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Abstract. Numerical treatment of fractional differential equations, in a
reliable and accurate way, is very challenging in comparison with classi-
cal integer-order differential equations. This difficulty is primarily re-
lated to the effect of non-local structure of fractional differentiation
operators, to the solution of nonlinear equations involved in implicit
methods and so forth. In this paper, a so-called method for fractional
differential equations (FDEs) is briefly described: the multi-step gener-
alized differential transform method (MSGDTM). It is shown that the
method takes the incorrect approach in dealing with FDEs. The goal
is to demonstrate that the MSGDTM is based on failed assumptions
and therefore unfit for FDEs. For further verification, an illustrative
example is given, in which the MSGDTM is compared with other effec-
tive and accurate methods such as fractional linear multi-step methods
(FLMMs) and predictor-corrector (PC) method of Adams-Bashforth-
Moulton type. The obtained results show that the MSGDTM is unfit to
FDEs.
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1. Introduction

Fractional calculus has been studied by mathematicians for years and frac-
tional differential equations (FDEs) are used to present the mathematical
model of many real-life phenomena in diverse branches of science. Fractional
differentiation operators (i.e. derivative operators of any real positive order)
have non-local property, in the sense that they depend on the all previ-
ous time history and therefore are more appropriate to the systems, which
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possess persistent memory characteristics. A detailed introduction to frac-
tional calculus can be found in [5,15,21,24]. Frequent utilization of fractional
differential equations can be observed in, for instance, the fluid dynamics,
physics, mechanics of solids, civil engineering, control theory and biological
systems [3,13,14,16,20,22]. Increasing applications of fractional calculus has
been a major cause of the study and the development of numerical methods,
which are specifically devised to deal with FDEs. Compared with classical
(integer-order) differential equations, the construction of numerical methods
of solving FDEs is much more difficult. These difficulties are primarily re-
lated to the non-local property of fractional differentiation operators, the
low-order accuracy of the majority of the numerical methods, and so forth.
Due to the fact that the fractional derivatives are not local in nature, multi-
step methods are obvious choice for FDEs. In multi-step methods (in contrast
to one-step methods), more previously approximated evaluations are required
to compute the solution in each step (for a detailed explanation, see [10]).
Fractional linear multi-step methods [8, 10, 17, 18] and product-integration
(PI) rules [10, 27] are two of the most effective and reliable classes of nu-
merical methods for fractional-order problems. Other approaches can be also
mentioned such as Predictor-Corrector approaches [4, 6, 11], generalized ex-
ponential integrators [9], spectral methods [28], methods based on matrix
functions [25] and so on (a more detailed literature can be observed in [10]).

The main goal of this article is to sufficiently describe an inadequate
approach, which has been proposed to be a method of solving FDEs, and to
demonstrate that the basis on which the method has been devised is not ap-
propriate to FDEs. In order to clarify the issue, the MSGDTM will be exam-
ined by referring to reliable and effective methods for FDEs. In Section 2 the
predictor-corrector method of Adams-Bashforth-Moulton type (PC method
of ABM) and the fractional linear multi-step methods (FLMMs) are briefly
described. Section 3 is allocated to the MSGDTM. A demonstration of the
MSGDTM is given and it is illustrated that the method fails in solving FDEs.
An illustrative example is represented in Section 4. For further verification,
the results obtained by the MSGDTM will be compared with those of the
FLMMs and the PC method of ABM.

2. PC method of ABM and FLMMs

The PC method of ABM can be considered as a fractional variant of the
classical second-order Adams-Bashforth-Moulton method, which has been
introduced in [6] and a detailed stability properties of the method has been
discussed in [11]. The main emphasis will be placed on the single-term Caputo
fractional differential equations for 0 < α ≤ 1, where α is the order of the
fractional derivative [5]. Consider the initial value problem{

Dα
t0y (t) = f (t, y (t)) ,

y (t0) = y0 .
(2.1)
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In order to assure the existence and uniqueness of the solution to Eq. (2.1),
it is assumed that f (t, y) is continuous and fulfils a Lipschitz condition with
respect to the second variable [5, Theorem 6.5]. Initial value problem (2.1)
can be reformulated in terms of the weakly-singular Volterra integral equation
(VIE)

y (t) = y0 +
1

Γ (α)

∫ t

t0

(t− s)α−1f (s, y (s)) ds . (2.2)

The method presents a numerical approach in solving Eq.(2.2) and is said to
be PECE (Predict, Evaluate, Correct and Evaluate) type because an initial
approximation yPk , the so-called predictor, is first evaluated:

yPk = y0 +
1

Γ (α)

k−1∑
j=0

bj,kf (tj , yj) , (2.3)

where the nodes tk = t0+kh are used to calculate yPk with a constant step-size
h > 0 for the sake of simplicity. The weights bj,k are computed by

bj,k =
hα

α
((k − j)α − (k − 1− j)α) . (2.4)

Then the method gives the corrector formula:

yk = y0 +
1

Γ (α)

ak,kf (tk, yPk )+

k−1∑
j=0

aj,kf (tj , yj)

 , (2.5)

where the weights aj,k are given by

a0,k =
hα

α (α+ 1)

(
(k − 1)

α+1 − kα (k − 1− α)
)
,

aj,k =
hα

α (α+ 1)

(
(k + 1− j)α+1

+ (k − 1− j)α+1 − 2(k − j)α+1
)
,

1 ≤ j ≤ k − 1,

ak,k =
hα

α (α+ 1)
.

(2.6)

The basic algorithm, the PC method of ABM, can be completely described
by Eqs. (2.3) and (2.5) with the weights bj,k and aj,k defined by Eqs. (2.4)
and (2.6).

The FLMMs have been introduced by Lubich in [17]. The main feature
of the FLMMs is the generalization of quadrature rules, which are obtained
from classical linear multi-step methods (LMMs). They have been specifically
developed in order to yield a solid theoretical basis for the numerical treat-
ment of FDEs. The FLMMs are one of the most effective methods of solving
FDEs. Detailed explanations of the methods have been given in [8,10,12]. The
key element in FLMMs is the approximation of Riemann-Liouville integral
(on the interval [t0, t] and of the order α > 0)

Iαt0f (t) =
1

Γ (α)

∫ t

t0

(t− τ)
α−1

f (τ) dτ , (2.7)
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with the help of convolution quadrature. In the sense of Lubich, the gen-
eralization about an LMM in order to deal with Eq. (2.7) results in the
corresponding FLMM as

hI
α
t0f (tk) = hα

k∑
j=0

ωk−jf (tj) + hα
v∑
j=0

wk,jf (tj) , (2.8)

on uniform nodes tk = t0 + kh. The convolution and starting quadrature
wights ωk and wk,j are independent of h. Starting quadrature weights wk,j
play the major role in dealing successfully with the possible singularity of the
integrand function at t0. The features of the FLMM is specified by convolution
quadrature weights ωk.

For the sake of convenience, it is mentioned that the MATLAB code
fde12.m has been devised to solve systems in which all equations have the
same order. The code fde12.m is mainly devised on the basis of PC method
of ABM. The MATLAB code flmm2.m, which implements three different
FLMMs (i.e. the generalizations of the trapezoidal rule, the Newton-Gregory
formula and the backward differentiation formula) has been introduced in
[12] (rigorous information on several more MATLAB routines than those
mentioned above can be observed in [10]).

3. Multi-step generalized differential transform method

The differential transform method (DTM) deals with the approximated so-
lutions to integer-order differential equations and is based on polynomial
approximations (a thorough literature on the DTM is available in [2]). The
authors of [1] extended the DTM in order to solve non-integer differential
equations, called as the fractional differential transform method (FDTM).
Then, a rather different formulation of generalizing the DTM was introduced
in [23], named as generalized differential transform method (GDTM). The
GDTM provides the expansion

y (t) =

∞∑
k=0

Yk(t− t0)
kα
, (3.1)

as the solution to Eq. (2.1), where the coefficients Yk are evaluated by the
recurrence equation

Yk+1 =
Γ (αk + 1)

Γ (α (k + 1) + 1)
F (k, Yk) . (3.2)

The first coefficient Y0 is assessed to be equal to the initial condition, i.e.
Y0 = y (t0). The term F (k, Yk), mentioned as the differential transform of
f (t, y (t)), is determined by using the methods provided in [1, 7, 23].

It must be mentioned that, under general circumstances, these methods
do not provide an accurate solution to FDEs. As demonstrated by Lubich
[19] (see also [5]), the solution to VIE (2.2) is expanded in mixed (integer
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and fractional) powers, i.e.
∑
i,j∈N Yi,j(t− t0)

i+jα
and therefore shows a non-

smooth behaviour at t0. In the presence of non-smoothness at t = t0, the
solution cannot be properly approximated by methods based on polynomial
approximations.

Moreover, these methods are originally based on Taylor expansion which
allows to obtain the results only in a small neighborhood of t0. In order to
deal with this restriction, the authors of [7] applied the GDTM to FDEs
by using step-by-step procedures, and mentioned it as multi-step generalized
differential transform method (MSGDTM). It is simply formed on the idea of
dividing the time interval [t0, T ] into n sub-intervals [tj , tj+1] with a constant
step-size h = tj+1 − tj (j = 0, 1, . . . , n− 1):

y (t) =



y1 (t) = y0 +
∑
k∈N

Y
(1)
k (t− t0)

kα
, t ∈ [t0, t1] ,

y2 (t) = y1 (t1) +
∑
k∈N

Y
(2)
k (t− t1)

kα
, t ∈ [t1, t2] ,

.

.

yn (t) = yn−1(tn−1) +
∑
k∈N

Y
(n)
k (t− tn−1)

kα
, t ∈ [tn−1, T ] ,

(3.3)

where the coefficients Y
(i)
k (i = 1, 2, . . . , n) are computed by Eq. (3.2).

The MSGDTM takes the incorrect approach in numerical treatment of
FDEs; in fact, the MSGDTM implements a step-by-step procedure which is
not adequate to discretize nonlocal operators such as fractional derivatives (as
it is normal for integer-order differential equations). For initial value problem{

ẏ (t) = f (t, y (t)) ,

y (t0) = y0,
(3.4)

it is possible to compute the solution at any point tk+1 as

yk+1 = yk +

∫ tk+1

tk

f (s, y (s)) ds. (3.5)

Differently, the solution to Eq. (2.2) at any point tk+1 cannot be evaluated as
the solution at the previous point tk plus the increment term related to the
interval [tk, tk+1] (usually done in integer-order differential equations). This
is due to the presence of a real power in the kernel.

4. Illustrative example

The statement about the MSGDTM is further verified by making a compari-
son with other effective and accurate methods such as the FLLMs and the PC
method of ABM. Thus, the MATLAB codes flmm2.m (by choosing fractional
backward differentiation formula) and fde12.m are employed to achieve the
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goal. Consider the fractional Riccati differential equation (see [23]):{
Dα

0 y (t) = 2y − y2 + 1 , t > 0 , 0 < α ≤ 1 ,

y (0) = 0 .
(4.1)

The goal is to follow the MSGDTM for the interval I = [0, 0.4] by dividing
it into two sub-intervals I1 = [0, 0.2] and I2 = [0.2, 0.4]. The differential
transform of Eq. (4.1) is

Γ (α (k + 1) + 1)

Γ (αk + 1)
Yk+1 = 2Yk −

k∑
k1=0

(Yk1Yk−k1) + δk , (4.2)

where Y (0) = y (0) and δk is computed as (see, for instance [7, 23])

δk =

{
1 , if k = 0,

0 , otherwise

By using Eqs. (3.1), (3.3) and (4.2), the results (up to O
(
t3.5
)
) are obtained

as:

y (t) = 1.10 t0.7 + 1.61 t1.4 + 1.14 t2.1

−0.60 t2.8 − 2.54 t3.5, 0 ≤ t ≤ 0.2 ,

and

y (t) = 0.55 + 1.98 (t− 0.2)
0.7

+ 1.30 (t− 0.2)
1.4 − 1.54 (t− 0.2)

2.1

−3.07 (t− 0.2)
2.8

+ 0.66 (t− 0.2)
3.5
, 0.2 ≤ t ≤ 0.4 .

where α = 0.7. Figure 1 illustrates the obtained results. The problem is solved
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  flmm2.m

  MSGDTM

Figure 1. The result obtained by the MSGDTM compared
with the solutions to Eq. (4.1) obtained by the FLMMs and
the PC method of ABM, for α = 0.7.

one more time, for t ∈ [0, 3] with a constant step-size h = 0.01 and the results
are given in Fig. 2. The MSGDTM fails obviously to give the solution of Eq.
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Figure 2. The result obtained by the MSGDTM compared
with the solution to Eq. (4.1) obtained by the FLMMs and
the PC method of ABM, for α = 0.7.

(4.1); in fact, in terms of the accuracy there is no comparison. As stated, the
MSGDTM approaches the problem by dividing the solution at any time tn+1,
into the sum of the solution of previous time tn and the increment related to
the interval [tn, tn+1].

This is a basic fact that, for α = 1, the MSGDTM returns to its classical
origin (i.e. the DTM for integer-order differential equations). In this case,
solutions will be in agreement with those obtained by other classical methods
such as Runge-Kutta approaches for integer-order differential equations. This
fact cannot be referred to as a proof of the effectiveness of the MSGDTM for
FDEs.

5. Conclusion

The main reasons, due to which the MSGDTM fails to solve FDEs, have been
discussed. As proved by Lubich [19], the solution of the VIE (2.2) presents
an expansion in mixed (i.e. integer and fractional) powers and shows a non-
smooth behavior at t = t0. This is a problem for methods based on polynomial
approximations, since methods of this type fail to give accurate results in
the presence of some non-smoothness. Furthermore, the use of step-by-step
procedures is not adequate to discretize nonlocal operators such as fractional
derivatives. Thus, the MSGDTM and other similar methods are not suitable
for FDEs.
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