8,353 research outputs found

    Computation of the entropy of polynomials orthogonal on an interval.

    Get PDF
    We give an effective method to compute the entropy for polynomials orthogonal on a segment of the real axis that uses as input data only the coefficients of the recurrence relation satisfied by these polynomials. This algorithm is based on a series expression for the mutual energy of two probability measures naturally connected with the polynomials. The particular case of Gegenbauer polynomials is analyzed in detail. These results are applied also to the computation of the entropy of spherical harmonics, important for the study of the entropic uncertainty relations as well as the spatial complexity of physical systems in central potentials

    Spreading lengths of Hermite polynomials

    Full text link
    The Renyi, Shannon and Fisher spreading lengths of the classical or hypergeometric orthogonal polynomials, which are quantifiers of their distribution all over the orthogonality interval, are defined and investigated. These information-theoretic measures of the associated Rakhmanov probability density, which are direct measures of the polynomial spreading in the sense of having the same units as the variable, share interesting properties: invariance under translations and reflections, linear scaling and vanishing in the limit that the variable tends towards a given definite value. The expressions of the Renyi and Fisher lengths for the Hermite polynomials are computed in terms of the polynomial degree. The combinatorial multivariable Bell polynomials, which are shown to characterize the finite power of an arbitrary polynomial, play a relevant role for the computation of these information-theoretic lengths. Indeed these polynomials allow us to design an error-free computing approach for the entropic moments (weighted L^q-norms) of Hermite polynomials and subsequently for the Renyi and Tsallis entropies, as well as for the Renyi spreading lengths. Sharp bounds for the Shannon length of these polynomials are also given by means of an information-theoretic-based optimization procedure. Moreover, it is computationally proved the existence of a linear correlation between the Shannon length (as well as the second-order Renyi length) and the standard deviation. Finally, the application to the most popular quantum-mechanical prototype system, the harmonic oscillator, is discussed and some relevant asymptotical open issues related to the entropic moments mentioned previously are posed.Comment: 16 pages, 4 figures. Journal of Computational and Applied Mathematics (2009), doi:10.1016/j.cam.2009.09.04

    Computing the Entropy of a Large Matrix

    Full text link
    Given a large real symmetric, positive semidefinite m-by-m matrix, the goal of this paper is to show how a numerical approximation of the entropy, given by the sum of the entropies of the individual eigenvalues, can be computed in an efficient way. An application from quantum-optics illustrates the new algorithm

    Random Matrix Theory and Entanglement in Quantum Spin Chains

    Full text link
    We compute the entropy of entanglement in the ground states of a general class of quantum spin-chain Hamiltonians - those that are related to quadratic forms of Fermi operators - between the first N spins and the rest of the system in the limit of infinite total chain length. We show that the entropy can be expressed in terms of averages over the classical compact groups and establish an explicit correspondence between the symmetries of a given Hamiltonian and those characterizing the Haar measure of the associated group. These averages are either Toeplitz determinants or determinants of combinations of Toeplitz and Hankel matrices. Recent generalizations of the Fisher-Hartwig conjecture are used to compute the leading order asymptotics of the entropy as N --> infinity . This is shown to grow logarithmically with N. The constant of proportionality is determined explicitly, as is the next (constant) term in the asymptotic expansion. The logarithmic growth of the entropy was previously predicted on the basis of numerical computations and conformal-field-theoretic calculations. In these calculations the constant of proportionality was determined in terms of the central charge of the Virasoro algebra. Our results therefore lead to an explicit formula for this charge. We also show that the entropy is related to solutions of ordinary differential equations of Painlev\'e type. In some cases these solutions can be evaluated to all orders using recurrence relations.Comment: 39 pages, 1 table, no figures. Revised version: minor correction
    • …
    corecore