.5001 0.1999 20.7495 0.0157 -0.4957 0.1999 9.9544 
105% 0.0004 0.0222 0.0186 1.6678 0.0970 -0.9736 0.0186 -9.1273 
110% 0 0.0007 0.0006 0.0542 0J.934 -0.9951 0.0006 -10.7409 
90% 0.1932 &9912 0.0003 10.7662 0 -0.0003 0.0003 0.0172 
95% 0.0977 0.9584 0.0230 12.1516 0.0008 -0.0331 0.0230 1.4026 

2M 100% 0.0223 0.5055 0.1402 16.2297 0.0217 -0.4860 0.1402 5.4807 
105% 0.0017 0.0630 0.0370 3.5235 0.0974 -0.9285 0.0370 -7.2255 
110% 0.0001 0.0045 0.0032 0.2940 0.1921 -0.9870 0.0032 -10.4550 
90% 0.1926 &9859 0.0010 l&n%3 0 -0.0013 0.0010 0.0611 
95% 0.0984 0.9275 0.0323 12.5329 0.0018 -0.0597 0.0323 1.8307 

3M 100% &0269 0.5064 0.1148 14.2892 0.0262 -0.4808 0.1148 3.5869 
105% 0.0034 0.0991 0.0456 4.5704 0.0985 -0.8881 0.0456 -6.1318 
110% 0.0003 0.0115 0.0067 0.6390 0.1913 -0.9757 0.0067 -10.0632 
90% 0.1904 0.9620 0.0059 10.8807 0.0004 -0.0122 0.0059 0.3195 
95% 0.1018 0.8454 0.0422 12.4002 0.0064 -0.1288 0.0422 1.8390 

6M 100% 0.0376 &5&W 0.0794 11.5533 0.0369 -0.4701 0.0794 0.9921 
105% 0.0094 &1%# 0.0506 5.8109 0.1033 -0.7959 0.0506 -4.7503 
110% 0IW18 0.0435 0.0166 1.7453 0.1903 -0.9307 0.0166 -8.8158 
90% 0.1881 0.9297 0.0112 10.9403 0.0015 -0.0314 0.0112 0.5207 
95% 0.1047 0.7871 0.0422 11.7684 0.0115 -0.1740 0.0422 1.3489 

9M 100% 0.0449 &4967 0.0639 10.2864 0.0453 -0.4644 0.0639 -0.1331 
105% 0.0149 0.2218 0.0475 6.0446 0.1087 -0.7394 0.0475 -4.3750 
110% 0.0041 0.0751 0.0218 2J1825 0.1914 -0.8860 0.0218 -7.9370 
90% 0.1860 0.8945 0.0152 10.8600 &OKW -0.0535 0.0152 0.5825 
95% 0.1072 0.7425 0.0401 11.1263 0.0168 -0.2056 0.0401 &&W8 

lY 100% 0.0508 0.4885 0.0543 9JL627 0.0527 -0.4595 &0&8 -0.8148 
105% 0.0199 0.2491 0.0436 6.0443 0.1142 -0.6989 0.0436 -4.2331 
110% 0Xm67 0.1024 0.0241 2.9554 &1&% -0.8456 0.0241 -7.3220 
90% 0.1770 07687 0.0205 9.9052 0.0137 -0.1282 0.0205 &1824 
95% 0.1114 &6%W 0.0320 9.2167 0.0367 -0.2728 0.0320 -0.5060 

2Y 100% 0.0639 0.4472 0.0362 7.6266 0.0777 -0.4497 0.0362 -2.0962 
105% 0.0336 0.2841 0.0320 5.5359 0.1360 -0.6127 0.0320 -4.1868 
110% 0.0162 0.1612 0.0234 3.5424 0.2071 -0.7357 0.0234 -6.1804 
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Table 5.3.2: GBPUSD 'Down-and-Call' Barrier Options and Hedge Ratios with S > H, 
76 Lattice Points and 5 Regimes (Bolded numbers are compared with the 
European calls counterparts, indicating the barrier property, as explained 
in the text) 

Strike DOC DOCA D o c r DOCt; D i e DICA D i c r D1C% 
90% 0.1886 1.2881 -0.2455 -4.8570 0.0050 -0.2923 0.2455 15.6534 
95% 0.0962 1.0370 -0.0349 8.5698 0.0008 -0.0501 0.0436 2.8027 

IM 100% 0.0158 0.5003 0.1996 2&7309 0 0 0 0 
105% 0.0004 0.0222 0.0186 1.6674 0 0 0 0 
110% 0 0 0 0 0 0 0 0 
90% 0.1782 1.5081 -0.2685 -4.2354 0.0151 -0.5169 0.2687 15.0015 
95% 0.0948 1.0655 -0.0389 8.5644 0.0029 -0.1070 0.0619 3.5872 

2M 100% 0IB23 0.5083 0.1378 16.0775 0.0001 -0.0028 0.0024 0J.523 
105% 0.0017 0.0631 0.0370 3.5186 0 0 0 0.0049 
110% 0.0001 &0&# 0.0032 0.2937 0 0 0 0 
90% 0.1687 1.5917 -0.2269 -0.1390 0.0238 -0.6058 0.2278 10.9024 
95% 0.0933 1.0741 -0.0334 9.0832 0.0052 -0.1466 0.0657 3.4497 

3M 100% 0.0267 0.5152 &1088 13.9242 0.0002 -0.0088 0.0060 0.3650 
105% 0.0034 0.0995 0.0453 4.5506 0 0 0 0 
110% 0.0003 0.0115 0.0067 0.6376 0 0 0 0 
90% 0.1477 L59&4 -0.1222 7.9589 0.0427 -0.6364 0.1281 2.9218 
95% 0.0894 1.0637 -0.0188 10.0935 0.0123 -0.2183 0.0609 2.3067 

6M 100% 0.0360 0.5445 0.0622 10.6693 0.0016 -0.0405 0.0173 0.8840 
105% 0.0092 &1834 0.0479 5.6592 0.0002 -0.0052 0.0027 0.1516 
110% 0.0018 0.0441 0.0162 L%M9 0 0 0 0.0214 
90% 0.1346 1.5258 -0.0753 10.7671 0.0535 -0.5961 0.0865 0.1731 
95% 0.0862 1.0376 -0.0116 10.3599 0.0184 -0.2505 0.0538 1.4085 

9M 100% 0.0411 0.5688 0.0410 9.3098 0.0039 -0.0721 0.0229 0.9767 
105% 0.0142 0.2371 0.0414 5.7408 0.0007 -0.0153 0.0061 0.3037 
110% 0.0040 &0%W 0.0204 2.4127 0.0001 -0.0029 0.0013 0.0698 
90% 0.1252 1.4512 -0.0510 11.8201 0.0608 -0.5566 0.0662 -0.9601 
95% 0IK35 1.0102 -0.0078 10.3553 0.0237 -0.2677 0.0479 0.7710 

lY 100% 0.0442 0.5870 0.0290 8.5904 0.0066 -0.0985 &0253 0.8723 
105% 0.0184 0.2774 0.0344 5.6471 0.0016 -0.0283 0.0092 0.3972 
110% 0.0064 0.1095 0.0214 2.8268 0.0003 -0.0071 0.0027 0.1287 
90% 0.1025 1.2180 -0.0179 11.8318 0.0745 -0.4493 0.0384 -1.9267 
95% 0.0744 0.9010 -0.0019 9.6210 0.0371 -0.2770 0.0339 -0.4043 

2Y 100% 0.0476 0.5971 0.0121 7.4018 0.0163 -0.1500 0.0241 &2%W 
105% 0.0270 0^858 0.0179 5.2289 0.0066 -0.0716 0.0141 0.3070 
110% 0.0138 0.1917 0.0163 3.3298 0.0024 -0.0306 0.0071 0.2126 
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Table 5.3.3: GBPUSD 'Down-and-put' Barrier Options and Hedge Ratios with S > H, 
76 Lattice Points and 5 Regimes (Bolded numbers are compared with the 
European puts counterparts, indicating the difference due to barrier prop-
erty, as explained in the text) 

Strike DOP DOPA D o p r DOPt; DIP D l P A D i p r D1P% 
90% 0 0 0 0 0 0 0 0 
95% 0 0 0 0 0.0001 -0 .0088 0.0088 0.5774 

IM 100% 0.0120 -0.2856 0.0239 -1.2658 &0036 -0 .2101 0.1760 11.2202 
105% 0.0891 -0.5127 -0.3677 -33.7561 0.0080 -0 .4609 0.3864 24.6288 
110% 0.1811 -0.2831 -0.5963 -48.7961 0.0123 -0 .7119 0.5970 38.0552 
90% 0 0 0 0 0 0 0 0 
95% 0 0 0 0 0.0008 -0 .0331 0.0230 1.4026 

2M 100% 0.0108 -0.1145 -0.0528 -5.2866 0.0108 -0 .3716 0.1930 10.7674 
105% 0.0737 -0.1170 -0.3831 -30.6452 0.0237 -0 .8115 &4202 23.4197 
110% 0.1555 0.2671 -0.6464 -46.6699 0.0367 -1 .2541 0.6496 36.2148 
90% 0 0 0 0 0 0 0 0 
95% 0 0 0 0 0.0018 -0 .0597 0.0323 1.8307 

3M 100% 0.0089 -0.0413 -0.0513 -4.3812 0.0172 -0 .4395 0.1661 7.9682 
105% 0.0611 0.0606 -0.3082 -22.9771 0.0374 -0 .9487 0.3538 1&&#2 
110% 0.1335 0.4902 -0.5403 -36.1123 0.0578 -1 .4660 0.5470 26.0491 
90% 0 0 0 0 0.0004 -0 .0122 0.0059 0.3195 
95% 0 0 0 0 0.0064 -0 .1288 0.0422 1^390 

6M 100% &0&W 0.0155 -0.0225 -1.5587 0.0320 -0 .4857 0.1019 2.5508 
105% 0.0364 0.1891 -0.1402 -8.7033 0.0668 -0 .9850 0.1908 3.9530 
110% 0.0873 0.5845 -0.2753 -14.7732 0.1030 -1 .5152 0.2919 5.9574 
90% 0 0 0 0 0.0015 -0 .0314 0.0112 0.5207 
95% 0 0 0 0 0.0115 -0 .1740 0.0422 1.3489 

9M 100% 0.0032 0.0194 -0.0111 -0.6429 0.0421 -0 .4838 0.0750 0.5098 
105% 0.0248 0.1758 -0.0745 -3.8046 0.0839 -0 .9151 0.1219 -0.5704 
110% 0.0629 0.5049 -0.1591 -6.7255 0.1285 -1 .3909 0.1808 -1.2115 
90% 0 0 0 0 0.0033 -0 .0535 0.0152 0.5825 
95% 0 0 0 0 0.0168 -0 .2056 0.0401 0jW88 

lY 100% 0.0023 0.0178 -0.0064 -0.3001 0.0504 -0 .4773 0.0608 -0.5147 
105% 0.0182 0.1492 -0.0443 -1.7785 0.0960 -0 .8481 0.0879 -2.4546 
110% 0.0478 0.4222 -0.1006 -3.1341 0.1455 -1 .2679 0.1246 -4.1879 
90% 0 0 0 0 0.0137 -0 .1282 0.0205 &1824 
95% 0 0 0 0 &0367 -0 .2728 0.0320 -0.5060 

2Y 100% 0.0013 0.0131 -0.0020 -0.0084 0.0764 -0 .4628 0.0382 -2.0878 
105% 0.0089 0.0887 -0.0122 0.0296 0.1271 -0 .7015 0.0442 -4.2164 
110% 0.0237 0.2417 -0.0297 0.3413 0.1834 -0 .9774 0.0531 -6.5216 
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Table 5.3.4: GBPUSD 'Up-and-call' Barrier Options and Hedge Ratios with S < H, 
76 Lattice Points and 5 Regimes (Bolded numbers are compared with the 
European calls counterparts, indicating the difference of Greeks for options 
with strikes below the barriers) 

Strike u o c UOCA u o c r UOCw UlC UlC A u l c r UiCv 
90% 0.1213 -1 .6139 -1.2628 -114.3259 0.0724 2.6097 1.2628 125.1223 
95% 0.0542 -0 .5522 -0.7333 -62.2116 0.0428 1.5391 0.7420 73.5841 

.IM 100% 0.0022 0.0074 -0.0440 -3.2957 0.0136 &4926 0.2439 24.0453 
105% 0 0 0 0 0.0004 &0222 0.0186 1.6678 
110% 0 0 0 0 0 0.0007 0.0006 0.0542 
90% 0.0888 -1 .4774 -0.6869 -68.6901 0.1044 &4686 0.6872 79.4562 
95% &0358 -0 .4997 -0.3789 -34.4678 0.0619 L4582 0.4018 46.6194 

2M 100% 0.0013 -0.0098 -0.0196 -1.6116 0.0210 0.5153 0.1598 17jW14 
105% 0 0 0 0 0.0017 0.0630 0.0370 3.5235 
110% 0 0 0 0 0.0001 0.0045 0.0032 0.2940 
90% 0.0709 -1 .2805 -0.4480 -48.2358 0.1217 2.2664 0.4490 58.9991 
95% 0.0261 -0 .4135 -0.2296 -22.0905 &0%# 1.3410 0.2619 34.6234 

3M 100% 0.0008 -0.0101 -0.0100 -0.8745 0.0261 0.5165 0.1247 15.1637 
105% 0 0 0 0 0.0034 0.0991 0.0456 4.5704 
110% 0 0 0 0 0.0003 0.0115 0.0067 0.6390 
90% 0.0419 -0 .8351 -0.1813 -22.9515 0.1485 1.7970 0.1872 33.8322 
95% 0.0126 -0 .2361 -0.0724 -&1123 0.0891 1.0815 0.1146 20.5125 

6M 100% 0.0003 -0.0058 -0.0022 -0.2341 0.0373 0.5098 0.0816 11.7874 
105% 0 0 0 0 0.0094 0.1783 0.0506 5.8109 
110% 0 0 0 0 0.0018 0.0435 0.0166 1.7453 
90% 0.0284 -0 .5857 -0.0980 -13.8660 0.1597 1.5154 0.1093 24.8063 
95% 0.0075 -0 .1503 -0.0323 -4.1089 0.0971 0.9374 0.0745 15.8773 

9M 100% 0.0002 -0.0032 -0.0008 -0.0943 0.0448 &4999 0.0647 10.3808 
105% 0 0 0 0 0.0149 0.2218 0.0475 6.0446 
110% 0 0 0 0 0.0041 0.0751 &0218 2Ja25 
90% 0.0203 -0 .4289 -0.0592 -9.1920 0.1657 1.3234 0.0744 20.0520 
95% 0.0049 -0 .1021 -0.0170 -&4098 0.1023 &8445 0.0571 13.5361 

lY 100% 0.0001 -0.0020 -0.0004 -&0488 0.0507 0.4905 0.0547 9.5115 
105% 0 0 0 0 0.0199 0.2491 0.0436 6.0443 
110% 0 0 0 0 0.0067 0.1024 0.0241 2.9554 
90% 0.0073 -0 .1594 -0.0139 -2.7901 0.1697 0.9281 0.0344 12.6953 
95% 0.0013 -0 .0289 -0.0027 -0.5209 0.1101 0.6529 0.0347 9.7376 

2Y 100% 0 0 0 0 0.0639 0.4473 0.0363 7.6296 
105% 0 0 0 0 0.0336 0.2841 0.0320 5.5359 
110% 0 0 0 0 0.0162 0.1612 0.0234 3.5424 
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Table 5.3.5; GBPUSD 'Up-and-put' Barrier Options and Hedge Ratios with S < H, 76 
Lattice Points and 5 Regimes (Bolded numbers are compared with the Down 
and In Puts counterparts, as explained in the text) 

Strike UOP UOP A u o p r UOPr UIF UiPA u i p r UlPu 
90% 0 0 0 0 0 0 0 0 
95% 0.0001 -0.0089 0.0087 0.5725 0 0 0 0 

IM 100% 0.0153 -0.5199 0.1771 7.9454 0.0004 0.0242 0.0228 2.0090 
105% 0.0802 -1.5979 -0.2997 -40.3019 0.0168 0.6243 0.3183 31.1746 
110% 0.1474 -2.6686 -0.8205 -91.8450 0.0460 1.6735 0.8211 81.1041 
90% 0 0 0 0 0 0 0 0 
95% 0.0007 -0.0340 0IW21 L%#1 0 0 0 0 

2M 100% 0.0200 -0.5554 0.0952 1.2754 0.0017 0.0693 0.0450 4.2053 
105% 0.0726 -1.5569 -0.1714 -30.0228 &0%W 0.6284 0.2085 22.7974 
110% 0.1264 -2.5682 -0.4576 -62.9327 0.0657 1.5813 &4608 52.4777 
90% 0 0 0 0 0 0 0 0 
95% 0.0017 -0.0633 0̂ W96 L5%% 0.0001 0.0037 0.0028 0.2515 

3M 100% &0228 -0.5889 0.0594 -1.8292 0.0033 0.1081 0.0554 5.4161 
105% 0.0684 -1.5078 -0.1204 -25.5789 0.0300 0.6197 0.1660 19.4471 
110% 0.1149 -2.4368 -0.3102 -50.2033 0.0764 1.4610 0.3169 40.1400 
90% 0.0004 -0.0134 0.0051 0.2484 0 0 0 0 
95% 0.0055 -0.1541 OIKOO 0.6277 0.0009 0.0253 0.0122 1.2114 

6M 100% 0.0276 -0.6634 0.0161 -5.9542 0.0093 0.1933 0.0633 6.9463 
105% 0.0617 -1.3973 -0.0656 -20.1800 0.0416 0.6014 0.1162 15.4297 
110% 0.0961 -2.1370 -0.1496 -34.6400 &0&# 1.2062 0.1662 25.8242 
90% 0.0013 -0.0374 0.0084 OjW14 0.0002 0.0060 0.0028 0.2793 
95% 0.0090 -0.2294 0.0221 -0.7931 &0026 0.0554 0.0201 2.1420 

9M 100% 0.0301 -0.7098 0.0016 -7.5703 0.0152 0.2454 0.0623 7.4372 
105% 0.0585 -1.3341 -0.0496 -18.2677 0.0503 0.5948 0.0971 13.8927 
110% 0.0870 -1.9616 -0.1016 -29.0594 O.l&W 1.0756 0.1234 21.1224 
90% 0.0026 -0.0684 0.0095 -0.0127 0.0007 0.0149 0.0057 0.5951 
95% 0.0119 -0.2917 0.0148 -2.0275 &0&W 0.0861 0.0253 2.8762 

lY 100% 0.0318 -0.7416 -0.0055 -8.4634 0.0210 0.2821 0.0599 7.6486 
105% 0.0564 -1.2898 -0.0421 -17.2117 0.0578 0.5909 0.0857 12.9785 
110% 0.0811 -1.8399 -0.0791 -26.0087 0.1122 0.9942 0.1031 18.6866 
90% 0.0083 -0.1974 0.0049 -1.7640 0.0054 0.0693 0.0156 1.9465 
95% 0.0196 -0.4554 -0.0011 -5.0210 0.0172 0.1826 0.0331 4.5150 

2Y 100% 0.0355 -0.8152 -0.0155 -10.0294 0.0422 0.3655 0.0518 7^832 
105% 0.0527 -1.2035 -0.0327 -15.5526 0.0833 0.5908 0.0647 11.3658 
110% 0.0700 -1.5920 -0.0498 -21.0789 0.1372 0.8563 0.0732 14.8985 
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Table 5.4.1: USDBRL European Options and Hedge Ratios with 76 Lattice Points and 
5 Regimes (Bolded numbers are compared with the barrier options coun-
terparts in the following tables) 

Strike Call CallA Calir (Jalif Put PutA Putr Putu 
90% 0.2245 0.9956 0 0 0 0 0 0 
95% 0.1191 0.9926 0.0037 0 0 0 0 0 

IM 100% 0.0278 0.5511 0.1888 0.8999 0.0141 -0.4445 0.1888 0.9650 
105% 0.0053 0.0896 0.0329 0.1574 0.0970 -0.9060 &0329 0.2226 
110% 0.0018 0.0236 0.0072 0.0341 0.1989 -0.9720 0.0072 0.0993 
90% 0.2340 0.9910 0.0003 0 0 0 0 0 
95% 0.1310 0.9654 0.0185 0.0283 0.0006 -0.0259 0.0185 0.0932 

2M 100% 0.0466 0.5859 0.1133 0.5231 0.0199 -0.4054 0.1133 0.5879 
105% 0.0152 0.1902 0.0486 0.2284 0.0921 -0.8011 0.0486 0.2933 
110% 0.0063 &0687 0.0161 0.0754 0.1869 -0.9226 0.0161 0.1402 
90% 0.2427 0.9848 0.0015 0 0.0001 -0.0022 0.0015 0.0077 
95% 0.1424 0.9375 0.0252 0.0634 0.0017 -0.0495 0.0252 0.1280 

3M 100% 0.0629 0.6093 0.0836 &3%# 0.0241 -0.3776 0.0836 0.4389 
105% 0.0266 0.2702 0.0517 &2387 0X#97 -0.7167 0.0517 0.3033 
110% 0.0130 0.1228 0.0235 0.1087 0.1780 -0.8641 0.0235 0.1733 
90% 0.2509 0.9779 0.0026 0 0.0001 -0.0046 0.0026 0.0134 
95% 0.1536 0.9120 0.0278 0.0781 0.0031 -0.0706 0.0278 0.1424 

4M 100% 0.0767 0.6288 0.0682 0.2971 &0265 -0.3538 0.0682 0.3613 
105% 0.0371 0.3275 0.0509 0.2311 0.0872 -0.6551 0.0509 0.2954 
110% 0.0198 0.1688 0.0277 0.1265 0.1702 -0.8138 0.0277 0.1907 
90% 0.2667 0.9593 0.0057 0 0.0007 -0.0146 0.0057 0.0293 
95% &1%# 0.8787 0.0266 &0%# 0.0059 -0.0952 0.0266 0.1382 

6M 100% 0.1024 0.6546 0.0502 0.2058 0.0306 -0.3193 0.0502 0.2696 
105% 0.0588 0.4136 0.0455 0.1983 0.0842 -0.5603 0.0455 0.2620 
110% 0.0357 0.2536 0.0314 0.1389 0.1581 -0.7203 0.0314 0.2026 
90% 0.3089 0.9082 0.0084 0 0.0035 -0.0402 0.0084 0.0440 
95% 0.2301 0.8294 0.0189 0.0396 0.0131 -0.1191 0.0189 0.1016 

lY 100% OJ&W 0.6976 0.0286 0.0962 0.0360 -0.2508 0.0286 0.1582 
105% 0.1171 0.5488 0.0312 0.1190 0.0769 -0.3996 0.0312 0.1810 
110% 0.0849 &4212 0.0286 0.1144 0.1331 -0.5273 0.0286 0.1765 
90% 0.3790 0.8288 0.0069 0 0.0146 -0.0717 0.0069 0.0387 
95% 0.3204 0.7770 0.0101 0 0.0292 -0.1235 0.0101 0.0580 

2Y 100% 0.2700 0.7138 0.0128 0.0169 0.0519 -0.1867 0.0128 0.0758 
105% 0.2275 0.6469 0.0148 0.0310 0IW25 -0.2535 0.0148 0.0899 
110% 0.1930 0.5821 0.0159 0.0405 0.1212 -0.3183 0.0159 0.0995 
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Table 5.4.2: USDBRL 'Down-and-call' Barrier Options and Hedge Ratios with S > H, 
76 Lattice Points and 5 Regimes (Bolded numbers are compared with the 
European calls and GBPUSD counterparts, indicating the distinct Greeks 
due to the barrier property, as explained in the text) 

Strike DOC DOCA D o c r DOCi; D i e DiCA D i c r DiC% 
90% 0.2187 1.3563 -0.3296 -1.7224 0.0058 -0.3607 0.3296 1.6573 
95% 0.1178 1.0780 -0.0753 -0.4438 0.0014 -0.0854 0.0791 0.3975 

IM 100% 0.0277 0.5561 0A833 0.8722 0.0001 -0.0050 &0055 0.0277 
105% 0.0053 0.0913 0.0311 0.1484 0 0 0 0 
110% 0.0018 0.0244 0.0063 0.0298 0 0 0 0 
90% 0.2031 1.7976 -0.3114 -1.6612 0.0308 -0.8066 0.3117 1.5978 
95% 0.1212 1.2294 -0.0919 -0.5362 0.0097 -0.2639 0.1104 0.5645 

2M 100% 0.0453 0^825 0.0860 0.3851 0.0013 -0.0466 0.0272 0.1380 
105% 0.0147 0.2082 0.0383 0.1763 0.0005 -0.0180 0.0103 0.0521 
110% 0.0060 0.0779 0.0109 0.0491 0.0003 -0.0092 0.0052 0.0263 
90% 0.1860 1.8888 -0.1778 -1.0051 0.0567 -0.9041 0.1794 0.9482 
95% 0.1210 1.3020 -0.0621 -0.3932 0.0215 -0.3646 0.0873 0.4566 

3M 100% 0.0580 0.7203 Ô WIS 0.1600 0.0049 -0.1110 0.0418 0.2143 
105% 0.0245 0.3184 0.0335 0.1450 0.0021 -0.0482 0.0183 0.0937 
110% 0.0118 0.1490 0.0138 0.0584 0.0012 -0.0261 0.0098 0.0503 
90% 0.1749 L8743 -0.1111 -0.6735 0.0761 -0.8963 0.1138 0.6226 
95% 0.1205 1.3343 -0.0438 -0.3046 0.0330 -0.4223 0.0716 0.3827 

4M 100% 0.0669 0.7982 0.0207 0.0502 0.0098 -0.1695 0.0476 0.2468 
105% 0.0326 0.4074 0.0273 0.1089 0.0045 -0.0799 0.0236 0.1222 
110% 0.0173 0.2138 0.0145 0.0576 0.0025 -0.0450 0.0133 0.0688 
90% 0.1579 LM#7 -0.0498 -0.3633 0.1089 -0.8234 0.0555 0.3289 
95% 0.1183 1.3525 -0.0233 -0.2040 0.0565 -0.4739 0.0499 0.2784 

6M 100% 0.0787 0.9224 0.0032 -0.0446 0.0237 -0.2677 0.0470 0.2505 
105% 0.0467 0.5626 0.0155 0.0402 0.0122 -0.1490 0.0299 0.1581 
110% 0.0284 0.3447 0.0124 0.0389 0.0073 -0.0911 0.0190 0.1000 
90% 0.1317 1.5780 -0.0113 -0.1592 0.1772 -0.6698 0.0196 0.1412 
95% 0.1110 1^327 -0.0069 -0.1214 0.1191 -0.5034 0.0258 0.1610 

lY 100% 0.0903 1.0874 -0.0025 -0.0835 0.0743 -0.3898 0.0311 0.1797 
105% &0697 OjW38 0.0018 -0.0463 0.0474 -0.2950 0.0294 0.1652 
110% &0526 0.6394 0.0041 -0.0214 0.0323 -0.2182 0.0245 0J359 
90% 0.0977 1.2628 -0.0015 -0.0899 &2813 -0.4341 0.0083 0.0697 
95% 0.0907 1.1729 -0.0011 -0.0822 0.2297 -0.3959 0.0112 0.0813 

2Y 100% 0.0838 1.0830 -0.0007 -0.0745 0.1863 -0.3693 0.0136 0.0914 
105% 0.0768 0.9931 -0.0004 -0.0668 0.1507 -0.3462 0.0152 0.0978 
110% 0.0698 0.9032 0 -0.0591 0.1232 -0.3211 0.0159 0.0997 
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Table 5.4.3; USDBRL 'Down-and-put' Baxrier Options and Hedge Ratios with S > H, 
76 Lattice Points and 5 Regimes (Bolded numbers are compared with the 
European puts and GBPUSD counterparts, indicating the distinct Greeks 
due to the barrier property, as explained in the text) 

Strike DOP DOPA DOPi' UOPr DIP D l P A D i p r DlPw 
90% 0 0 0 0 0 0 0 0 
95% 0 0 0 0 0 0 0 0 

IM 100% 0.0109 -0.2437 0.0043 0.0374 0.0032 -0.2009 0.1845 0.9277 
105% 0.0894 -0.4302 -0.4021 -1 .9650 0.0077 -0.4758 0.4350 2.1876 
110% 0.1867 -0.2189 -0.6811 -3 .3621 0.0122 -0.7531 0.6883 3.4614 
90% 0 0 0 0 0 0 0 0 
95% 0 0 0 0 0.0006 -0.0259 0.0185 0.0932 

2M 100% 0.0059 -0.0287 -0.0415 -0 .2037 0.0140 -0.3768 0.1547 0.7916 
105% 0.0572 0.1153 -0.3086 -1 .5375 0.0349 -0.9164 0.3572 1.8308 
110% 0.1305 0.5532 -0.5555 -2 .7897 0.0564 -1.4758 0.5716 2.9299 
90% 0 0 0 0 0.0001 -0.0022 0.0015 0.0077 
95% 0 0 0 0 0.0017 -0.0495 0.0252 0.1280 

3M 100% 0.0021 0.0050 -0.0118 -0 .0588 0.0220 -0.3827 0.0954 0.4977 
105% 0.0336 0.1899 -0.1358 -0 .6858 0.0560 -0.9067 0.1876 0.9891 
110% 0.0861 0.6073 -0.2712 -1 .3843 0.0919 -1.4714 &2&# 1.5576 
90% 0 0 0 0 0.0001 -0.0046 0.0026 0.0134 
95% 0 0 0 0 0.0031 -0.0706 0.0278 0.1424 

4M 100% 0.0007 0.0039 -0.0028 -0 .0141 &0258 -0.3577 0.0710 0.3754 
105% 0.0207 0.1531 -0.0634 -0 .3244 0.0665 -0.8081 0.1144 0.6198 
110% 0.0597 0Ja95 -0.1436 -0 .7446 0.1105 -1.3133 0.1713 0.9353 
90% 0 0 0 0 0.0007 -0.0146 0.0057 0.0293 
95% 0 0 0 0 &0059 -0.0952 0.0266 0.1382 

6M 100% 0 0 0 0 0.0306 -0.3193 0.0502 0.2696 
105% 0.0076 0.0704 -0.0141 -0 .0745 0.0766 -0.6307 0.0596 0.3365 
110% 0.0289 0.2826 -0.0437 -0 .2351 0.1293 -1.0029 0.0751 0.4377 
90% 0 0 0 0 0.0035 -0.0402 0.0084 0.0440 
95% 0 0 0 0 0.0131 -0.1191 0.0189 0.1016 

lY 100% 0 0 0 0 0.0360 -0.2508 0.0286 0.1582 
105% 0.0002 0.0018 -0.0001 -0.0006 0.0767 -0.4014 0.0313 0.1817 
110% 0.0037 0.0427 -0.0022 -0.0137 0.1293 -0.5700 0.0308 0.1902 
90% 0 0 0 0 0.0146 -0.0717 0.0069 0.0387 
95% 0 0 0 0 0.0292 -0.1235 0.0101 0.0580 

2Y 100% 0 0 0 0 0.0519 -0.1867 0.0128 0.0758 
105% 0 0 0 0 0.0825 -0.2535 0.0148 0.0899 
110% 0 0 0 0 0.1212 -0.3183 0.0159 0.0995 
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Table 5.4.4: USDBRL 'Up-and-call' Barrier Options and Hedge Ratios with S < H, 
76 Lattice Points and 5 Regimes (Bolded numbers are compared with the 
European calls and GBPUSD counterparts, indicating the distinct Greeks 
due to the barrier property, as explained in the text) 

Strike u o c UOCA u o c r TJOCu UIC UICA u l c r UlCV 
90% 0.1461 -0.8297 -0.9161 -4 .4869 0.0784 L8253 0.9161 4.4218 
95% 0.0685 -0.1579 -0.5573 -2 .7521 0.0507 1.1506 0.5610 2.7057 

IM 100% 0.0047 0.0698 -0.0220 -0 .1135 0.0231 &4813 0.2108 1.0134 
105% 0 0 0 0 0.0053 0.0896 &0329 0.1574 
110% 0 0 0 0 0.0018 0.0236 0.0072 0.0341 
90% 0.1089 -0.9362 -0.6053 -2 .9392 0.1251 1.9272 0.6056 2.8758 
95% 0.0474 -0.2775 -0.3488 -1 .7110 0.0835 1.2429 0.3673 1.7393 

2M 100% 0.0038 0.0022 -0.0339 -0 .1681 0.0428 0.5837 0.1471 0.6912 
105% 0 0 0 0 0.0152 0.1902 0.0486 0.2284 
110% 0 0 0 0 0.0063 0.0687 0.0161 0.0754 
90% 0.0869 -0.8629 -0.4277 -2 .0638 0.1559 1.8477 0.4292 2.0068 
95% 0.0356 -0.2753 -0.2298 -1 .1212 0.1068 L2128 0.2550 1.1846 

3M 100% 0.0033 -0.0155 -0.0258 -0 .1270 0.0596 0.6248 0.1094 0.5014 
105% 0 0 0 0 0.0266 0.2702 0.0517 0.2387 
110% 0 0 0 0 0.0130 0.1228 0.0235 0.1087 
90% 0.0744 -0.7935 -0.3370 -1 .6184 0.1765 1.7714 0.3396 1.5675 
95% 0.0300 -0.2705 -0.1714 -0 .8319 0.1236 L1824 0.1992 0.9100 

4M 100% 0.0034 -0.0245 -0.0229 -0 .1118 &0%# 0.6533 0.0911 0.4089 
105% 0 0 0 0 0.0371 0.3275 0.0509 0.2311 
110% 0 0 0 0 0.0198 0.1688 0.0277 0.1265 
90% 0.0571 -0.6646 -0.2267 -1 .0802 0.2097 1.6239 0.2324 1.0458 
95% 0.0226 -0.2402 -0.1072 -0 .5158 0.1522 1.1188 0.1338 0.5902 

6M 100% 0.0034 -0.0340 -0.0181 -0 .0874 0.0990 0.6886 0.0682 0.2932 
105% 0 0 0 0 0.0588 0.4136 0.0455 0.1983 
110% 0 0 0 0 0.0357 0.2536 0.0314 0.1389 
90% 0.0353 -0.4665 -0.1135 -0 .5322 &2%# 1.3747 0.1219 0.5142 
95% 0.0157 -0.2020 -0.0542 -0 .2552 0.2144 1.0313 0.0731 0.2948 

lY 100% 0.0041 -0.0516 -0.0147 -0 .0696 0.1605 0.7492 0.0433 0.1658 
105% 0.0004 -0.0045 -0.0013 -0 .0061 0.1167 0.5533 0.0325 0.1250 
110% 0 0 0 0 &0&W &4212 0.0286 0.1144 
90% 0.0158 -0.2390 -0.0420 -0 .1924 0.3631 1.0677 0.0488 0.1721 
95% 0.0083 -0.1247 -0.0223 -0 .1026 0.3121 0.9017 0.0324 0.1016 

2Y 100% 0.0037 -0.0551 -0.0100 -0 .0458 0.2664 0.7688 0.0228 0.0627 
105% 0.0012 -0.0177 -0.0032 -0 .0148 0.2263 0.6646 0.0180 0.0458 
110% 0.0002 -0.0032 -0.0006 -0 .0026 0.1928 0.5853 0.0164 0.0432 
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Table 5.4.5: USDBRL 'Up-and-put' Barrier Options and Hedge Ratios with S < H, 
76 Lattice Points and 5 Regimes (Bolded numbers are compared with the 
European puts and GBPUSD counterparts, indicating the distinct Greeks 
due to the barrier property, as explained in the text) 

Strike UOP UOPA u o p r UOPu UIP UIP A u i p r U1P% 
90% 0 0 0 0 0 0 0 0 
95% 0 0 0 0 0 0 0 0 

IM 100% 0.0140 -0.4499 0.1839 0.9413 0.0001 0.0054 0.0049 0.0238 
105% 0.0869 -1.1945 -0.1492 -0 .6613 0.0101 0.2885 0.1821 0.8839 
110% 0.1646 -1.8692 -0.5043 -2 .3774 0.0343 0.8972 0.5115 2.4767 
90% 0 0 0 0 0 0 0 0 
95% 0.0006 -0.0261 0.0183 0.0923 0 0 0 0 

2M 100% 0.0191 -0.4309 0.0947 0.4977 0.0008 0.0255 0.0185 0.0902 
105% 0.0773 -1.1176 -0.1099 -0 .4716 0.0148 0.3165 0.1585 0.7649 
110% 0.1394 -1.8021 -0.3484 -1 .6090 0.0475 0.8795 Oj&# 1.7492 
90% 0.0001 -0.0022 0.0015 0.0075 0 0 0 0 
95% 0.0016 -0.0509 0.0241 0.1227 0 0 0 0 

3M 100% 0.0222 -0.4274 0II527 0.2894 0.0019 0.0498 0.0308 0.1495 
105% 0.0717 -1.0482 -0.0967 -0 .4110 0.0180 0.3315 0.1485 0.7143 
110% 0.1245 -1.6846 -0.2721 -1 .2384 &0535 &8205 0.2956 1.4117 
90% 0.0001 -0.0047 0.0025 0.0129 0 0 0 0 
95% 0.0030 -0.0749 0.0249 0.1283 0.0001 0.0043 0.0029 0.0141 

4M 100% 0.0236 -0.4220 0^W02 0.1771 0.0030 0.0682 0.0381 0.1842 
105% 0.0674 -0.9906 -0.0902 -0 .3823 0.0198 &3356 0.1411 0.6777 
110% 0.1146 -1.5837 -0.2334 -1 .0535 0.0556 0.7700 0.2612 1.2442 
90% 0.0006 -0.0157 0.0050 0.0259 0 0 0 0 
95% 0.0053 -0.1086 0.0189 0.1010 0.0006 0.0134 0.0077 0.0372 

6M 100% &0253 -0.4198 0IW25 0.0400 0.0053 0.1005 0.0476 0.2296 
105% 0.0610 -0.9031 -0.0850 -0 .3620 0.0232 &3428 0.1304 0.6241 
110% 0.1002 -1.4204 -0.1905 -0 .8514 0.0580 0.7001 0.2219 1.0541 
90% 0.0029 -0.0520 0.0030 0.0182 0.0007 0.0118 0.0054 0.0259 
95% 0.0100 -0.1683 -0.0014 0.0043 0.0031 0.0492 0.0203 0.0974 

lY 100% 0.0253 -0.3988 -0.0256 -0 .1009 0.0107 0.1480 0.0542 0.2591 
105% 0.0484 -0.7325 -0.0759 -0 .3282 0.0285 &3329 0.1071 0.5092 
110% 0.0749 -1.1088 -0.1383 -0 .6130 0.0582 0.5816 0.1669 0.7895 
90% 0.0083 -0.1362 -0.0124 -0 .0524 0.0063 &0645 0.0192 0.0911 
95% 0.0156 -0.2519 -0.0262 -0 .1133 0.0136 0.1285 0.0362 0.1713 

2Y 100% 0.0257 -0.4122 -0.0473 -0 .2073 0.0262 0.2256 0.0601 0.2831 
105% 0.0380 -0.6049 -0.0740 -0 .3270 0.0445 0.3513 &0887 0.4169 
110% 0.0519 -0.8203 -0.1047 -0 .4656 0.0693 0.5020 0.1206 0.5650 
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Chapter 6 

Conclusion 

In this thesis, we have identified the core sources of uncertainty in the dynamics of 

FX rates, using impHed risk-neutral distributions from OTC option quotes. After 

a detailed review of the relevant literature, a model that can capture the main 

features of the smile surface, and is flexible enough to price both European and 

exotic options, has been developed, calibrated to market quotes and applied to 

price barrier options for two different currency pairs. 

We firstly review various techniques to derive risk-neutral distributions implied 

by OTC option prices, and select the Malz[65]'s method, which is specifically de-

signed for the FX market, to obtain the implied distributions for two currency 

pairs. Analysis of these results has helped us to identify three important sources 

of uncertainty in the FX dynamics: the stochastic exchange rate, the stochastic 

volatility, and the stochastic skewness. These stochastic elements are all considered 

in our derivative pricing model. Before going into the pricing model development, 

we use econometric techniques to explore the explanatory power of the implied 

higher moments in excess forward returns. An Error Correction Model (ECM) 

is novelly proposed to help forecasting exchange rates movements, thus provid-

ing some econometric evidence for exploiting excess returns with implied higher 

moments. 

Given these sources of uncertainty, we then review several pricing models and 

analyze their pros and cons. Local volatility models can capture the smile ef-

fect and fit well to the market data with tractability. However, such models are 
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dynamically inconsistent. They cannot produce the stationary smile surface in 

reality. Stochastic volatility models can fit the market implied volatility smile 

for the medium maturities quite well, but fail for the short and extremely long 

maturities[88]. In addition, jumps are a common phenomenon in FX market. 

This can be captured by Jump diffusion and Variance Gamma models, both of 

which produce perfectly deterministic smiles. However, smiles produced by jump 

models tend to flatten out too rapidly, although the short-term skews are closed 

to those in the market. The disadvantages of individual models lead the literature 

to a combined approach, which, however, has many issues regarding the appropri-

ateness of the combination and numerical implementation, as well as the problem 

of failing to produce stochastic skewness with tractability. Finally, the Carr and 

Wu [25] model, which uses two Levy processes to model up and down jumps sepa-

rately, successfully captures both stochastic volatility and stochastic skewness by 

randomizing the time. Yet it only has semi-closed-form solution for vanilla options, 

while the extension to exotic options appears to be too challenging and remains 

untackled. 

We therefore adopt the Albanese and Mijatovic [4] model, which bypasses the 

technical difficulties in stochastic calculus and uses spectral theory and functional 

analysis instead. The model specifies the FX forward rates by a CEV process 

coupled with Variance Gamma jumps in each local volatility regime, and uses 

a stochastic volatility process to govern the switch between different regimes. 

Discretized on a continuous-time lattice, the model, which can obtain stochastic 

volatility and stochastic skewness simultaneously, is fiexible enough to price both 

European and exotic options. During our implementation, we improve this model 

by using a more stable methodology to calculate the exponential for the nonnor-

mal matrix, and novelly design a routine to improve the numerical efficiency. The 

model validation in Black-Scholes' case demonstrates its validity, and the model 

is then calibrated to two characteristically different currency pairs. The results, 

including sensible implied volatilities surfaces, implied distribution functions and 

hedge ratios, show that this model can indeed capture the core features of the 

implied risk-neutral distribution in the FX market. 

In the last part, we innovatively develop the pricing methodology for the FX 

barrier options within the above mentioned lattice framework. The model valida-
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tion in Black-Scholes' case against the closed-form pricing formulae provided by 

Haug [43] shows only small differences between the model prices and those from 

the closed-form solutions, demonstrating the validity of our method. Finally, with 

the calibrated parameters, the model achieves reasonable pricing results for both 

a developed market currency pair (GBPUSD) and an emerging market currency 

pair (USDBRL). 

In conclusion, our work provides a robust model, which can capture the key 

sources of uncertainty in FX market, to price FX vanilla and barrier options, as 

well as to provide hedge ratios for risk management. 

Future Research 

Although we have covered most of the theoretical and practical issues in developing 

this robust model, there are still some technical details that should be addressed 

in the future research. 

Firstly, further work should be conducted to validate the proposed modelling 

framework. For example, the lattice approximation for Markov generator should 

be further verified, an alternative method for regime switching should be examined, 

and the adequacy of regimes should be tested. 

Secondly, as mentioned in Chapter 4, the calibration method is currently dif-

ferent from the normal optimization scheme. We should further investigate the 

possibility of designing a conditional optimization scheme, which translates the 

user's view of the market into the restriction of certain parameters. This has been 

bypassed now because of the programming difficulty of dealing with such a large 

number of parameters. 

Thirdly, alternative algorithms could be applied to further improve the numer-

ical efficiency. 

Last but not least, the extension to the other exotic options, such as Asian 

options and Look-back options, provides a great opportunity for future research, 

though we believe that such extension can be well signposted by our work here for 

barrier options. 
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Appendix A Derivation of the Implied Pricing 

Kernel 

In risk-neutral pricing, the pricing kernel is actually the discounted PDF. This 

Appendix shows a brief derivation^ of the implied pricing kernel from quoted option 

prices, i.e. ^ (K) T. 

The price of the European call option can be expressed as follows: 

roo 
C (5"̂ , jiT, (, r ) = / (S-r - (S-T) (A.l) 

JK 

We can make use of the calculus result: 

^ J j ( t , x ) d t = f ( t , t ) + (A,2) 

Apply formula (A.2) to (A.l) gives: 

ac{ST,K,t,T) _ j T (% - 7 )̂ (%) da,. (A.3) 

J {3T — K)<P {ST) dSr 

t/ oo 

.. pK 
g-r(T_t) 

-r(T-t) 

dK 

J OO 

Formula (A.3) shows that the first derivative of the call option price with 

respect to the exercise price can be expressed in the form of the risk-neutral cumu-

lative distribution function. Further apply the fundamental theorem of calculus: 

^Reproduced from Ricardo Rebonato, 2004. Volatility and Correlation, second edition, John 
Wiley & Sons Ltd. 
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while differentiating (A.3) again with respect to K, the final result then follows: 

= e -r(r- (A.5) 

Appendix B Implied Distr ibut ion Examples 

Figures below show the examples of certain currency pairs. Data for other samples 

are available if required. 

11,5% 

10.5% 

:= 10.0% 

One-month 

- - - .One-week 

• 

-10.00% -8,00% -6.00% -4.00% -2.00% 0.00% 2.00% 4.00% 6.00% 8.00% 10.00% 

Percentage Change in Strike 

Figure B.l Implied volatility smile (EURUSD monthly/weekly 23/06/04) 
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Figure B.2 Option implied PDF (EURUSD monthly) 
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Figure B.3 Option implied PDF (GBPUSD weekly) 
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Figure B.4 Spot EURUSD weekly FX rate and the higher moments of imphed 

PDF 
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Appendix C Proof of Theorems in Chapter 4 

Proof. Theorem 4.2.3 

The entries of Pt are probabihties, thus the first 2 conditions are quite straight 

forward. For part 3, let 1 denotes a unit vector in for any x E 0., 

~ (^1 Qj 3/i ~ ~ y\^0 = — 1 
yen ^ 

Part 4 can be proved using the Markov property: 

Ps+t (x, y) = P {Xs+t = y\XQ = x) 

= ^ P {Xs+t = y\Xs = z,Xo = x) P (Xg = z\Xo = x) 
zef2 

^ f (Xt = 2/|.%o = z) P (%, = z|Xo = z) 
zesi 

^p(z ,0 ;3 / , t )p(a ; ,0 ;z ,8) 
zefj 
(P,P*) (a;,?/) 

Proof. Corollary 4.2.6 

Fori: £ ( . , , ) = 

For 2 : £ (x.rf = < 0,if X = J, 

For statement 3, from the first part of Theorem 4.2.3, we can write 

£ = lim - (Pt - I) 

Let 1 and 0 denote a vector in with all its entries equal to 1 and 0 respec-

tively. Theorem 4.2.3 together with finite assumption for will get: 
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Proof. Theorem 4.2.7 

For fixed states x,y G Q,, a fixed time t E IR+ and a small time interval 5t we 

have: 

p{x,0-,y,t + 5t) = y^^pjx, 0; z, t) p {z, t]y,t + 5t) 

= ^p{x,Q]z,t)p{z,0\y,5t) 

zen 

= p(a;,0;y,t)p(y,0;?/,5t) + ^ p (x, 0; z, t )p (z, 0; y, 5t) 
zGfl—{y} 

The first line comes from the Chapman-Kolmogorov equation in Theorem 4.2.3, 

conditioned on Xt- The second line is obtained by time homogeneity. By Theorem 

4.2.5, we can get; 

^ p ( , , 0 ; t ) £ (z, ,) + 
2Gn 

Take the limit 8& 5t —> 0, the left-hand side of the equation becomes the 

derivative of the transition probability with respect to time, p {x, 0; y, t)', while 

the right-hand side limits to the matrix element (PtC) {x,y). This proves the 

Kolmogorov's forward equation. 

Similarly, conditional on Xst' 

p{x,0]y,t) = ^p{x,0-,z,5t)p{z,5t-,y,t) 
zeci 

= (x, 0; z, 5t) p {z, 0-,y,t- 5t) 
ZGU 

= p{x,0-,x,St)p{x,0-,y,t - 5t) + ^ p{x,0-,z,5t)p{z,0-,y,t - 5t) 
z£Sl—{x} 

Apply Theorem 4.2.5 to p (x, 0; x, 5t) and p (x, 0; z, St), it yields: 

p(xA y, t) - p (X. 0; y, f - at) ^ ^ ^ ^ ^ o g ) 
at ot 
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In the limit we get Kolmogorov's backward equation. 

To prove is the solution, it is just enough to show that it satisfies the forward 

equation, because commutes with C, backward equation will follow from the 

forward equation. 

d 
—t 
dt 

J.L = E 
71=0 

oo r 

= E 
n = 0 

= 

dt n\ 

in—1 

( n - 1)! 
••n—1 

Since the first order derivative of an exponential function is uniformly contin-

uous, we can exchange the order of summation and differentiation here. • 
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