18,809 research outputs found

    Linear multistep methods for optimal control problems and applications to hyperbolic relaxation systems

    Get PDF
    We are interested in high-order linear multistep schemes for time discretization of adjoint equations arising within optimal control problems. First we consider optimal control problems for ordinary differential equations and show loss of accuracy for Adams-Moulton and Adams-Bashford methods, whereas BDF methods preserve high--order accuracy. Subsequently we extend these results to semi--lagrangian discretizations of hyperbolic relaxation systems. Computational results illustrate theoretical findings

    A space-time pseudospectral discretization method for solving diffusion optimal control problems with two-sided fractional derivatives

    Full text link
    We propose a direct numerical method for the solution of an optimal control problem governed by a two-side space-fractional diffusion equation. The presented method contains two main steps. In the first step, the space variable is discretized by using the Jacobi-Gauss pseudospectral discretization and, in this way, the original problem is transformed into a classical integer-order optimal control problem. The main challenge, which we faced in this step, is to derive the left and right fractional differentiation matrices. In this respect, novel techniques for derivation of these matrices are presented. In the second step, the Legendre-Gauss-Radau pseudospectral method is employed. With these two steps, the original problem is converted into a convex quadratic optimization problem, which can be solved efficiently by available methods. Our approach can be easily implemented and extended to cover fractional optimal control problems with state constraints. Five test examples are provided to demonstrate the efficiency and validity of the presented method. The results show that our method reaches the solutions with good accuracy and a low CPU time.Comment: This is a preprint of a paper whose final and definite form is with 'Journal of Vibration and Control', available from [http://journals.sagepub.com/home/jvc]. Submitted 02-June-2018; Revised 03-Sept-2018; Accepted 12-Oct-201

    Optimal Switching for Hybrid Semilinear Evolutions

    Full text link
    We consider the optimization of a dynamical system by switching at discrete time points between abstract evolution equations composed by nonlinearly perturbed strongly continuous semigroups, nonlinear state reset maps at mode transition times and Lagrange-type cost functions including switching costs. In particular, for a fixed sequence of modes, we derive necessary optimality conditions using an adjoint equation based representation for the gradient of the costs with respect to the switching times. For optimization with respect to the mode sequence, we discuss a mode-insertion gradient. The theory unifies and generalizes similar approaches for evolutions governed by ordinary and delay differential equations. More importantly, it also applies to systems governed by semilinear partial differential equations including switching the principle part. Examples from each of these system classes are discussed

    A comparison between numerical solutions to fractional differential equations: Adams-type predictor-corrector and multi-step generalized differential transform method

    Get PDF
    In this note, two numerical methods of solving fractional differential equations (FDEs) are briefly described, namely predictor-corrector approach of Adams-Bashforth-Moulton type and multi-step generalized differential transform method (MSGDTM), and then a demonstrating example is given to compare the results of the methods. It is shown that the MSGDTM, which is an enhancement of the generalized differential transform method, neglects the effect of non-local structure of fractional differentiation operators and fails to accurately solve the FDEs over large domains.Comment: 12 pages, 2 figure
    corecore