9 research outputs found

    Cutting Edge Nanotechnology

    Get PDF
    The main purpose of this book is to describe important issues in various types of devices ranging from conventional transistors (opening chapters of the book) to molecular electronic devices whose fabrication and operation is discussed in the last few chapters of the book. As such, this book can serve as a guide for identifications of important areas of research in micro, nano and molecular electronics. We deeply acknowledge valuable contributions that each of the authors made in writing these excellent chapters

    Modeling structural and electronic properties of nano-scale systems

    Get PDF
    Computergestütze Modellierung von organischen elektronsichen Materialien durch gezielte Untersuchung mikroskopischer Prozesse und Berechnung molekülspezifischer Materialparameter ermöglicht die effiziente Entwicklung langlebiger, effizienter Bauteile. In dieser Arbeit werden die strukturellen und elektronischen Eigenschaften organischer und metall-organischer Schichten untersucht, sowie effiziente Simulationsmethoden (weiter-)entwickelt

    Microscopy and Analysis

    Get PDF
    Microscopes represent tools of the utmost importance for a wide range of disciplines. Without them, it would have been impossible to stand where we stand today in terms of understanding the structure and functions of organelles and cells, tissue composition and metabolism, or the causes behind various pathologies and their progression. Our knowledge on basic and advanced materials is also intimately intertwined to the realm of microscopy, and progress in key fields of micro- and nanotechnologies critically depends on high-resolution imaging systems. This volume includes a series of chapters that address highly significant scientific subjects from diverse areas of microscopy and analysis. Authoritative voices in their fields present in this volume their work or review recent trends, concepts, and applications, in a manner that is accessible to a broad readership audience from both within and outside their specialist area

    Photonic and Phononic Band Gap Engineering for Circuit Quantum Electrodynamics and Quantum Transduction

    Get PDF
    The ability to pattern materials at the wavelength and sub-wavelength scale has led to the concept of photonic crystals and metamaterials - artificially engineered structures that exhibit electromagnetic properties not found in conventional materials. Such engineered structures offer the ability to slow down and even inhibit the propagation of electromagnetic waves giving rise to a photonic band gap and a sharply varying photonic density of states. Quantum emitters in the presence of an electromagnetic reservoir with varying density of states can undergo a rich set of dynamical behavior. In particular, the reservoir can be tailored to have a memory of past interactions with emitters, in contrast to memory-less Markovian dynamics of typical open systems. In part 1 of this thesis, we investigate the non-Markovian dynamics of a superconducting qubit strongly coupled to a superconducting metamaterial waveguide engineered to have both a sharp spectral variation in its transmission properties and a slowing of light by a factor of 650. Tuning the qubit into the spectral vicinity of the passband of this slow-light waveguide reservoir, we observe a 400-fold change in the emission rate of the qubit, along with oscillatory energy relaxation of the qubit resulting from the beating of bound and radiative dressed qubit-photon states. Further, upon addition of a reflective boundary to one end of the waveguide, we observe revivals in the qubit population on a timescale 30 times longer than the inverse of the qubit’s emission rate, corresponding to the round-trip travel time of an emitted photon. With this superconducting circuit platform, future studies of multi-qubit interactions via highly structured reservoirs and the generation of multi-photon highly entangled states are possible. While microwave frequency superconducting circuits are near ideal testbeds for quantum electrodynamics experiments of the type discussed in part 1, microwave photons are not well suited for transmission of quantum information over long distances due to the presence of a large thermal background at room temperature. Optical photons are ideal for quantum communication applications due to their low propagation loss at room temperature. Coherent transduction of single photons from the microwave to the optical domain has the potential to play a key role in quantum networking and distributed quantum computing. In part 2 of this thesis, we extend the notion of band gap engineering to the optical and acoustic domain and present the design of a piezo-optomechanical quantum transducer where transduction is mediated by a strongly hybridized acoustic mode of a lithium niobate piezoacoustic cavity attached to a silicon optomechanical crystal patterned on a silicon-on-insulator substrate. We estimate an intrinsic transduction efficiency of 29% with &lt;0.5 added noise quanta when our transducer is resonantly coupled to a superconducting transmon qubit and operated in pulsed mode. Our design involves on-chip integration of a superconducting qubit with the piezo-optomechanical transducer. Absorption of stray photons from the optical pump used in the transduction process is known to cause excess decoherence and noise in the superconducting circuit. The recovery time of the superconducting circuit after the optical pulse sets a limit on the transducer repetition rate. We fabricate niobium based superconducting circuits on a silicon substrate and test their response to illumination by a 1550 nm laser. We find a recovery time of ~ 10 μs, indicating that a repetition rate of 10 kHz should be possible. Combined with the expected efficiency and noise metrics of our design, we expect that a transducer in this parameter regime would be suitable to realize probabilistic schemes for remote entanglement of superconducting quantum processors. We conclude by discussing some of the challenges associated with fabricating niobium superconducting qubits and lithium niobate piezoacoustic devices on silicon-on-insulator substrates and provide initial steps towards realizing our transducer design in the lab.</p

    Applications of Monte Carlo Methods in Biology, Medicine and Other Fields of Science

    Get PDF
    This volume is an eclectic mix of applications of Monte Carlo methods in many fields of research should not be surprising, because of the ubiquitous use of these methods in many fields of human endeavor. In an attempt to focus attention on a manageable set of applications, the main thrust of this book is to emphasize applications of Monte Carlo simulation methods in biology and medicine

    Microscopy Conference 2021 (MC 2021) - Proceedings

    Get PDF
    Das Dokument enthält die Kurzfassungen der Beiträge aller Teilnehmer an der Mikroskopiekonferenz "MC 2021"

    Ultra-thin and flexible CMOS technology: ISFET-based microsystem for biomedical applications

    Get PDF
    A new paradigm of silicon technology is the ultra-thin chip (UTC) technology and the emerging applications. Very thin integrated circuits (ICs) with through-silicon vias (TSVs) will allow the stacking and interconnection of multiple dies in a compact format allowing a migration towards three-dimensional ICs (3D-ICs). Also, extremely thin and therefore mechanically bendable silicon chips in conjunction with the emerging thin-film and organic semiconductor technologies will enhance the performance and functionality of large-area flexible electronic systems. However, UTC technology requires special attention related to the circuit design, fabrication, dicing and handling of ultra-thin chips as they have different physical properties compared to their bulky counterparts. Also, transistors and other active devices on UTCs experiencing variable bending stresses will suffer from the piezoresistive effect of silicon substrate which results in a shift of their operating point and therefore, an additional aspect should be considered during circuit design. This thesis tries to address some of these challenges related to UTC technology by focusing initially on modelling of transistors on mechanically bendable Si-UTCs. The developed behavioural models are a combination of mathematical equations and extracted parameters from BSIM4 and BSIM6 modified by a set of equations describing the bending-induced stresses on silicon. The transistor models are written in Verilog-A and compiled in Cadence Virtuoso environment where they were simulated at different bending conditions. To complement this, the verification of these models through experimental results is also presented. Two chips were designed using a 180 nm CMOS technology. The first chip includes nMOS and pMOS transistors with fixed channel width and two different channel lengths and two different channel orientations (0° and 90°) with respect to the wafer crystal orientation. The second chip includes inverter logic gates with different transistor sizes and orientations, as in the previous chip. Both chips were thinned down to ∼20m using dicing-before-grinding (DBG) prior to electrical characterisation at different bending conditions. Furthermore, this thesis presents the first reported fully integrated CMOS-based ISFET microsystem on UTC technology. The design of the integrated CMOS-based ISFET chip with 512 integrated on-chip ISFET sensors along with their read-out and digitisation scheme is presented. The integrated circuits (ICs) are thinned down to ∼30m and the bulky, as well as thinned ICs, are electrically and electrochemically characterised. Also, the thesis presents the first reported mechanically bendable CMOS-based ISFET device demonstrating that mechanical deformation of the die can result in drift compensation through the exploitation of the piezoresistive nature of silicon. Finally, this thesis presents the studies towards the development of on-chip reference electrodes and biodegradable and ultra-thin biosensors for the detection of neurotransmitters such as dopamine and serotonin
    corecore