
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

October 2018

Parallel Algorithms for Time Dependent Density Functional Theory Parallel Algorithms for Time Dependent Density Functional Theory

in Real-space and Real-time in Real-space and Real-time

James Kestyn

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the Atomic, Molecular and Optical Physics Commons, Electronic Devices and Semiconductor

Manufacturing Commons, Nanoscience and Nanotechnology Commons, Nanotechnology Fabrication

Commons, Numerical Analysis and Scientific Computing Commons, Quantum Physics Commons, and the

Semiconductor and Optical Materials Commons

Recommended Citation Recommended Citation
Kestyn, James, "Parallel Algorithms for Time Dependent Density Functional Theory in Real-space and
Real-time" (2018). Doctoral Dissertations. 1361.
https://scholarworks.umass.edu/dissertations_2/1361

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/195?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/272?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/272?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/313?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/273?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/273?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/206?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/290?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1361&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/1361?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1361&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

PARALLEL ALGORITHMS FOR TIME DEPENDENT
DENSITY FUNCTIONAL THEORY IN REAL-SPACE

AND REAL-TIME

A Dissertation Presented

by

JAMES KESTYN

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

SEPTEMBER 2018

Electrical and Computer Engineering

c© Copyright by James Kestyn 2018

All Rights Reserved

PARALLEL ALGORITHMS FOR TIME DEPENDENT
DENSITY FUNCTIONAL THEORY IN REAL-SPACE

AND REAL-TIME

A Dissertation Presented

by

JAMES KESTYN

Approved as to style and content by:

Eric Polizzi, Chair

Zlatan Aksamija, Member

Neal Anderson, Member

Dimitrios Maroudas, Member

Yousef Saad, Member

Sigfrid Yngvesson, Member

Christopher V. Hollot, Department Head
Electrical and Computer Engineering

ACKNOWLEDGMENTS

First and foremost I would like to thank my advisor Dr. Eric Polizzi for his

guidance and for the countless hours of discussion. You have introduced me to many

interesting topics which I may not otherwise have been exposed. Thank you to my

wife and family for always being there for me.

iv

ABSTRACT

PARALLEL ALGORITHMS FOR TIME DEPENDENT
DENSITY FUNCTIONAL THEORY IN REAL-SPACE

AND REAL-TIME

SEPTEMBER 2018

JAMES KESTYN

B.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Eric Polizzi

Density functional theory (DFT) and time dependent density functional theory

(TDDFT) have had great success solving for ground state and excited states proper-

ties of molecules, solids and nanostructures. However, these problems are particularly

hard to scale. Both the size of the discrete system and the number of needed eigen-

states increase with the number of electrons. A complete parallel framework for DFT

and TDDFT calculations applied to molecules and nanostructures is presented in

this dissertation. This includes the development of custom numerical algorithms for

eigenvalue problems and linear systems. New functionality in the FEAST eigenvalue

solver presents an additional level of distributed memory parallelism and is used for

the ground state DFT calculation, allowing larger molecules to be simulated. A par-

allel domain decomposition linear system solver has also been implemented. This

approach uses a Schur complement technique and a combination of direct sparse

solvers to outperform black box distributed memory solvers in both performance and

v

scalability. All other aspects of the code have been rewritten to operate in the domain

decomposition framework and have been parallelized using both MPI and OpenMP.

Numerical experiments demonstrate that our all-electron code can be applied to sys-

tems containing up to a few thousand atoms.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . v

LIST OF FIGURES . x

CHAPTER

1. INTRODUCTION . 1

1.1 Motivation . 1
1.2 Objectives . 7
1.3 Contributions . 8

2. MODELING FRAMEWORK . 12

2.1 Overview . 12
2.2 Physical models . 13

2.2.1 Density functional theory . 13

2.2.1.1 Hohenberg Kohn Theorem . 14
2.2.1.2 Kohn Sham Equations . 17
2.2.1.3 Exchange and correlation functionals 19
2.2.1.4 All-electron approach . 24

2.2.2 Time dependent density functional theory . 25

2.2.2.1 Important TDDFT theorems . 26
2.2.2.2 Real-time approach . 27
2.2.2.3 Time-dependent observables . 29

2.3 Mathematical models . 32

2.3.1 Finite element discretization . 32

vii

2.3.1.1 Mathematical formulation . 33
2.3.1.2 Application to Kohn Sham equations 35
2.3.1.3 Dirichlet boundary conditions . 37

2.3.2 Muffin-tin domain decomposition . 39

2.3.2.1 Mesh, matrix and data distribution 42
2.3.2.2 Mesh, matrix and data ordering . 46

2.3.3 Time propagation for TDDFT . 48

2.4 Numerical algorithms . 51

2.4.1 Methods for sparse linear systems . 51
2.4.2 The muffin-tin domain decomposition solver 52
2.4.3 The FEAST algorithm . 55
2.4.4 From Hermitian FEAST to non-Hermitian FEAST 59
2.4.5 PFEAST: three levels of MPI parallelism . 60

2.4.5.1 PFEAST with a distributed-memory solver 68
2.4.5.2 PFEAST with the muffin-tin solver 70

2.4.6 Mixing scheme for SCF convergence in DFT 71

3. SIMULATION PROCESS . 75

3.1 Mesh generation . 75
3.2 DFT calculation . 78

3.2.1 SCF convergence . 80
3.2.2 Parallelization of the search interval . 80

3.3 TDDFT calculation . 82

3.3.1 Restarting the simulation . 83
3.3.2 Static core approximation . 85

3.4 Comparison between P2 and P3 . 87
3.5 Comparison between LDA and GGA . 88
3.6 Visualizing the response density . 90

4. SIMULATIONS RESULTS . 94

4.1 Small molecules . 94

4.1.1 H2 . 96
4.1.2 CH4 . 97

viii

4.1.3 H2O . 98
4.1.4 CO . 99
4.1.5 C2H6 . 100
4.1.6 SiH4 . 101
4.1.7 Na2 . 102
4.1.8 C6H6 . 103
4.1.9 Na4 . 104

4.2 Discussion and comparison with experiment . 105

4.2.1 H2 . 105
4.2.2 CH4 . 107
4.2.3 H2O . 109
4.2.4 CO . 109
4.2.5 C2H6 . 110
4.2.6 SiH4 . 111
4.2.7 C6H6 . 113

4.3 Large-scale carbon nano-tubes . 115

4.3.1 DFT Calculation . 116
4.3.2 TDDFT Calculation . 117
4.3.3 Discussion . 122

5. DISCUSSIONS ON PERFORMANCE AND
SCALABILITY . 134

5.1 PFEAST eigenvalue solver . 134

5.1.1 Strong scalability of L2 . 136
5.1.2 Strong scalability of L3 . 137
5.1.3 A fixed number of CPUs . 138
5.1.4 L1 scalability . 139
5.1.5 Weak scalability . 141

5.2 Benchmarking full DFT and TDDFT calculations 143

6. CONCLUSION . 148

APPENDIX: NON-HERMITIAN FEAST . 151

BIBLIOGRAPHY . 175

ix

LIST OF FIGURES

Figure Page

2.1 Self consistent set of Kohn Sham equations that are solved in DFT
calculations. Starting with an initial guess of the electron density
n(r) allows for the construction of the Kohn Sham Hamiltonian
operator. Solving the resulting Schrödinger equation results in a
set of single particle wave functions that can be used to
reconstruct n(r). The factor of 2 corresponds to the spin, which
we do not explicitly take into account. 19

2.2 Example of a finite element basis using piece wise linear functions for
both 1-dimensional (taken from [154]) and 2-dimensional cases.
Each basis function is equal to one at a single grid point and
non-zero only over neighboring elements. Further refinement can
be achieved using additional higher order polynomials terms in the
basis (p-refinement) or a finer grid of points (h-refinement). 34

2.3 Example of the muffin-tin domain decomposition used in NESSIE. A
structured fine mesh surrounds each atomic nucleus. The
interconnecting region left over is call the interstitial mesh. Note:
generally interstitial mesh is more symmetric in x̂, ŷ and ẑ, but is
shown as narrow for esthetics. 41

2.4 Matrix structure for a three atom (fictitious) system with one MPI
process. The ordering of the global domain Ωg is shown on the
left, with the interstitial points (including interface) followed by
the points associated with each atom region. 44

2.5 Matrix structure of three atoms system in Figure 2.4 reordered for
three (left) and two (right) MPI processes. The global domain Ωg,
represented by the column vector to the right, is reordered and
distributed by row over the processes. The column vector to the
right represents the global domain Ωg, which is reordered and
distributed by row. Subsets of Ωg assigned to each MPI processes
are separated by a horizontal bar. 45

x

2.6 Structure of a six atom finite-element DFT matrix permuted for 2 L3
MPI processes (3 atoms per process). The left shows the matrix
built from the full mesh including interstitial and atomic regions.
The points that correspond to atomic regions are labeled
at1 − at6. The interstitial matrix can be seen on the right,
including boundary conditions Σ1 − Σ6 (in blue) that account for
atomic points. The domain-decomposition approach compresses
the large sparse set of atomic point on the left into the 98× 98
dense blocks Σ on the right. 55

2.7 Brief outlook and comparison between the main numerical operations
for the FEAST algorithms applied to the Hermitian and
non-Hermitian problems. 61

2.8 Overlapping MPI communicators for PFEAST. We refer to the
collection of MPI processes within an MPI communicator as a
“Communication-World”. If the first level of parallelism was also
used, this picture would then represent a single
L1-Communication-World. 62

2.9 Data distribution of input matrix A and eigenvector solutions X for
different configurations of parallel resources. Additional MPI
processes at the L1 and L3 levels reduce the memory required to
store the matrix and solution. The L1 level subdivides the
PFEAST search interval and results in fewer number of
eigenvectors calculated per node. Likewise, the L3 level can be
used to distribute X by row and A (as well as B for generalized
problems) by the distributed memory solver format. MPI
processes at the L2 level would result in additional copies of both
A and X. 64

2.10 Each linear system of FEAST is solved with the muffin solver. Linear
systems for each atom matrices can be solved in parallelism, but
must be solved twice: once to generated the Schur complement
(interstitial matrix) and again to retrieve solution. 71

3.1 Atomic (top) and interstitial (bottom) meshes for the benzene
molecule. The full cross section and zoom are shown for both,
with atoms fitting into hole in the interstitial. 76

xi

3.2 Ground state energies plotted vs. the size of the interstitial mesh
offset. The total length in each direction is given by the
interstitial mesh offset plus the size of the molecule (including
muffin-tins). Confinement from the Dirichlet boundary conditions
can have an effect on the ground state solutions if the mesh size is
taken too small. 77

3.3 Converged electron density for P2 finite element mesh. The top plot
shows the density in the atomic mesh for a single hydrogen (left)
and carbon (right) atom. The electron density in the full mesh
(interstitial+atomic) is shown on the bottom. Hydrogen atoms
have been clipped along the same plane as the interstitial mesh.
As can be seen in the top plot, the electron density is much higher
around carbon atoms than for hydrogen. The data in these regions
has been replace by a volume plot for aesthetic purposes. 79

3.4 Ground state eigenvalues of benzene for P2 and P3 levels of mesh
refinement. The total energy was calculated as -6244.44652890041
(eV) for P2 and -6263.41119295063 (eV) for P3. 80

3.5 The effect of SCF parameters of on the convergence. The number of
iterations are plotted until the total energy between consecutive
SCF iterations reaches a relative convergence of 10−10. For values
of β = 0.1 and β > 0.5 the simple mixing (left) does not converge.
With Anderson mixing (middle) the total energy converges much
faster. For benzene only a few mixing subspaces must be kept in
memory (right). 81

3.6 Splitting the full search interval into three separate contours. The
lowest (real) energy contour captures the core states while the
other two target valence electrons. Each contour has eight
quadrature nodes shown as circles. Symmetry allows the FEAST
algorithm to only perform computations for the upper upper half
of the contour. 82

3.7 Induced dipole moment for C6H6. The three plots show the response
when an impulse potential polarized in the x̂ (top), ŷ (middle)
and ẑ (bottom) direction excites the system. Time steps of 5
attoseconds are used. The right graphics show the molecules
orientation if the applied electric field was polarized from left to
right along the page. 84

3.8 Oscillator stregnth of C6H6 for an impluse excitation polarized along
the x̂, ŷ and ẑ directions. 85

xii

3.9 Induced dipole moment for continuously executed TDDFT simulation
(solid line) and a simulation with a single restart at time step
t = 2× 10−15 seconds. Results of the restarted calculation exactly
match the one executed continuously with no restart. 86

3.10 Only valence states are propagated within the static core
approximation. Core electronic states are held constant and do
not move - their contribution to the potential is the same as in the
ground state. Bottom figure is a zoom of the first femto second,
where it can be seen that the two simulations look identical. 87

3.11 Ground state eigenvalue spectrum for benzene with both P2 and P3
polynomial refinment for the finite element mesh. The total
energy was calcualted as -6244.44652890041 (eV) for P2 and
-6263.41119295063 (eV) for P3. 88

3.12 The absorption spectrum averaged over excitations in x̂, ŷ and ẑ
using both P2 and P3 polynomial refinement for the finite
element mesh. The first major peak is located at 6.92 (eV) for P2
and 6.77 (eV) for P3. 88

3.13 Ground state eigenvalue spectrum for benzene using both LDA and
GGA functionals with P3 polynomial refinment for the finite
element mesh. The total energy was calcualted as
-6263.41119295063 (eV) for LDA and -6421.66928296016 (eV) for
GGA. 90

3.14 The absorption spectrum averaged over excitations in x̂, ŷ and ẑ
using both LDA and GGA functionals with P2 polynomial
refinement for the finite element mesh. The first major peak is
located at 6.92 (eV) for LDA and 6.92 (eV) for GGA. 90

3.15 P2-LDA response electron density for the first peak in absorption
spectrum of benzene at 6.91 (eV) for an excitation in the ẑ
direction. From left to right: XY, YZ and XZ planes. 93

3.16 P2-LDA response electron density for four different peaks in
absorption spectrum of benzene shown in the XZ plane.
Clockwise from the top left: excitations at 10.04, 13.61, 16.20 and
17.74 (eV) in the ẑ (upward) direction. 93

4.1 Simulation results for H2. 96

4.2 Simulation results for CH4. 97

xiii

4.3 Simulation results for H2O. 98

4.4 Simulation results for CO. 99

4.5 Simulation results for C2H6. 100

4.6 Simulation results for SiH4. 101

4.7 Simulation results for Na2. 102

4.8 Simulation results for C6H6. 103

4.9 Simulation results for Na4. 104

4.10 Experimental electronic excitation energies of H2 copied from [93].
First singlet, first triplet and second singlet states are labeled and
have values of 11.37eV, 11.87eV and 12.40eV, respectively. 106

4.11 Comparison between NESSIE and experimental values for H2. 107

4.12 Comparison between NESSIE and experimental values for CH4. 108

4.13 Comparison between NESSIE and experimental values for H2O. 110

4.14 Comparison between NESSIE and experimental values for CO. 111

4.15 Comparison between NESSIE and experimental values for C2H6. 112

4.16 Comparison between NESSIE and experimental values for SiH4. 113

4.17 Comparison between NESSIE and experimental values for C6H6. 114

4.18 Induced dipole for 5, 10, 20 and 40 unit cell (3,3) carbon nanotubes.
Only the first fifteen femtoseconds of each simulation are pictured.
119

4.19 Comparison between absorption spectrum for 10, 20 and 40 unit cell
(3,3) carbon nano-tubes. Full energy range of the simulation is
shown on the top. The bottom is a zoom of main region of
interest. 121

4.20 Absorption spectrum for 5, 10, 20 and 40 unit cell (3,3) carbon
nanotubes. 122

xiv

4.21 Main area of interest of the absorption spectrum for 5, 10, 20 and 40
unit cell (3,3) carbon nanotubes. 123

4.22 Comparison between a transverse (Y) and longitudinal (Z)
excitations for the 20-CNT. 124

4.23 Surface plot of the response density δn(w, r) taken at ±109 for the
π + σ peak at ω ≈ 10 (eV) in the absorption spectrum; from top
to bottom: 5, 10 and 20 CNT. The 5 CNT is the only molcule
with an odd number of unit cell. 125

4.24 Surface plot of the response density δn(w, r) taken at ±109 for the
first peak of the absorption spectrum; from top to bottom: 5, 10
and 20 CNT with ω = {1.65, 1.24, 0.82} (eV), respectively. 126

4.25 Velocity corresponding to the lowest energy peak in the absorption
spectrum for the 5, 10, 20 and 40 unit cell CNT. As the length of
the tube increases the speed increases past the Fermi velocity and
the behavior seems to transform from a single-particle type
excitation to a collective plasmonic excitation. 126

4.26 Surface plot of the response density δn(w, r) taken at ±109 for the
peak at ω ≈ 3.25 (eV) in the absorption spectrum; from top to
bottom: 5, 10 and 20 CNT. 129

4.27 Surface plot of the response density δn(w, r) taken at ±109 for the
peak at ω ≈ 4.40 (eV) in the absorption spectrum; from top to
bottom: 5, 10 and 20 CNT. 129

4.28 Small sharp resonances that appear in gap between the main lowest
frequency and other excitations for the 20 and 40 unit cell CNTs.
130

4.29 Four dimensional surface plot taken at ±2× 108 of the 20 CNT.
These peaks, shown in Figure 4.28, are in the gap between the
main lowest frequency and other excitations. Top: response
electron density for the peak at E = 1.53eV. Bottom: response
electron density for the peak at E = 2.02eV. 130

4.30 Surface plot of the response density δn(w, r) taken at ±109 for the
5-CNT. Each plots is for a different ω corresponding to an energy
E and frequency f in the range of Figure 4.21. 131

xv

4.31 Surface plot of the response density δn(w, r) taken at ±109 for the
10-CNT. Each plots is for a different ω corresponding to an
energy E and frequency f in the range of Figure 4.21. 132

4.32 Surface plot of the response density δn(w, r) taken at ±109 for the
20-CNT. Each plots is for a different ω corresponding to an
energy E and frequency f in the range of Figure 4.21. 133

5.1 3-dimensional plot of a 3 unit cell CNT (3-CNT). The molecule is
composed of 3 |UaUb| units cells, includes an additional Ua ring,
and is terminated with hydrogen atoms Uh at each end. 135

5.2 Scalability of the second level of parallelism. The number of L2
processes is increased from 1 to 16 while keeping the number of
L3 MPI processes at a constant value of 3 (for a total of 36 to 576
cores). This level is limited to 16 L2 MPI processes since 16
quadrature points were used. These results are for the CNT-5
eigensystem with m0 = 600 (226 eigenvalues). The left graph
gives the total time to solve the eigenvalue problem. The speedup
compared to 1 cluster of L3 processes can be seen on the right.
137

5.3 Scalability of the third level of parallelism for 5-CNT system with
m0 = 600 (226 eigenvalues). The left graph the total time to solve
the eigenvalue problem. Fully utilizing L2 (with a total of 12,288
cores) these times could be reduced by a factor of 16. The scaling
compared to 2 L3 MPI processes can be seen on the right. 138

5.4 Weak scaling of factorization and solve stages (in seconds) for a single
PFEAST iteration using 16 contour points (16 linear-systems
solved in total using # L2=1) and 200 right-hand-sides. The
matrix size is increased proportionally to the number of MPI
processes. Reported timings could be reduced by a factor of 16 if
L2 was fully utilized. MUMPS ran into memory issues for more
than 198 atoms (757,934 size, 33 MPI). 142

6.1 Various search contour examples for the Hermitian and the
non-Hermitian FEAST algorithms. Both algorithms feature
standard elliptical contour options and the possibility to define
custom arbitrary shapes. In the Hermitian case, the contour is
symmetric with the real axis and only the nodes in the upper-half
may be generated. n the non-Hermitian case, a full contour is
needed to enclose the wanted complex eigenvalues. 152

xvi

6.2 Value of the rational function, for the QC325 matrix, plotted as
contour plot (left) and surface plot (right). The contour has been
generated using a six-point trapezoidal rule and the FEAST
‘custom contour’ feature to position the quadrature nodes along a
circular arc. The left plot includes the positions of the four closest
eigenvalues. Only a single eigenvalue λ1 is inside of the contour.
More particularly, |ρa(λ1)| = 1.0000004 , |ρa(λ2)| = 1.7272309,
|ρa(λ3)| = 0.4206553, |ρa(λ4)| = 3.6296209× 10−2, and
|ρa(λ5)| = 6.9332547× 10−3. Note that λ5 is not visible in the
figure. 156

6.3 Convergence of the residual norms (6.11) associated with eigenvalues
λi in Figure 6.2. Two search subspace sizes are considered: m0 = 2
(left plot) and m0 = 4 (right plot). The dashed lines represent the
theoretical linear convergence rate |ρa(λm0+1)/ρa(λi)| which is
perfectly matched by the values returned by FEAST. We note
that the convergence of the wanted eigenvalue λ1 is is
considerably slower using the smaller size subspace m0 = 2 since
the eigenvalue λ3 that governs the convergence rate for this case is
too close to the search contour. 157

6.4 On the left: eigenvalue spectrum of CSH4. On the right: minimum
obtained residual norm (6.11) after 20 FEAST iterations plotted
in function of the subspace size m0. With bi-orthonormalization,
the minimum norm stays relatively constant for all m0. 160

6.5 FEAST Non-Hermitian general algorithm . 162

6.6 A 4000× 4000 dense matrix has been constructed such that all
eigenvalues exist within the unit disk. Multiple FEAST contours,
employing a trapezoidal quadrature, have been used to calculate a
subset of the eigenvalues in parallel. 168

xvii

6.7 The speedup ratio comparing the slowest converging FEAST contour
to LAPACK for different matrix sizes. LAPACK using 12 threads
took {13, 25, 127, 221, 578, 1025} seconds to compute the entire
spectrum for matrices of size
nmat = {1000, 2000, 3000, 4000, 5000, 6000}, respectively. The
speedup ratio depends on the performance of LAPACK for the
given matrix size, but also the number of FEAST iterations to
reach convergence. Since the number of eigenvalues within each
contour grows with the matrix size we have chosen values of
m0 = {50, 100, 150, 200, 250, 300} to be proportional to nmat. For
cases nmat = {4000, 5000, 6000} the 8 node FEAST contour
needed fewer iterations to reach convergence and had better
overall performance than when using 16 quadrature nodes. 171

xviii

CHAPTER 1

INTRODUCTION

1.1 Motivation

The ability to control materials and understand their properties has been a driving

force for technological breakthroughs over the course of human history. As under-

standing has progressed so have the tools used to facilitate scientific discovery. First

principle calculations offer a unique approach to study materials starting directly from

the mathematical equations that describe physical laws and do not require any em-

pirical parameters aside from fundamental constants. They are known as electronic

structure calculations when applied to the configuration of electrons in a molecule

or solid which determine most of the physical properties of matter through chemical

bonding. Fundamentals laws governing the physics have been known since the begin-

ning of the 20th century with the development of quantum mechanics. However, the

difficulty to solve these problems scales exponentially with the number of electrons.

Recent progress to improve calculations of the many-electron wave functions can be

broadly separated into three categories: (i) physical modeling to reduce the complex-

ity of the full solution while keeping much of the important physics, (ii) discretization

and mathematical modeling that transform physical equations into the language of

linear algebra, and (iii) computing and numerical algorithms to solve the resulting

problems.

Physical Models: Exact solutions to the many-body Schrödinger equation can

only be computed for the simplest molecular systems. This has lead to different

treatments and approximations to reduce complexity of the full many-body problem.

1

These include Hartree-Fock [186, 187, 89, 72] and other post Hartree-Fock approaches

(notably coupled-cluster [29] and configure interaction [183]) and density functional

theory [96, 120]. Quantum Monte Carlo [73] has also been used extensively. All

of these methods are approximate, with varying degrees of accuracy. This presents

trade offs between accuracy and computational complexity; the most accurate of the

approaches above can only be applied to small atomic systems containing a few atoms.

Although density functional theory (DFT) is not as accurate as traditional quan-

tum chemistry techniques that calculate the many-electron wave function as a Slater

determinant expansion of single particle states, it is the method of choice when deal-

ing with moderate sized systems containing more than a handful of atoms [217, 85].

The work in this thesis will focus exclusively on DFT, which has been widely applied

with great success in the solid state physics [119], material science, chemistry [117],

and biology [57]. DFT uses the electron density as the fundamental variable, which in

principle determines all ground state properties of a system. Many physical quanti-

ties can be determined using DFT and one can calculate, for example, total energies,

band structures [80], molecular geometries [28, 148], static polarization, vibrational

frequencies [192], and potential energy surfaces. DFT is also used to calculate in-

put parameters for more advanced excited states models and for molecular dynamics

simulations (e.g. see 2013 Nobel Prize in Chemistry), which have become vital in

drug development. Hybrid molecular dynamics approaches using DFT for electronic

degrees of freedom and classical dynamics to treat the motion of the nuclei have also

been developed [42].

Starting in the 1980s, the formulation of time-dependent DFT (TDDFT) by Runge

and Gross [173] has allowed for excited-states calculations and the study of non-

equilibrium physics of atoms, molecules and nanostructures [38, 71, 185]. Similar to

DFT, where observables of the ground state system can be calculated using knowledge

of the electron density, TDDFT uses the time-dependent electron density as the

2

fundamental variable. It is closely related to the field of spectroscopy and can be

used to accurately model optical absorption and emission spectrum in the X-ray,

ultraviolet and infrared frequency ranges [102, 101, 142]. There has been interest

in using TDDFT to study and develop terahertz electronic devices [43, 206] because

of its ability to describe electron dynamics at the attosecond to picosecond time

scales. Additionally, TDDFT has been applied to calculate other physical observable

of the time-dependent Hamiltonian, such as excitation energies [160] and complex

permittivities, bond breaking and time-dependent modulations [39], as well as other

non-linear phenomena such as ionization due to laser pulses [204, 205, 207]. Multiple

approaches exist and many quantum chemistry codes incorporated linear response

TDDFT through the evaluation of the Casida eigenvalue problem [44] in frequency

space. However, it is also possible to use density functional perturbation theory

(Sternheimer equation) [193, 83, 82, 19] or a real-time propagation of the ground-

state DFT wave functions [216, 146].

Discretization and Mathematical Models: In order to numerically compute

the solution to partial differential equations, such as the Schrödinger equation, it is

necessary to discretize the problem by expanding the solution as a linear combination

of basis functions. This will result in a matrix equation that can be solved for the

coefficients of the expansion. Most commercial or academic electronic structure codes

use either a plane wave [11, 8, 1] or a linear combination of Gaussian-type orbitals

(LCGTO) [3, 9] basis set. Others [5, 4] even offer both. A comprehensive list can

be found in [12]. Plane waves have traditionally been used within the solid-state

physics community because of their natural periodicity that can be easily applied to

crystal structures. However, this can be cumbersome when dealing with finite systems

where the computational domain must be made much larger than the molecular size

to ensure interactions due to neighboring unit cells are negligible. Additionally, they

must use pseudopotentials to mimic the effects of core electrons, which do not directly

3

participate in chemical bonding and would require a very large number of plane

waves to capture their high-frequency variations. On the other hand, LCGTO uses

an expansion of local functions around each atom and is the standard method in

quantum chemistry for finite-systems. These codes can include all-electron effects

(i.e. directly including effects of core electrons), but require a fine-tuned basis set to

produce accurate results. A major drawback to both plane wave and LCGTO is the

resulting system matrix. Plane waves produce a fully dense Hamiltonian. LCGTO

can be formulated as a linear scaling method by explicitly setting the atomic orbitals

to zero at a certain cutoff radius. This will neglect the overlap of basis functions

between certain atoms and cause many of the matrix elements to be zero. However, a

limitation of both LCGTO and plane wave approaches are the dense system matrices

which can be too large to fit on disk. This necessitate the use of less robust iterative

techniques requiring only matrix-vector multiplication. Furthermore, with a plane

wave basis each matrix vector product must Fourier transforms between the frequency

domain and real-space, where the potential is diagonal. Overall, both of LCGTO and

plane waves are limited in their ability to scale problem sizes and simulate large scale

molecules containing many atoms.

The other possibility is a real-space method using wavelets [2], finite differences

[6, 7, 36], or finite elements [194]. The local-in-space basis functions have a non-zero

overlap with a small fraction of neighbors and produce large sparse system matrices.

This is a major advantage that enables the use of domain decomposition approaches.

It is ideal for simulating large-scale molecules on modern computing architectures

because of the additionally level of distributed-memory parallelism non-existent in

plane wave and LCGTO codes. Real-space methods have traditionally been used with

pseudopotentials. However, the finite element method allows for mesh refinement at

arbitrary locations (i.e. around the atomic nucleus) and can be used for all-electron

calculations [129].

4

Additional mathematical modeling questions are specific to the physical prob-

lem at hand. For example, the non-linear eigenvalue problem of DFT can either

be computed directly [78] or, more commonly, using self-consistent-field iterations

combined with a density mixing scheme. In fact, solution to the eigenvalue problem

can be avoided entirely by evaluating select diagonal elements of the density matrix

[136, 124]; although, this may be associated with a loss of accuracy since error in

the numerical integration translates to the electron density and the SCF iterations

converge to a perturbed result. Further modeling questions arise for solving the time

dependent partial differential equation of TDDFT. Real-time TDDFT, where the

ground state wave functions are propagated directly in time, must use an approxima-

tion to the propagation operator. The most common approach in TDDFT is to use

the Crank Nicolson propagation operator [60]. An integral method based on diagonal-

izing the time-dependent Hamiltonian using FEAST has been previously investigated

[52] and allows for larger time steps with more capacity for parallelization.

Computing and Numerical Algorithms: Much of the progress in this field is

directly tied to advancements allowing larger and more complex systems to be simu-

lated. Molecules with many atoms and electrons can only be treated by addressing

the efficiency and scalability of algorithms or, more generally, with increasing pro-

cessing power. The latter has consistently improved over the last 60 years and is

summarized by the famous Moore’s Law. However, new algorithms are necessary to

take advantage of modern peta- and exascale architectures. These supercomputers

are comprised of hundreds of thousands of processors and contain multiple hierarchi-

cal levels of parallelism. Multi-core CPUs, where each core has access to a common

shared-memory, have allowed for near optimal scaling of many numerical linear alge-

bra operations though threading and OpenMP [61] directives. Performance of each

core has also increased with the advent of SIMD and AVX registers that can operate

on multiple data elements within a single clock cycle. Traditional multicore CPUs

5

contain at most a few tens of cores, but the emergence of GPUs and Intel’s Xeon

Phi accelerator has pushed this number into the hundreds; although each individual

core is less powerful and the coding difficulty is drastically increased. However, to

fully utilize the available processing power of modern machines one must move to

distributed-memory, where many thousands of CPUs (or accelerators) are linked to-

gether via a high-speed interconnect and communicate through a standard message

passing interface such as MPI [84].

Attaining high efficiencies for distributed memory codes can be challenging due

to the cost of communication compared to computation. The core elements are nu-

merical linear algebra routines that operate on large matrices and vectors. Solution

to linear systems and eigenvalue problems represent the most demanding of these

operations. Development of scalable algorithms for distributed memory is essential

to performance. Efficient libraries exist for small to medium sized dense matrices

and have become standardized in BLAS [126], LAPACK [17] and ScaLAPACK [33].

However, no such standard has emerged for large sparse matrices, where the matrix

structure can vary drastically between applications. Packages such as PETSc [27] and

SLEPc [91], Trillinos [92], and MATLAB have assembled many different algorithms,

but lack flexibility for application specific problems and require software to be imple-

mented in their specific framework. To develop scalable methods adapted to our own

application it is necessary to develop custom numerical algorithms.

Domain decomposition methods have been well studied [115, 201, 188] and are a

natural framework for applications with large sparse matrices. They can be applied

at the discretization level, where separate meshes are generated for different regions

of space, or directly to the matrix, generally with the use of a graph partitioner (e.g.

see [109, 110]) to divide the elements into non-intersecting subsets. The partitioning

depends on the structure of the mesh or matrix and is specific to the application. Dis-

6

tributed memory numerical algorithms must take into account the data distribution

and are also application specific.

1.2 Objectives

The major goal of this work is to develop numerical algorithms and simulation

software for electronic structure that scale system sizes up to a thousand atoms,

without resorting to additional approximations beyond traditional DFT and TDDFT.

The target architecture is a computing cluster (including high speed interconnect)

with multiple shared memory nodes each containing 1 or 2 many core CPU. Our

approach addresses the three categories outlined in Section 1.1, which are all inter-

related and must be taken into account in order to develop a practical and efficient

electronic structure code. The techniques will harness the processing capabilities

of modern machines using domain decomposition and other advantages of a real-

space finite element basis. Specific objectives can be broken down into three main

categories. First, the development of parallel numerical algorithms to solve linear

algebra problems that arise in DFT/TDDFT. Next, a parallel framework for DFT

and TDDFT simulations built on top of the numerical algorithms, where multiple

levels of MPI and OpenMP parallelism are used for all mesh and matrix operations.

Finally, the execution of the new code to perform simulations of large scale molecules

and push the current limits of all-electron DFT/TDDFT calculations.

7

Objectives:

• Numerical Algorithms: Develop novel numerical algorithms for major com-
putational operations within DFT and TDDFT. This will include numerical
methods for eigenvalue problems and solving linear-systems.

• Parallel Framework for DFT and TDDFT Simulations: Create a fully
parallel and distributed code, where subroutines for DFT, TDDFT and auxiliary
operations are performed without directly constructing the full wave function
solution.

• Simulations of Large Scale Molecules: Perform linear-response real-time
TDDFT simulations of organic molecules containing up to 1000 atoms. This
will be achieved by optimizing the strong scalability of the code and addressing
the weak scaling of the solver, where the simulation of larger molecules is made
possible through the use of additional computing resources.

1.3 Contributions

Specific design decisions have evolved over many years starting prior to my involve-

ment and continuing with my contributions. Previous developments to the NESSIE

electronic structure code have been on the mesh/discretization [220, 218, 219, 132,

131], real-time TDDFT simulations [52, 54, 103, 168], and other aspects of the mod-

eling process [78]. Much of this previous work is used, but the software has been

upgraded to run in a fully parallel environment. This has been achieved rewriting

the code to operate within a domain decomposition framework. In this case both

the wave functions and Hamiltonian are distributed and all numerical algorithms

and mesh operations must act directly upon the distributed vectors and matrices.

Furthermore, custom numerical algorithms to compute eigenvalues and linear system

solutions have been developed. All other aspects of the code have been parallelized

using MPI and OpenMP.

The major bottleneck in DFT is the computation and storage of the DFT wave

functions. These are dense n×m matrices with memory requirements that depend on

the number of electrons m as O(m2) - both the number of discretization points and the

8

number of needed eigenvectors increase with the number of atoms in the molecule.

Even with tractable first-principle approach such as DFT, it is practically difficult

to scale electronic structure problems. It becomes necessary to compute subsets of

the eigenspectrum independently, reducing the number of vectors stored in the wave

function matrix. The FEAST algorithm [164] offers this ability. NESSIE is built on

top of the FEAST Eigenvalue solver [166], which is released as open source software

and is included in Intel’s Math Kernel Library [212]. A major part of this work is

focused on both the FEAST algorithm and solver. A new development is PFEAST

[113], a fully parallel extension of FEAST that can be linked with a distributed

memory linear system solver, which will released in FEAST v4.0. The ability to

distribute the eigenvector matrix by row across compute nodes presents an additional

level of parallelism for strong or weak scaling. This brand new extension has been

integrated in NESSIE and plays a key role in the distributed version of the code since

it can be easily interfaced with a domain decomposition linear solver.

A Schur complement linear system solver, a standard approach in domain decom-

position, has been implemented within the NESSIE muffin-tin decomposition frame-

work. This is a parallel method where different domains can be solved independently

by forming and solving a smaller global problem that accounts for the interactions

between them (called the Schur complement). PFEAST, which must compute the

multiple complex (not Hermitian) linear systems with many right-hand-sides, has

been linked with the linear solver and integrated within NESSIE. NESSIE is only

using local exchange and correlation functionals and the other significant compu-

tation of our DFT approach is the Poisson equation, which amounts to solving a

real symmetric-positive-definite linear system with one right-hand-side. Because the

Poisson equations has only a single right-hand-side, it is much less expensive than

the linear solves of the eigenvalue computation and the same domain decomposition

approach is used. In fact, the computation of the boundary condition for Poisson is

9

actually more time consuming, but is very scalable. For time dependent calculations

using the Crank Nicolson scheme [60], a complex linear systems must be solved at

each time step to propagate the wave functions in time and the same exact solver

linked to PFEAST is used.

Other routines that act on the finite element mesh must also be performed in par-

allel and be customized to the domain decomposition. These operations can become

the bottlenecks if run on a single thread or if not properly optimized. The most com-

putationally demanding of these routines are to (1) add potential to the Hamiltonian

using numerical integration and the finite element basis, (2) reconstruct the electron

density from ground state wave functions and (3) perform matrix multiplication. All

of these operations mainly involve loops over the mesh/matrix indices and have been

parallelized using both MPI and OpenMP.

Further developments in FEAST include the creation of a robust non-Hermitian

eigenvalue algorithm and software extension [114], which can be much more difficult

than the Hermitian case. Although the non-Hermitian routine is not currently used

within NESSIE, it is still of importance for real-space DFT and TDDFT simula-

tions since it can be used with complex symmetric matrices resulting from absorbing

boundary conditions. Non-Hermitian FEAST can be used in TDDFT with absorbing

boundary conditions for simulating charge transfer and ionization. Both transport

calculations and the identification of resonant states can also produce non-Hermitian

matrices [47]. Importantly, it also generalizes the FEAST algorithm to all linear

cases.

Details on the modeling framework can be found in Chapter 2, which provides

background on the physical model (DFT and TDDFT), the discretization (finite ele-

ment combined with a muffin-tin domain decomposition) and numerical algorithms for

solving linear algebra problems (mainly for eigenvalues and linear systems). Chapter

3 provides a step-by-step example for running the code starting with the mush gener-

10

ation and then discussing details for DFT and TDDFT calculations. Results are then

presented in Chapter 4 for a collection of small molecules as well as a more detailed

investigation of (3,3) carbon nano-tubes up to forty unit cells. Further discussion on

the performance and scalability of the code can be found in Chapter 5.

11

CHAPTER 2

MODELING FRAMEWORK

2.1 Overview

Our electronic structure code uses a real-space finite element discretization and

domain decomposition to perform all-electron ground-state DFT and excited-states

TDDFT calculations in parallel over many distributed memory compute nodes. Cus-

tom numerical algorithms have been developed for the eigenvalue problems and linear

systems, which are the major linear algebra operations within the software. The fol-

lowing summarizes the topics that will be discussed in this Chapter.

•Discretization: A real-space finite element discretization is associated with many

benefits outlined in Section 1.1. It is well suited for all-electron calculations that

require more accuracy around the atomic nucleus since the mesh can be arbitrar-

ily refined. A muffin-tin domain decomposition is used to separate the computa-

tional domain into two sets: the atomic regions that directly surround each atom and

the interstitial connecting mesh. The domain decomposition allows for each atomic

mesh/matrix to be operated on in parallel. The full interstitial mesh is known on each

MPI process. However, the interstitial matrix is not local to a single MPI process

as with a single atom. The matrix is instead distributed across available computing

resources and requires communication to perform linear algebra operations.

• Ground state calculation: With DFT, many eigenvalue problems must be

solved in a self consistent loop. Self consistency is reached once the input electron

density is equal to the output density, which can be recalculated from the eigenvector

solutions (wave functions). At each self consistent field (SCF) iteration a new input

12

electron density for the next iteration must be computed. The simplest approach is

a simple mixing scheme where a linear combination of the current density and the

previous density is used. We have used the Anderson mixing scheme [16], which takes

a linear combination of past densities. As the density begins to converge the previous

eigenvector solutions become a very good initial guess for the current SCF iteration.

Since the eigenvalue convergence criteria is set to only slightly exceed the current

SCF convergence, PFEAST must only perform a single subspace iteration on average

and, with parallelism, solve a single linear system per diagonalization.

• Excited states calculation: A real-time TDDFT approach is used to time

propagate ground state wave functions. This requires, as a first step, a ground state

calculation. The propagation uses a Crank Nicolson scheme [60], where a complex

linear system with many right-hand-sides must be solved at each time step. This

proceedure can require thousands of time steps, but is more scalable than frequency

space methods.

2.2 Physical models

Since the exact solution to the Schrod̈inger equation can not be computed exactly,

a physical model must be used to reduce the complexity. Many techniques, each with

benefits and drawbacks, have been developed. In this work density functional theory

(DFT) and time-dependent density functional theory (TDDFT) are considered.

2.2.1 Density functional theory

The development of density functional theory, which won Walter Kohn the No-

bel prize in Chemistry in 1998 [118], was a major advance in the attempt to solve

the many body Schrödinger equation. It is an exact theory, although in practice

approximations must be made to include many body effects. The general idea is to

use the electron density, instead of the position of each electron, as the fundamental

13

parameter. The many body Schrödinger equation with the many electron wave func-

tion Ψ(r1, r2, ..., rNe) is intractable for all but the smallest molecular systems. Here, ri

represents the spacial coordinates for the ith electron and all other quantum numbers;

although in DFT, spin is not necessarily included. DFT does not solve the many body

problem or compute the many-electron wave function. The problem is reformulated

so that “fictitious” wave functions ψ(r) of the single particle Schrödinger equation are

computed instead. This drastically reduces the degrees-of-freedom for the problem

allowing larger molecular systems to be studied.

2.2.1.1 Hohenberg Kohn Theorem

The basis of DFT is the Hohenberg Kohn formalism [96], which provides a proof

of one-to-one correspondence between the electron density and external potential.

Essentially this shows that the Hamiltonian can be written solely as a functional of

the electron density. The result is a variational problem that can be solved by a

minimization of the total energy.

The Hamiltonian for a set of electrons moving in an external potential is given by

Ĥ = T̂ + Û + V̂ , (2.1)

where T̂ represents the kinetic energy of the electrons and Û the Coulomb interaction

between the electrons (we use ‘ ˆ ’ since they are operators). The third term V̂ is the

external potential and can include, for example, the Coulomb interaction between the

negatively charged electrons and positively charged nuclei.

The Hohenberg Kohn Theorem [96] shows that there is a one-to-one correspon-

dence between the electron density n(r) and the external potential V̂ . The ground-

state electron density can be generated by at most one potential. Likewise this

14

potential will generate only a single unique electron density. For the many body

Hamiltonian, the solution to the stationary Schrödinger Equation

Ĥ |Ψ0〉 = E0 |Ψ0〉 (2.2)

will give the ground state wave function |Ψ0〉 and the energy eigenstate E0. The many

body Hamiltonian is given by

Ĥ =

(
− }2

2m

Ne∑
j=1

Ne∑
j′=1

∇j · ∇j′

)
+

1

2

Ne∑
j=1

Ne∑
j′=1
j′ 6=j

e2

|rj − rj′ |

−
(

Ne∑
j=1

Nat∑
l=1

Zle
2

|rj −Rl|

)
, (2.3)

with fundamental constants }, m and e. The summations are over the number of

electrons Ne and number of atoms Nat. Since the Born-Oppenheimer approximation is

used, which assumes the atomic nuclei are fixed in space and obey classical mechanics,

the kinetic energy term only sums over the electrons and there is no nucleus-nucleus

interaction. The electron density n(r) can be calculated from the diagonal elements

of the density matrix |Ψ0〉 〈Ψ0| or by applying the density operator,

ρ̂ =
Ne∑
i=1

δ(r − ri), (2.4)

to the wave function:

n(r) = 〈Ψ0| ρ̂ |Ψ0〉 = Ne

∫
|Ψ0(r, r2, ..., rNe)|

2 dr2...drNe . (2.5)

Here, δ(r − ri) is the Dirac delta function and the many body wave functions |Ψ0〉

depends on the coordinates {ri} of all Ne electrons in the system. The final result in

15

(2.5) can be written without a summation since electrons are fermions and exchanging

any two arguments of |Ψ0〉 will change its sign,

Ψ0(r1, r2) = −Ψ0(r2, r1), (2.6)

but not its magnitude. The electron density therefore depends also on the external

potential V̂ that defined Ĥ though its solution |Ψ0〉.

The reverse must also be true for a one-to-one correspondence between n(r) and

V̂ : the external potential V̂ must be a unique functional of the electron density n(r).

This is proved via a contradiction, which is reached when it is first assumed that there

exist two potentials V̂ A and V̂ B which both give rise to the same electron density

n(r). Two different potentials will result in two different Hamiltonians ĤA and ĤB

and two separate ground state wave functions
∣∣ΨA

0

〉
and

∣∣ΨB
0

〉
. We must have the

relation

EA
0 =

〈
ΨA

0

∣∣ ĤA
∣∣ΨA

0

〉
<
〈
ΨB

0

∣∣ ĤA
∣∣ΨB

0

〉
(2.7)

because of the Rayleigh-Ritz principle and since
∣∣ΨA

0

〉
represents the ground state

of the system ĤA. The strict inequality is used since equality is only possible for∣∣ΨA
0

〉
=
∣∣ΨB

0

〉
. With HA = HB + V A − V B this becomes

EA
0 < EB

0 +
〈
ΨB

0

∣∣ V̂ A − V̂ B
∣∣ΨB

0

〉
= EB

0 +

∫ [
vA(r)− vB(r)

]
n(r)dr. (2.8)

The exact same approach can be used for the opposite case where ‘A’ and ‘B’ argu-

ments are of (2.7) are swapped:

EB
0 < EA

0 +

∫ [
vB(r)− vA(r)

]
n(r)dr. (2.9)

Now, adding (2.8) and (2.9) results in a contradiction EA+EB < EB+EA. Therefore

we arrive at the conclusion that V̂ A = V̂ B.

16

Additionally, it must be shown that the ground state density n(r) results in the

minimum energy for the system. This is a variational principle where the energy

E[n(r)] must reach a minimum relative to deviations n′(r) away from the ground state

density (with the constraint that n(r) integrates to the total number of electrons):

E[n(r)] < E[n′(r)] ∀n′(r) 6= n(r). (2.10)

This relation follows directly from the fact that the ground state density is constructed

from the ground state wave functions for which there exists a variational principle

[133].

2.2.1.2 Kohn Sham Equations

Kohn Sham DFT [120] uses a set of self consistent equations, evaluated iteratively,

to find the ground state electron density. This evolved from attempts by Thomas

[199], Fermi [69, 70], Hartree [89], and Slater [187] to develop an approximate single

particle Schrödinger equation. In theory, the Kohn Sham equations present an exact

method to find the ground state density by explicitly incorporating many body ef-

fects into the single particle Hamiltonian. However, in practice DFT is only able to

approximately reproduce the true ground state electron density since the exact form

of many body effects is unknown.

The idea is to consider each electron as independent and moving in an effective

(fictitious) potential. This is not the potential of the real physical system. Further-

more, solutions will not produce the correct many body wave function. However, the

Kohn Sham single particle wave functions should construct the true ground state elec-

tron density of the physical system. The Kohn Sham wave functions ψi(r) and energy

eigenstates Ei can then be calculated from the single particle Schrödinger equation,

H[n(r)]ψi(r) = Eiψi(r), (2.11)

17

by re-writing the expression for the total energy functional,

E = Ê[Ĥ] = Ê[T̂] + Ê[Û] + Ê[V̂], (2.12)

in terms of a non-interacting set of electrons. The electron-electron interaction (i.e.

Û and T̂) can be replaced by their non-interacting counterparts Ûs and T̂s plus an

additional “exchange and correlation” term that represents the interaction. This

results in the relation,

E = Ê[T̂s] + Ê[Ûs] + Ê[V̂] + Exc[n(r)], (2.13)

for the total energy, where the first three terms can be calculated exactly, but the

last term,

Exc[n(r)] =

∫
n(r)εxc[n(r)]dr, (2.14)

is unknown and must be approximated.

This then defines a set of self consistent equations seen in Figure 2.1 that must be

solved iterative starting with an initial guess for the electron density. The Hamiltonian

can be formed directly from the electron density, where the Hartree potential,

vH(r) =

∫
n(r′)

|r − r′|
dr′, (2.15)

is the classical electrostatic potential of a charge distribution (i.e. non-interacting

electron density) and the external potential will include the electrostatic potential

from the nuclei,

vext(r) =
Nat∑
l=1

Zle

|r −Rl|
, (2.16)

but could also account for additional sources. The exchange and correlation potential,

vxc(r) =
dExc
dn

, (2.17)

18

Kohn Sham Equations:

1. Ĥ = − }2

2m
∇2 + vH(r) + vext(r) + vxc(r)

2. Ĥψi(r) = Eiψi(r)

3. n(r) = 2
∑
i

|ψi(r)|2

Figure 2.1: Self consistent set of Kohn Sham equations that are solved in DFT
calculations. Starting with an initial guess of the electron density n(r) allows for
the construction of the Kohn Sham Hamiltonian operator. Solving the resulting
Schrödinger equation results in a set of single particle wave functions that can be
used to reconstruct n(r). The factor of 2 corresponds to the spin, which we do not
explicitly take into account.

approximates many body effects. After building the single particle Hamiltonian,

the Kohn Sham wave functions and energy eigenstates can be determined from a

single particle Schrödinger equation. These wave functions do not have any physical

meaning beyond reproducing the true ground state electron density. Besides the

largest occupied energy eigenstate, which corresponds to the ionization energy, the

Kohn Sham eigenvalues also lack a physical interpretation.

2.2.1.3 Exchange and correlation functionals

The exchange and correlation potential must account for the many body effects

not included in the single particle Hamiltonian: (i) exchange: switching the position

of any two electrons in the many body wave function should change its sign (anti-

symmetric property for fermions); and (ii) correlation: to account for the fact that

an electron does not interact with itself, which is lost in the density representation.

Since the first three terms if the Kohn Sham Hamiltonian can be computed exactly,

any improvements to the physical model must be made by addressing the exchange-

correlation potential.

19

Although there is no systematic approach to improve this approximation, many so-

phisticated techniques are available. No known universal functional exists to recovers

the true many-body potential, but different exchange and correlation functionals are

available for specific use-cases. A large collection of research works exist that have pro-

duced hundreds of functionals. These range from the simplest case, the local density

approximation (LDA) that considers only the local electron density [156, 30, 157, 127],

to the generalized gradient approximation (GGA) [156, 30, 157, 127] and meta-GGA

[31, 58, 198] which consider higher order derivatives of the electron density, and to

even more sophisticated approaches. It must be noted, again, that these beyond-LDA

approaches do not systematically improve the Kohn Sham potential toward the true

many body potential and, in some cases, can actually produce worse results.

This is the major limitation of DFT, but has also been touted a feature since com-

plicated, and computationally more expensive, approaches must only be used when

the situation warrants. Many functionals are specific to a certain observable quantity,

for example, to improve band gap calculations which DFT notoriously underestimates

when using LDA. Others functionals should be employed for specific types of mate-

rials: notably transition elements and strongly correlated materials. In particular,

hybrid functionals [32, 192], which blend in a portion of the exact exchange into vx

calculated from LDA or GGA, have been widely adopted by the quantum chemistry

communities, which require “chemical accuracy” (around 0.04 eV per atom).

In this work, and in NESSIE, only the LDA and GGA family of functionals are

considered. The focus of this dissertation is mainly on parallelism and simulating large

molecules consisting of a few thousand electrons. Other exchange and correlation

functionals may require drastically different parallelization techniques and are not

considered here.

The local density approximation is the most basic approximation to vxc(r). With

LDA, the local density at a given point is used to calculate the exchange and correla-

20

tion potentials at that same point using the solution of a uniform electron gas, which

can be computed [120]. The exchange and correlation energy,

Exc = Ex + Ec, (2.18)

can be decomposed into separate terms. The total exchange and correlation energy

of the system Exc is often written as,

Exc =

∫
Ω

n(r)εxcdΩ, (2.19)

where εxc is the energy per electron per unit volume. The potential can be found by

taking the functional derivative of (2.19):

vxc(r) = εxc[n(r)] + n(r)
deεxc[n(r)]

dn(r)
. (2.20)

As was the case for the energy in (2.18), it is often written as two separate terms:

vxc(r) = vx(r) + vc(r). (2.21)

For the homogeneous electron gas of density n0 the exchange energy per unit

volume is known analytically. In the absence of spin the expression for the exchange

potential can be written:

vx[n0] = −
(

3

π

)1/3

n
1/3
0 . (2.22)

The expression for the correlation energy (per unit volume), however, is unknown

even for the homogeneous electron gas. It is has been calculated to a high degree

using Monte Carlo simulations for which a closed form expression can be derived

21

[210, 158, 155]. The Perdew Zunger correlation functional [159] is used in NESSIE.

The potential for the homogeneous electron gas can be computed as,

vc[n0] = εc −
rs
3

dεc
drs

, (2.23)

where,

εc =

−0.0480 + 0.031ln(rs)− 0.0116rs + 0.002rsln(rs) rs < 1

−0.1423/(1 + 1.0529
√
rs + 0.3334rs) rs > 1

, (2.24)

and,

rs =

(
3

4πn0

)1/3

, (2.25)

is the average spherical radius containing one electron. The exchange and correlation

potentials at each point r are then computed from equations (2.22) and (2.23) using

the electron density at that point:

vx(r) = vx[n(r)] and vc(r) = vc[n(r)]. (2.26)

Also considered are the generalized gradient family of functionals. These attempt

to improve the approximation for the exchange and correlation term by including

the gradient of the electron density in the calculation. In this case, the exchange

and correlation energy is written as a functional of both the electron density and its

gradient. These can be much more difficult to compute and write down and only

the general approach is described here. In GGA, as with LDA, the potential at a

given spacial coordinate is computed from the local value electron density. However,

unlike LDA, GGA includes a correction from the gradient vector of the electron

density. The exchange and correlation terms are usually generated separately and

the following discussion only considers a generic potential that could be either. The

22

GGA exchange and correlation potential can be decomposed into two terms which

correspond to the potential dependent only on the electron density and a potential

dependent on the density and its gradient:

v[n(r),∇n(r)] = vn[n(r)] + vg[n(r),∇n(r)], (2.27)

Here,

vn[n] = ε+ n
dε

dn
, (2.28)

has a form to similar to LDA, but the gradient dependent term,

vg[n,∇n] = −∇ ·
[
n
dE

d∇n

]
, (2.29)

is the divergence of the vector,

n
dE

d∇n
=

[
n
dE

d∇xn
, n

dE

d∇yn
, n

dE

d∇zn

]
. (2.30)

To perform GGA calculations an external library LIBXC [143] has been used. This

offers a large variety of different functionals to choose from. LIBXC takes as input

the electron density n(r) and, instead of the vector field ∇n(r), the scalar function

σ(r) = ∇n(r) · ∇n(r). The library then returns two scalar functions, where the first

corresponds to vn(r) and is associated with the electron density. The seconds is the

scalar function ndε/dσ from which, with the help of the chain rule, the scalar potential

can be formed:

vg(r) = −∇ ·
[
n
dε

d∇n

]
= −∇ ·

[(
n(r)

dε

dσ
× 2∇n(r)

)]
. (2.31)

Unfortunately, vg(r) in (2.31) will result in numerical instability due to the higher

order derivative [144]. The point-wise GGA potential can not be included in the Kohn

23

Sham Hamiltonian in the same way as the LDA potentials. Instead, the divergence

in (2.29) must be applied at the level of the basis. After defining the vector,

Vg(r) =

[
n
dE

d∇n

]
=

[(
n(r)

dε

dσ
× 2∇n(r)

)]
, (2.32)

the potentials can be included in the Hamiltonian by computing each matrix element

corresponding to the overlap of basis functions ωi and ωj:

〈ωj|vn(r) + Vg(r)|wi〉 =

∫ (
vnw

∗
jwi
)

+
(
w∗jVg · ∇wi + wiVg · ∇w∗j

)
. (2.33)

This requires only slight modification to the standard approach with LDA, which

would contain only the vn(r) term.

2.2.1.4 All-electron approach

The all-electron approach employed in NESSIE makes no additional simplifications

beyond traditional approximations for the exchange and correlation. This is opposed

to using a pseudopotential method to reduce the computational complexity of the

full Kohn Sham DFT problem. Outer-shell valence electrons directly participate in

chemical bonding. Underlying core electrons that interact indirectly, can be removed

from the calculations by using a non-local function known as a pseudopotental [90].

This mimics the combined effects of core electrons and nucleus to account for a

screened electrostatic potential away from the 1/r nuclear potential. The solutions

near each atom are also taken to be “pseudo wave functions”. Norm-conserving

pseudopotentials [88] require the wave function to match the all-electron wave function

outside of some cutoff radius surrounding the atom. Ultra-soft pseudopotentials [209]

relax this requirement in order to further reduce computational complexity, but result

in a generalized eigenvalue problem.

The number of basis functions needed to capture the solution is reduced by only

considering valence electrons. Their associated single particle wave functions are

24

much more delocalized and slow varying than for the inner core electrons. Fewer

basis functions are needed to expand the solution to a desired accuracy without the

high-frequency variation of core states near the atomic nucleus. Additionally, with

pseudopotentials only wave functions of valence electrons are computed, reducing the

number of eigenvectors calculated and stored in memory. However, this reduction in

computational complexity comes with a cost.

Pseudopotentials approaches are less accurate than full all-electron calculations

that explicitly consider core electrons. Although pseudopotentials are used to model

molecules and crystal structures composed of many different atoms, they are fitted

specifically for a single atom (i.e. for each chemical element). A similar, but more

accurate, approach using augmented basis function [214] is also widely used, but is

non-linear and still represent an linearized approximation. Furthermore, it is not

clear what type of effect pseudopotentials have in TDDFT since they are fitted to the

ground state. Explicitly including the effects of core electrons offers a more intuitive

method since no additional approximation is needed. The all-electron calculations

can be performed in NESSIE with little or no additional cost if executed in a parallel

environment.

In the finite-element approach used in NESSIE the difficulty becomes the creation

of a sufficiently fine and structured mesh to capture the 1/r potential at and around

the atomic nucleus. The singularity can instead be treated numerically and is included

into the matrix system by integrating over the element using a quadrature rule, as

will be described in a later section. The potential must then be evaluated only at

quadrature nodes and never directly on the singularity.

2.2.2 Time dependent density functional theory

Time dependent DFT (TDDFT) for the time dependent Schrödinger equation,

i~
∂

∂t
Ψ(r1, ..., rN , t) =

(
− ~2

2m
∆ + v(r, t)

)
Ψ(r1, ..., rN , t), (2.34)

25

is similar to ground state DFT where the explicit dependence on the position of each

electron is replaced the electron density and a non-interacting set of wave functions

moving in an effective potential:

i~
∂

∂t
ψi(r, t) =

(
− ~2

2m
∆ + vKS[n(r, t)]

)
ψi(r, t). (2.35)

In principle, this method can be used to calculate any time dependent observable as

a functional of the electron density. However, the functional dependence may not

be known. TDDFT has had considerable success modeling the interaction of elec-

tromagnetic fields with matter [141]; particularly absorption and emission spectrum,

which can be easily calculated from the time dependent electron density.

2.2.2.1 Important TDDFT theorems

There exist two particularly important theorems in TDDFT. Although time de-

pendent calculations using the Kohn Sham system were initially performed in the

late 1970s [18], the beginning of TDDFT is associated with the paper of Runge and

Gross [173] in 1984. This put TDDFT on a solid theoretical foundation by provid-

ing an analogous proof of the Hohenberg Kohn theorem for time dependent systems.

However, the Runge Gross theorem is not enough to justify a time dependent Kohn

Sham scheme. It was not until 1999 that van Leeuwen [208] showed the true time

dependent many body potential can replaced with an effective potential of a non-

interacting system, and that this effective potential will generate the same electron

density. The two theorems are transcribed below, but the formal proofs are involved

and have been omitted.

The Runge Gross Theorem:

For every single particle potential v(r, t) which can be expanded into
a Taylor series with respect to the time coordinate around t = t0, a map
G: v(r, t) → n(r, t) is defined by solving the time dependent Schrodinger

26

equation with a fixed initial state ψ(tp) = ψ0 and calculating the corre-
sponding densities n(r, t). This map can be inverted up to an additive
merely time dependent function in the potential.

The van Leeuwen Theorem:

A time dependent particle density n(r, t) obtained from a given many
particle system can, under mild restrictions on the initial state, always be
reproduced by an external potential v(r, t) in a many particle system with
different two-particle interactions and given the initial state of this other
many particle system, the potential v(r, t) is unique up to a purely time
dependent function.

In essence the Runge Gross theorem shows that there is a one-to-one correspondent

between the time dependent potential v(r, t) and the time dependent electron density

n(r, t). Two time dependent potentials, v1(r, t) and v2(r, t), that differ by more than

a purely time dependent function (v1(r, t)− v2(r, t) 6= c(t)) can not produce the same

time dependent density n(r, t) and two time dependent densities n1(r, t) and n2(r, t)

can not generate the same potential v(r, t). This implies that all observables of the

time dependent Hamiltonian are functionals of the electron density; although, they

may not be easily expressed in this form. The van Leeuwen theorem then allows for

a time dependent Kohn Sham Hamiltonian written in terms of the non-interacting

electron density plus an exchange and correlation potential vxc(r, t) accounting for

many body effects.

2.2.2.2 Real-time approach

In principle TDDFT allows for the calculation of true electron density by replacing

the interacting system with a non-interacting system plus an effective potential. And

just like with DFT, properties of the system can be extracted from directly from the

density, which is now time dependent. Unlike DFT, the effective potential in TDDFT

is not only a functional of the electron density, but also the initial many body state Ψ0

and initial non-interacting state ψ0. However, this functional dependence on Ψ0 and

ψ0 vanishes if the initial state ψ0 is given from the solution of the grounds state Kohn

27

Sham system since, according to the Hohenberg Kohn theorem, both Ψ0 and ψ0 are

functionals of the ground state electron density alone. In this case the time dependent

effective potential becomes a functional of the electron density alone. Because of this,

the first step in TDDFT is always to compute the DFT ground-state.

The most straight-forward way to compute the time dependent electron density

is to propagate the ground state Kohn Sham wave functions directly in time. The

electron density can be recomputed at each time step from the time dependent Kohn

Sham wave functions:

n(r, t) = 2
∑
i

|ψi(r, t)|2. (2.36)

The time dependent Kohn Sham potentials are also similar to their DFT counterparts.

The Hartree term,

vH(r, t) =

∫
n(r′, t)

|r − r′|
dr′, (2.37)

inherits time dependence from the density. The external potential,

vext(r, t) = ṽext(r, t) +
Nat∑
l=1

Zle

|r −Rl|
, (2.38)

now includes an additional term accounting for the perturbing potential ṽext(r, t),

which is responsible for exciting the system away from its ground state. Just as

before, the exchange and correlation potential includes all other many body effects:

vxc(r, t) = v(r, t)− vH(r, t)− vext(r, t), (2.39)

where v(r, t) here is the true many body potential. However, the situation is even

worse than in DFT: vxc(r, t) is not only non-local in space, but also in time. In

principle vxc(r, t) depends on the electron density at all previous instances of time.

Determination of the exchange and correlation potential is a difficult and open ques-

tions in DFT and TDDFT. Since the focus of this work is to scale TDDFT calculations

28

using a distributed memory environment, the simplest approximation, where the ex-

change and correlation potential is assumed to be local in space and time, is used.

These are widely used and known as the adiabatic approximation and can be applied

to both the local density approximation ALDA or the generalized gradient approxi-

mation AGGA. Practically speaking, this is the same approximation used in ground

state DFT:

vxc(r, t) = vxc[n0](r)n0→n(r,t). (2.40)

The exchange and correlation potential is updated at each time step using the local

density and instantaneous electron density calculated from (2.36). ALDA, in our

experience, has worked relatively well for organic molecules and nanostructures. The

code also has the capability to used GGA functionals for ground-state calculations

and, within the adiabatic approximation, for time dependent calculations as well.

2.2.2.3 Time-dependent observables

As is the case for DFT, all observables must be expressed in terms of the electron

density, which is the only physical quantity. The time-dependent electron density it-

self is the most easily computed observable in real-time, since this quantity is trivially

known. To investigate the electron density corresponding to a specific resonance, a

sinusoidal stimulus at that frequency can be applied. The spatial electron density

should be visualized at the maximum and minimum of the dipole. It can also be

viewed, as an animation, changing from the maximum to minimum in time.

The functional form is not known for many observables and TDDFT may not be

applicable. However, a very useful case of TDDFT is related to spectroscopy, where

the absorption and emission spectrum corresponding to electronic excitations can be

computed. In particular, we would like to compute a measure of the photoabsorption.

The photoabsorption cross section gives the probability that a photon passing through

29

an atom or molecule absorbed and the oscillator strength is a measure of how strong

the interaction is.

Before going further, the dynamic polarizability must be defined. Polaizability α

relates the induced dipole moment d to an applied electric field E. In general, E and

d are vectors quantities with x̂, ŷ and ẑ components and α is a tensor. The following

will only consider an isotropic medium, which will have a diagonal polarizability, and

an electric field applied along one coordinate axis. In this case only scalar quantities

must be considered. The polarizability can be defined in the time domain,

d(t) =

∫ t

−∞
α(t− t′)E(t′)dt′, (2.41)

where the dipole depends on the applied electric field at all times t′ < t. However,

this form is not very useful. Instead, the relation is generally considered in frequency

space,

d(ω) = α(ω)E(ω), (2.42)

which can be calculated as the Fourier transform of (2.41). The induced dipole d(ω)

depends on the medium through α(ω), but also on the frequency and strength of the

applied electric field E(ω).

The imaginary part of the dynamic polarizability is proportional to the photoab-

sorption [23]. The oscillator strength can be computed from the polarizability [95, 53]:

σ(ω) =
4πω

c
Im(α(ω)). (2.43)

With real-time TDDFT, direct access to the electron density is available. Also

available is the time-dependent induced dipole moment:

dµ(t) =

∫
Ω

(µ− µ0) (ρ(t, r)− ρ0(r)) dr, (2.44)

30

where µ takes on x, y or z depending on the direction considered. The molecular

center of mass, µ0, is calculated as,

µ0 =
1

qne

nat∑
i=1

Ri × Zi, (2.45)

where nat is the number of atoms in the molcule, Ri is the atomic coordinates, Zi is

the nuclear charge, and where qne is the total elecronic charge (i.e. the same as the

total nuclear charge). In this case the dynamic polarizability could be calculated by

inverting (2.42),

α(ω) =
d(ω)

E(ω)
, (2.46)

assuming the Fourier transform of the electric field is known. This is the case for an

impulse excitation δ(t) and step potential u(t), for which the equations are given in

[215] and presented in Table 2.1. The oscillator strength can be computed according

to (2.43).

Table 2.1: Polarizability for excitations in the form of an impulse potential and a
step potential.

E(t) α(ω)

E0 × δ(t) − 1

E0

× d(ω)

E0 × u(t) − iω
E0

× d(ω)

In practice, it is necessay to introduce artificial damping signal into the computed

dipole moment before taking the Fourier transform:

d(ω) =

∫ T

0

(
d(t)× e−γt

)
eiωtdt, (2.47)

where γ is the damping coefficient. These TDDFT simulations do not include energy

dissipation. The damping can be thought of as modeling relaxation and energy dissi-

31

pation, where a molecule would physically emit energy as photons and relax back to

the ground-state after being excited.

2.3 Mathematical models

In most cases it is not possible to represent continuous fields, operators, or solu-

tions on a computer, even though they may be easily written down on paper in the

language of differential calculus. In this case some form of discretization is necessary

to expands these quantities in a finite basis that approximates the full solution within

a desired accuracy. Mathematical models translate the physical equations into the

mathematical form of linear algebra understood by a computer. This is an extremely

important step from a computing perspective as there are generally a multitude of

choices. Each can be associated with benefits and drawbacks, as well as presenting

different computational complexities and bottlenecks. Here, the mathematical mod-

els employed by NESSIE for solving the equations associated with DFT and TDDFT

are discussed.

2.3.1 Finite element discretization

Finite element is a method for solving partial differential equations [222, 97] and

has been applied to a wide range of problems from structural analysis to electromag-

netics. Here we limit our scope to a class of equations of the form

∆Ψ + c(r)Ψ(r) = f(r), (2.48)

which includes the time independent the Schrödinger equation [130, 154]. Finite

element is a real space discretization that employs a mesh (equivalent to a graph)

consisting of grid points (i.e. mesh nodes or graph vertices) and connections between

nodes (i.e. graph edges) that define a collections of elements. A major advantage of

finite element is the sparse matrix structure, which is a result of each vertex being

32

connected only to its immediate neighbors. The finite element basis functions are

defined locally for each grid point and are non-zero over a small subset of the entire

domain. A 2-dimensional example of a single basis function can be seen in Figure 2.2.

Furthermore, finite element is a very general approach that allows for mesh refinement

at specific locations and can handle arbitrary boundary conditions. While Neumann

boundary conditions are natural, both Dirichlet and periodic may be applied through

modifications to the resulting system matrix and right-hand-side.

2.3.1.1 Mathematical formulation

The finite element method can be derived starting from the variational form of

the problem

∫
Ω

∆Ψγ(r)dΩ +

∫
Ω

c(r)Ψ(r)γ(r)dΩ =

∫
Ω

f(r)γ(r)dΩ, (2.49)

where γ(r) is an arbitrary test function and the integration is taken over the entire

domain Ω. Any solution Ψ(r) that satisfies (2.49) must also satisfy (2.48). The second

derivative can be removed through Green’s Identity. The first term in (2.49) becomes:

∫
Ω

∆Ψγ(r)dΩ = −
∫

Ω

∇Ψ(r)∇γ(r)dΩ +

∫
Γ

(∇Ψ(r) · n̂) γ(r)dΓ, (2.50)

where Γ is the boundary domain. This discretization naturally produces Neumann

boundary conditions; setting the second term in (2.50) equal to zero implicitly defines

∇Ψ(r) · n̂ = 0. Both Dirichlet and periodic boundary conditions can be applied by

modifying this third term in (2.50) as well as the system matrices. Next, the solution

Ψ(r) and test function γ(r) are expanded in a local basis as,

Ψ(r) ≈
N∑
i

ψiωi(r) γ(r) ≈
N∑
i

viωi(r), (2.51)

33

where ψi is the value of Ψ(r) at the ith grid point. The basis function ωi(r) is also

associated the ith point and is non-zero only for neighboring elements.

The basis functions are defined so that ωi(r) has a value equal to one at the ith

mesh node and a value equal to zero for all other grid points. They are also local in

the sense that they are explicitly zero outside of the neighboring set of elements. The

overlap integrals in (2.53) are then only non-zero for basis functions of neighboring

grid points. Our finite element implementation uses up to a third degree polynomial

basis. Higher order basis functions can decrease error in the solution, but also increase

the problem size and number of overlapping basis functions (i.e. the number of non-

zero elements per row in the system matrix). The integrals in equation (2.53) can be

re-written as ∫
Ω

ωi(r)ωj(r)dΩ =

Ñelem∑
e=1

∫
Ωe

ωi(r)ωj(r)dΩe, (2.52)

where the integration over the entire domain, for a given set of basis functions ωi

and ωj, can be computed by integrating over a select subset of mesh elements Ωe for

which the overlap is non-zero. An example of a linear basis can be seen in Figure 2.2

Figure 2.2: Example of a finite element basis using piece wise linear functions for
both 1-dimensional (taken from [154]) and 2-dimensional cases. Each basis function
is equal to one at a single grid point and non-zero only over neighboring elements.
Further refinement can be achieved using additional higher order polynomials terms
in the basis (p-refinement) or a finer grid of points (h-refinement).

34

Now plugging the expressions in (2.51) into (2.49)+(2.50) we obtain:

−
N∑
i

N∑
j

ψivj×(∫
Ω

∇ωi∇ωjdΩ +

∫
Γ

∇ωiωj(r)dΓ +

∫
Ω

c(r)ωi(r)ωj(r)dΩ

)
=

N∑
j

vj

∫
Ω

f(r)ωj(r)dΩ. (2.53)

Since vj’s are arbitrary and exist on both sides of the equation they can be discarded,

leaving only the known basis function behind. The only unknowns left are coefficients

of the solution ψi.

The final result of (2.53) can be written as a matrix equation. The double sum-

mation over the basis functions on the left hand side of the equation, multiplied by

the coefficients {ψ1, ..., ψn}, represents a matrix A multiplied by a vector Ψ. Because

the right-hand-side only has a single summation term it will result in a vector F . The

solution Ψ can be found by solving a linear system:

AΨ = F. (2.54)

2.3.1.2 Application to Kohn Sham equations

The finite element method can also be applied an eigenvalue problems, such as the

single particle Schrödinger equation of (2.11). Setting the right-hand-side of (2.48)

equal to the right-hand-side of an eigenvalue problem,

f(r) = Eiψi(r), (2.55)

and using the variational form,

∫
Ω

Eiψi(r)γ(r)dΩ = Ei
∑
i,j

ψj

∫
Ω

ωi(r)ωj(r)dΩ, (2.56)

35

will result in a generalize eigenvalue problem,

Hψi = EiSΨ, (2.57)

where S is known as the overlap (or mass) matrix and the Hamiltonian,

H = L+ U, (2.58)

is the sum of the Laplace matrix L and an electrostatic matrix U that corresponds

to the electrostatic potential in the finite element basis.

Both the Laplace matrix,

Lij =

∫
Ω

∇ωi(r)∇ωj(r)dΩ, (2.59)

and Mass matrix,

Sij =

∫
Ω

ωi(r)ωj(r)dΩ, (2.60)

can be formed once-and-for-all after defining the mesh. In general, they must be

computed by evaluating an integral for each pair of overlapping basis functions. In

one and two dimensional problems simple closed form expressions can be derived

for these matrix elements. However, in three dimension these expressions become

complicated and can instead be evaluated numerically, as is the case in NESSIE.

The electrostatic potential (i.e. from nuclei and electrons) is the quantity sought

and converged upon in DFT, as there is a one-to-once correspondence with the charge

density. This term is included in the calculation via the c(r) term of (2.53) and must

be computed numerically at each SCF iteration. The electrostatic matrix U can be

36

formed using the assemble technique and re-writing the integration over the entire

domain can as a summation of integrations over each element:

Uij =

∫
Ω

c(r)ωi(r)ωj(r)dΩ =

Nelem∑
e=1

∫
Ωe

c(r)ωi(r)ωj(r)dΩe. (2.61)

The integration is then performed for each element using a N -point Gaussian quadra-

ture rule over the 3-dimensional tetrahedron. The same procedure is used in NESSIE

for computing the Laplace and mass matrices for three-dimensional problems.

A question then become how many quadrature nodes should be used to compute

the numerical integrations over each element. Using too few or too many quadrature

nodes will have a negative effect on the solution accuracy. Counter intuitively, too

many quadrature nodes will also have an adverse effect on the solution since evalu-

ating a function at a Gauss point must be approximated through expansion of the

polynomial basis, which includes additional error. Furthermore, the matrix elements

of the Laplacian depend on gradients of the basis functions and are of a different order

than the mass matrices, which do not. A more detailed discussion on generating the

finite element mesh and matrix will be presented in Chapter 3.

2.3.1.3 Dirichlet boundary conditions

Flexibility of boundary conditions is a major benefit of finite element. Setting

the boundary conditional in real-space methods, in general, is very intuitive since the

basis coefficients are defined at a coordinate in space. This is opposed to the use a of

delocalized basis where basis functional are functions defined over the entire space.

Natural to finite element are Neumann boundary conditions, which specify a value

for the gradient of the solution. Other boundary conditions, such as periodic and

Dirichlet, are also possible and require modification to the Hamiltonian matrix and

right-hand-side. Dirichlet boundary conditions force solutions to a specified value and

37

are important in NESSIE for both the Kohn Sham eigenvalue problem and Poisson

equation.

A boundary condition of zero is taken for the Kohn Sham eigenvalue problem. The

computational domain must be made large enough that the wave functions, which

decay very rapidly, vanish to zero at the boundary. Confinement effect can appear if

the domain is made too small. The electrostatic potential calculated from the Poisson

equation, however, decays much more slowly as 1/r. In this case the boundary values

must be computed. In NESSIE this is accomplished by solving the integral equation

at the boundary mesh nodes.

After computing the boundary value, the Dirichlet boundary condition must be

set by modifying the matrix and right-hand-side. This is slightly different for the

eigenvalue problem and Poisson equation, as the definition of their right-hand-sides

differ. For the Poisson equation, and considering the linear system in (2.54), one can

easily derive the method for setting the Dirichlet boundary conditions. It can be seen

for a simple 4× 4 case that re-writing this linear system as a set of linear equations

and setting the x1 = α,

x1 = α

a22x2 + a23x3 + a2nxn = f2 − a21α

a32x2 + a33x3 + a3nxn = f3 − a31α

a42x2 + a43x3 + a44x4 = f4 − a41α

, (2.62)

requires operations to the matrix and right-hand-side vector. This will produce the

matrix equation,

1 0 0 0

0 a22 a23 a24

0 a32 a33 a34

0 a42 a43 a44

x1

x2

x3

x4

=

α

f2 − a21α

f3 − a31α

f4 − a41α

, (2.63)

38

that enforces the boundary condition. The following rules can be followed when

setting the value of the ith node for the general n× n case:

(i) Set aii = 1, aij = 0 ∀j 6= i, fi = α and

(ii) Set fj = fj − ajiα, aj,i = 0 ∀i 6= j.

Specifying Dirichlet boundary condition for the Kohn Sham eigenvalue problem is

slightly less intuitive. The boundary condition must be set by modifying the matrix

pencil alone since the full right-hand-side depends on the unknown eigenvectors and

eigenvalues. This is possible for the case of a zero boundary condition. Similar to

the linear system, the boundary condition can be set by modifying the rows and

columns of the Hamiltonian and mass matrices corresponding to boundary nodes.

The procedure is the same for any eigenpair of the matrix pencil. Here, for simplicity,

only a single eigenvalue and eigenvector pair {e,Ψ} is considered. Modifying the

eigenvalue problem HΨ = eSΨ as,

α 0 0 0

0 h22 h23 h24

0 h32 h33 h34

0 h42 h43 h44

ψ1

ψ2

ψ3

ψ4

= e

β 0 0 0

0 s22 s23 s24

0 s32 s33 s34

0 s42 s43 s44

ψ1

ψ2

ψ3

ψ4

, (2.64)

will reduce the equation at the boundary node to αψ1 = eβψ1. This can only be true

if α/β = e. In NESSIE we choose α = β = hii, which will guarantee ψi = 0 in the

energy range associated with Kohn Sham eigenvalues of the ground state.

2.3.2 Muffin-tin domain decomposition

Domain decomposition partitions a global space into distinct regions. In terms of

a real space finite element discretization, this corresponds to partitioning the mesh

into multiple different sets of nodes and elements. The different regions must be

39

connected at their interfaces. A non-overlapping domain decomposition would be

equivalent to partitioning the matrix directly. In this case mesh nodes are specific to

each partition and mesh elements are shared. NESSIE uses an overlapping domain

decomposition, where a distinct mesh is created for each region and interface nodes

are shared [131]. An example of the specific domain decomposition used in NESSIE

can be seen in Figure 2.3. The global mesh is decomposed into Nat atom centered

regions that directly surround each nucleus. The additional connecting region is

known as the interstitial mesh and is the source of the term “muffin-tin”, which it

resembles in 2-dimensions. This sets the total number of meshes (and associated

matrices) at Nat + 1. For the wave functions, interface points are formally defined to

exist in the interstitial mesh. Currently all atoms use the same mesh, but the code

could be updated to associate a different mesh with each type of atom. This could be

necessary for heavy atoms that need high resolution to capture deep core electronic

states.

For the atom-centered mesh, which has been chosen common to all atoms, a

successive layers of polyhedra similar to the ones proposed in [129] is used. The

atom-centered finite element mesh can be effectively built using a succession deltoidal

icositetrahedron, and its rhombicuboctahedron dual. This discretization provides

both tetrahedra of good quality, an arbitrary level of refinement - i.e. the distance

between layers can be arbitrarily refined while approaching the nucleus, and the same

number of surface nodes. The outer layer is consistently providing the same (relatively

small) number of overlap nodes with the interstitial mesh at the muffin edges (i.e. nj =

26, 98, or 218 nodes respectively using linear, quadratic or cubic FEM). Consequently,

the size of linear system in the interstitial region stays independent of the atom-

centered regions system matrix size, and the approach can then ideally deal with full

potential (all-electron).

40

Figure 2.3: Example of the muffin-tin domain decomposition used in NESSIE. A
structured fine mesh surrounds each atomic nucleus. The interconnecting region left
over is call the interstitial mesh. Note: generally interstitial mesh is more symmetric
in x̂, ŷ and ẑ, but is shown as narrow for esthetics.

One question is how to define the mesh to obtain an accurate solution. The accu-

racy of NESSIE results can depend on a variety of factors including the mesh. The

mesh can be refined using p-refinement up to third degree polynomials, as discussed

in the previous section. Accuracy can also be improved through h-refinement where

41

additional mesh nodes are added reducing the grid spacing and the size of each ele-

ment. In NESSIE, h-refinement can be employed to either the atomic or interstitial

meshes. For the atomic mesh, the distance between the first and third spherical

shells that surround each atom define a layer of elements. This distance can be set

using a coarse parameter. The distance between subsequent layers are generated as

a geometric series, with the last distance greater than the fine parameter. For the

interstitial mesh there exists a finer region directly surrounding the molecule and an

outer courser region that allows wave function solutions to decay to zero.

The muffin-tin domain decomposition can lead to additional flexibility and ben-

efits. A different basis can be used for the atom and interstitial domains. A hybrid

approach using a combination of direct solvers for atom regions and iterative solvers

for the interstitial domain can be used.

NESSIE has been upgraded to an MPI framework using this domain decomposi-

tion approach, where each atomic region (and associated matrix) is distributed over

MPI processes. The interstitial mesh is known globally, but all mesh operations and

numerical linear algebra operations on its associated matrix are performed in parallel

with all MPI processes. For extreme scale problems, with many thousands of atoms,

an iterative or hybrid approach is necessary. However, in this work where a maxi-

mum of one thousand atoms are considered, direct distributed memory solvers within

the domain decomposition framework are used for solving both linear systems and

eigenvalue problems.

2.3.2.1 Mesh, matrix and data distribution

Although the domain decomposition presents a natural distribution format for the

atoms, the interstitial region contains the majority of mesh points and must also be

partitioned. The final representation of the data must conform to the requirements of

the eigenvalue solver PFEAST, which does not have a domain decomposition interface

42

and instead distributes the eigenvectors of the full system by row. This subsection

describes the distribution and ordering of the mesh and its associated matrices as well

as any scalar data field defined on the mesh (e.g. eigenvectors, potential, electron

density).

The global domain,

Ωg = Ωit

⋃
Ωat, (2.65)

can be decomposed into overlapping interstitial Ωit and atomic Ωat regions. Here we

defined Ωat as the collection of atom subdomains Ω
(i)
at :

Ωat =

(
Nat⋃
i=1

Ω
(i)
at

)
. (2.66)

Each domain contains a certain set of mesh nodes,

Ω = {d1, ..., dn}, (2.67)

defined in 3-dimensional space as dj = ajx̂ + bj ŷ + cj ẑ. A scalar field v(r) can then

be defined on the domain as:

v(Ω) = {v(d1), ..., v(dn)}. (2.68)

The field v will have a representation on the global domain Ωg as v(r) or, equivalently,

on both Ωit and Ωat as vit(r) and vat(r) with continuity and differentiability enforced

at the interface.

In NESSIE, we actually store all data as v(r) on the global domain Ωg. This

is due to interfacing with the PFEAST eigenvalue solver (more in Section 2.3.2.2),

which defines its own data format and distributes the eigenvectors 1-dimensional by

row. Thus Ωg can be defined however we see fit; first by stitching together Ωit and

43

Ωat and then by reordering the mesh so that each MPI process in PFEAST contains

the correct subset for solving the problem in parallel.

The full matrix structure for an unpermuted three atom system is show in Figure

2.4 with interface points for each atom defined to exist within Ωit. Note that this

matrix is never formed, but shown here to help defined the distribution format for

the eigenvectors. The first large block corresponds to the interstitial region and the

next three smaller blocks to the atoms.

Figure 2.4: Matrix structure for a three atom (fictitious) system with one MPI
process. The ordering of the global domain Ωg is shown on the left, with the interstitial
points (including interface) followed by the points associated with each atom region.

In general, the full domain can be distributed over the MPI processes. Each

process p will contain a subset of the interstitial domain Ω
(p)
it ⊂ Ωit and a collection

of atom domains {Ω(p1)
at ,Ω

(p2)
at , ...,Ω

(pi)
at } assigned at the beginning of the code. The

atoms are assigned to an MPI process circularly. The first atom is assigned to the

first process (rank = 0), the second atom to the second process (rank = 1), and so

on. If the number of atoms Nat is larger than the number of MPI process p then atom

44

number p+ 1 is given to the first process, atom number p+ 2 is given to the second

process, etc. The ith atom is then assigned to process i%Np, where % is the modulo

operator and Np is the total number of MPI processes used to distribute the problem.

The interstitial domain is distributed evenly with one condition: Ω
(i)
at exists on the

same MPI process as interface nodes between Ωit and Ω
(i)
at . This condition simplifies

linear algebra operations so that no MPI communication is necessary between atom

and interstitial domains, but has the drawback of reordering Ωit depending on the

number of MPI processes. The matrix structure for two and three MPI processes is

shown in Figure 2.5 along with the ordering of Ωg. An example of the data distribution

Figure 2.5: Matrix structure of three atoms system in Figure 2.4 reordered for three
(left) and two (right) MPI processes. The global domain Ωg, represented by the
column vector to the right, is reordered and distributed by row over the processes.
The column vector to the right represents the global domain Ωg, which is reordered
and distributed by row. Subsets of Ωg assigned to each MPI processes are separated
by a horizontal bar.

with three MPI process can be seen on the left of Figure 2.5. Here each process is

assigned a subset (≈ 1/3) of Ωit and a single atom. A load imbalance can take place

if the total number of atoms is not evenly divisible by the number of MPI processes.

This can be seen on the right of Figure 2.5 where both processes are given half of Ωit,

but the first process is assigned two atoms while the second process is assigned only

one. This figure also highlights the difficulty to perform linear algebra operations on

the interstitial domain. The atom blocks can be made completely independent and

45

isolated to a specific MPI process, but the distributed interstitial matrix has many

off-diagonal blocks representing connections between points assigned to a different

MPI processes.

Data, such as the electron density, potential or eigenvectors, is defined on the non-

overlapping mesh defined as shown in Figures 2.4 and 2.5. The matrices, however, do

not correspond exactly to what is shown in these figures. Separate matrices exist for

each atom and for the interstitial region and the interfaces between them are known

for both (i.e. as this is an overlapping method). Because the same mesh is reused

for each atom, their Laplacian matrices are identical and only a single matrix must

be stored per MPI process. The Hamiltonians, however, differ due to the potential

U that is included and every MPI process creates a different distinct matrix for each

of its atoms. The interstitial matrix is not comprised of independent domains and

can not be distributed is the same manner as the atoms. Instead its distribution is

defined to be 1-dimensional and by row to correspond to the PFEAST format, which

will be descussed in Section 2.4.5. The interstitial matrix structure would be that

same as in Figures 2.4 and 2.5 after removing all atom points.

2.3.2.2 Mesh, matrix and data ordering

The interstitial matrix is reordered depending on the number of MPI processes

used to solve the matrix in parallel. Each process is assigned a set atoms as well

as the interstitial points associated with the atom interfaces. Result at these points

are needed to obtain the solution in the interstitial region. More about the linear

system and eigenvalue solvers will be discussed in the next subsection. However, the

purpose of this ordering is to allow the Schur complement matrix to be built without

communication.

A permutation is recorded when the matrix is reordered to keep track of the

Specific permutations are used for the atomic and interstitial meshes to generate

46

matrices with a specific ordering. It is necessary to keep track of the interface points

between the atomic and interstitial meshes for linear algebra and mesh operations.

Additionally, the interstitial matrix distributed by row to each MPI process, so that

linear algebra operations can be computed in parallel.

The Atomic Mesh

The atomic meshes have been permuted so that the interface points are grouped

together at the beginning. The interface nodes in the mesh are given indices from 1

to the number of interface points Ns. These points in the atomic matrix are grouped

together in a block within the first NS rows; the solution vector for this region has

the same data format.

Interface Nodes

Internal Nodes

(2.69)

If there are multiple atoms assigned to an MPI process each is independent and has

its own dedicated memory. All of the interface points for the jth atomic Hamiltonian

are located within Hatom(1 : Ns, :, j), a 3-dimensional matrix shown in FORTRAN

notation. The Laplace matrices are identical for each atom (since there is no potential)

and only a single matrix is created per MPI process. There is no atom specific solution

array, only the globally distributed solution containing both atomic and interstitial

points.

The Interstitial Mesh

The interstitial mesh is known globally on each MPI processes. The full matrix,

however, is divided by row with each process is assigned a local piece. This data

distribution must adhere to the format required within the distributed linear system

solver, so no additional communication is necessary. The matrix size is forced to be

divisible by P , the total number of processes. To guarantee this the interstitial matrix

is appended with an identity block of up to P − 1 additional non-zero elements. This

47

has no effect on the solution and could be changed in the code, but does not seem to

be necessary at this point.

Each MPI process is assigned a local piece of the interstitial matrix once-and-for-

all at the beginning of the code. The matrix is divided by row into equal pieces. The

solution vector is also partitioned this way, by row. The starting and ending rows

defined for each MPI process are stored in two variables within the interstitial mesh

structure. These values can be accessed via a ‘struct’ within the code defined for

the interstitial mesh as: mesh it%Nstart and mesh it%Nend, shown in FORTRAN

notation.

The interstitial mesh contains overlap points at the interface of each atomic region.

These overlap points must be treated more specifically. The boundary conditions for

the interstitial mesh at these points are determined from the atom centered meshes.

To avoid complex and possibly costly communication between processes, the inter-

stitial mesh is permuted so that each MPI process owns the interface nodes that

correspond to its assigned atoms. This means that the structure of the interstitial

matrix will change for different number of MPI processes.

The exact location of these interface nodes is known only through a mapping vec-

tor. The location of the interface nodes in the interstitial mesh is given by map(i, j),

where i is the known location of the interface node in the atomic mesh of the jth atom.

The mapping returns the location of the interface node within the global interstitial

matrix. This must be accounted for when accessing this element in the code.

Xatom−j(i, :) = Xitloc(map(i, j)−mesh3d it%Nstart+ 1, :) (2.70)

2.3.3 Time propagation for TDDFT

Given an initial condition ψ(x, t0), the exact solution to the time dependent Kohn

Sham equations is given by the expression,

48

ψ(r, tf) = U(tf , t0)ψ(r, t0), (2.71)

where

U(tf , t0) =
1

i~
τ exp

{∫ tf

t0

H(t)dt

}
, (2.72)

is the time propagation operator and τ is a time-ordering operator.

With TDDFT the Hamiltonian gains its time dependence, in a non-linear way,

from the electron density computed from the single particle time dependent wave

functions. As the wave functions evolve, the electron density moves, which will effect

both the Hartree potential and the exchange and correlation potentials.

For the case of a time independent Hamiltonian H, the time dependent wave

functions can be determined directly by approximating the exponential of a matrix,

which can be calculated in a number of way; commonly as a polynomial expansion

or by diagonalizing the matrix. Importantly, the time ordering operator disappears

from (2.72):

U(tf , t0) =
1

i~
exp

{∫ tf

t0

Hdt

}
. (2.73)

A common approach with a time dependent Hamiltonian H(t) is to discretize the time

domain fine enough so that it can be approximated as constant over some interval.

In this case (2.73) can be modified,

ψ(r, tf) =
1

i~

f−1∏
i=0

exp

{∫ ti+1

ti

H(ti)dt

}
ψ(r, t0), (2.74)

to perform a series of time propagations over each interval. Now, the time propagation

operator between time steps can be approximated or applied to perform the time

evolution.

Although recent some work on NESSIE has used a direct diagonalization ap-

proach [52] in conjunction with the FEAST Eigenvalue Solver to compute the matrix

exponential, it can be costly in both computation and memory. However, it is also

49

associated with some benefits: the ability to use larger time steps. It also has some

potential for parallelization. The multiple levels of parallelism in FEAST can be

taken advantage of in order to partially diagonalize the matrix.

The current massively parallel version of NESSIE uses instead the Crank Nicol-

son time propagation method [60]. This has been a common approach in real-time

TDDFT [46, 45]. Crank Nicolson approximates the propagation operator as,

Ũ(ti+1, ti) ≈
1− ı

2
H(ti)∆t

1 + ı
2
H(ti)∆t

, (2.75)

where ∆t = ti+1 − ti. This is an implicit method that arises from a combination of

forward and backward traveling Euler method. It results in a complex linear system

to be solved at each time step:

(
1 +

ı

2
H(ti)∆t

)
ψ(r, ti+1) =

(
1− ı

2
H(ti)∆t

)
ψ(r, ti). (2.76)

The wave function for the next time step are computed from the Hamiltonian and

wave functions of the current time step. In the context of NESSIE using a finite

element discretization, there is a “mass matrix” S from the non orthogonal basis. In

this case the previous equation can be updated straight-forwardly:

(
S +

ı

2
H(ti)∆t

)
ψ(r, ti+1) =

(
S − ı

2
H(ti)∆t

)
ψ(r, ti). (2.77)

Crank Nicolson is often coupled with a predictor-corrector scheme, where the Hamil-

tonian is evaluated at the midpoint between time steps. However, it has been found

that this makes little difference and is not used for any of the results presented in this

dissertation.

50

2.4 Numerical algorithms

The mathematical modeling step describes the physics in terms of linear algebra.

The resulting problems must then be solved with numerical algorithms. The most

important of these, in the context of this dissertation, are solving linear systems

and eigenvalue problems. Many different algorithms exist and may be appropriate

depending on the storage format for the matrix (i.e. dense, sparse or banded) or the

matrix properties. Furthermore, for large-scale problems, different use-cases and the

physics behind the problem can determine the best choice for an algorithm.

2.4.1 Methods for sparse linear systems

Linear systems represent one of the most important linear algebra operations

performed in NESSIE. Not only are they used to compute the Hartree potential by

solving the Poisson equation, they are also the backbone of the FEAST eigenvalue

solver used for the ground state Kohn Sham eigenproblem. The finite element method

can be considered a linear scaling method since it produces sparse system matrices.

This is a major benefit of the approach. Discretization methods that produce dense

matrices can not be considered linear scaling approaches. This is due to the fact

that the matrix scales as O(n2) with the number of basis functions. The dimension

of sparse finite element matrices also scale as O(n2), but the number of non-zero

elements per row is constant. The total number of non-zero elements in the matrix

then scales as O(n).

In general, sparse linear system solvers can be classified as direct methods or

iterative methods. Direct solvers can be used for small to medium sized problems

and multi-frontal methods [64, 138] are the standard approach. Multiple software

packages exist and include, most notably, MUMPS [15, 14], PARDISO [181, 180],

UMFPACK [63, 62], and SuperLU [134]. The major drawback with direct methods

is that they must explicitly factorize the matrix before the solution can be computed.

51

This results in a large amount of fill-in, where the sparse matrix is augmented with

dense blocks for which the LU factorization is performed.

On the other hand, because forming the matrix may not even be feasible, very large

problems necessitate the use of iterative methods [176]. Iterative methods perform

matrix-vector multiplications and do not need to factorize the matrix. However,

sparse matrix-vector operations are far less efficient than for dense matrices since the

non-zero structure is unknown and the cache cannot be meticulously managed.

Jacobi and Gauss-Seidel and SOR are the most basic iterative techniques. More

important techniques are based on the use of a Krylov subspace to approximate the

matrix inverse and include Arnodi’s method [21], GMRES [175], Conjugate Gradient.

To achieve good performance iterative methods must generally be combined with a

preconditioning step. In many cases the preconditioning is achieved with the help

of a direct solver that computes the LU factorization of a subset of the matrix; for

example, a Jaccobi preconditioner factorizes the block diagonal components of the

matrix, incomplete preconditioners partially factorize so that no additional non-zero

elements are included from the sparse matrix, and other threshold methods further

sparsify the matrix by dropping small non-zero entries. Many variations of iterative

methods exist, including different types of Krylov techniques and preconditioners that

are specific to a certain physical problem. These will not be discussed further since

this work uses direct solvers exclusively.

2.4.2 The muffin-tin domain decomposition solver

When using domain decomposition, as with NESSIE, two general methods exist

for solving linear systems. The first, which is not used in NESSIE, is the Schwartz

method [188, 41]. This is an iterative techniques, different than an iterative solver,

which defines overlapping domains. The solution in one region is used to define the

boundary condition for other overlapping domains.

52

The approach used in NESSIE [132, 131] is equivalent to the Schur complement

technique. The Schur complement approach can be a direct method, where the solu-

tion in each independent region is used to form a set of complementary equations call

the Schur complement. Both forming and solving the Schur complement are gener-

ally much more difficult than the solution in the independent domains. Many times

the Schur complement is not explicitly formed and instead solved with an iterative

technique. This has recently been applied to the context of linear systems that arise

in FEAST [104]. However, in NESSIE the Schur complement is itself a sparse matrix

and solved with a distributed memory sparse direct solver [113].

The Schur complement procedure arises by row reducing the matrix equation

AX = Y to an upper block format, resulting in the equation

 C E

0 S

 Xl

Xe

 =

 Yl

Ye − ETC−1Yl

 , (2.78)

where Xl and Xe refer to “local” and “external” pieces of the vector. The quantity

S := (D − ETC−1E) (2.79)

is known as the Schur complement. The solution to the linear-system can be obtained

in a three step process.

(i) Solve: CT = Yl

(ii) Solve: SXe = Ye − ETT

(iii) Solve: CXl = Yl − ETXe

The first and third steps can be trivially parallelized since C has a block diagonal

structure:

53

C1

C2

. . .

Cp

q1
l

q2
l

...

qpl

=

y1
l

y2
l

...

ypl

. (2.80)

The difficulty rises in steps (ii). In particular the formation of the Schur complement

is non-trivial and requires an inversion of the C matrix, or equivalently the solution

to CT = E. The solution T could be too large to form depending on the number of

connections between subdomains. Also, the Schur matrix S is not block diagonal as

was the case for C. Efficiently solving the Schur complement equation of step (ii) in

parallel for Xe is much more demanding and requires communication between MPI

processes.

In NESSIE, the independent blocks Ci correspond to the atom matrices. These

are distributed amongst MPI processes as described in Section 2.3.2.2, along with the

interstitial matrix. The Schur complement is formed from the interconnecting region,

which is a 3-dimensional mesh. This results in a sparse Schur complement matrix,

even when including the dense blocks of points that result from ETC−1E of (2.79).

Since the atom mesh has a small number of interface points, these dense blocks are

small and the resulting Schur complement is still very sparse (see Figure 2.6). This is

then solved with the cluster version of the PARDISO solver [105] included in Intel’s

Math Kernel Library.

The effect of this approach on the matrix can be seen in Figure 2.6 for a six atom

system. This shows the full matrix on the left, which is never actually formed for

the muffin solver. It contains six smaller dense blocks that correspond to each of the

atoms. With the muffin solver each of these atom blocks would be an independent

matrix. The interstitial matrix on the right, where the six atoms blocks have been

replaced by 98 × 98 dense blue blocks labeled by Σ, is still very sparse since the

interface with each atom contains only 98 points. Here we show the full interstitial

54

Figure 2.6: Structure of a six atom finite-element DFT matrix permuted for 2 L3
MPI processes (3 atoms per process). The left shows the matrix built from the full
mesh including interstitial and atomic regions. The points that correspond to atomic
regions are labeled at1−at6. The interstitial matrix can be seen on the right, including
boundary conditions Σ1 − Σ6 (in blue) that account for atomic points. The domain-
decomposition approach compresses the large sparse set of atomic point on the left
into the 98× 98 dense blocks Σ on the right.

matrix, but in general it is also distributed over MPI processes by row. In this case it

has been permuted for two MPI processes, with half of the interstitial matrix existing

on each.

2.4.3 The FEAST algorithm

The FEAST algorithm [161] and associated software package [163, 162] is an accel-

erated subspace iterative technique for computing interior eigenpairs that makes use

of a rational filter obtained from an approximation of the spectral projector. FEAST

can be applied for solving both standard and generalized forms of Hermitian or non-

Hermitian problems, and belongs to the family of contour integration eigensolvers

[178, 179, 22, 98, 99, 24]. Once a given search interval is selected, FEAST’s main

computational task consists of a numerical quadrature computation that involves

solving independent linear systems along a complex contour. The algorithm can ex-

55

ploit natural parallelism at three different levels: (i) search intervals can be treated

separately (no overlap), (ii) linear systems can be solved independently across the

quadrature nodes of the complex contour, and (iii) each complex linear system with

multiple right-hand-sides can be solved in parallel. Within a parallel environment,

the algorithm complexity becomes then directly dependent on solving a single linear

system.

The FEAST algorithm utilizes spectral projection and subspace iteration to obtain

selected interior eigenpairs. A Rayleigh-Ritz procedure is used to project matrices A

and B onto a reduced search subspace to form matrices

Aq = QHAQ and Bq = QHBQ. (2.81)

Approximate eigenvalues Λ̃ and eigenvectors X̃ of the original system (i.e. Ritz-

values and Ritz-vectors) can then be recovered from the solutions of the much smaller

eigenvalue problem

AqWq = BqWqΛq (2.82)

as

X̃ = QWq and Λ̃ = Λq. (2.83)

Initializing X̃m as a set of m random vectors and obtaining Qm after QR fac-

torization of X̃m, results in a standard subspace iteration (i.e. power method) that

converges linearly toward the dominant eigenpairs [174]. Many other sophisticated

Krylov-based methods have also been developed to improve the convergence rate for

the calculation of selected smallest, largest or interior eigenpairs [128, 116, 35, 191].

The subspace iteration technique, in turn, can be efficiently used for solving the inte-

rior eigenvalue problem when it is combined with filtering which aims to improve the

convergence by increasing the gap between wanted eigenvalues and unwanted ones.

56

It is well known that Ritz-pairs (X̃m, Λ̃) converge toward the true eigenpairs (Xm,

Λ) at a rate determined by the filter [174, 153, 197].

In theory, the ideal filter for the Hermitian problem would act as a projection

operator XmX
H
mB onto the subspace spanned by the eigenvector basis, which can be

expressed via the Cauchy integral formula,

ρ(λ) =
1

2πi

∮
Γ

dz(z − λ)−1, (2.84)

as:

ρ(B−1A) =
1

2πi

∮
Γ

dz(zB − A)−1B = Xρ(Λ)(BX)−1. (2.85)

Since the Cauchy integral goes to unity for points interior to the contour and zero for

points exterior, ρ(Λ) is a diagonal matrix with elements equal to one for eigenvalues

that lie inside Γ and zero for all others. Thus,

ρ(B−1A) ≡ XmX
H
mB, (2.86)

where Xm are the eigenvectors associated with eigenvalues inside a given search in-

terval delimited by the closed curve Γ. The projection operator for the Rayleigh-Ritz

procedure can be taken as,

Q = ρ(B−1A)Y, (2.87)

where Y is any set of linearly independent vectors that will be projected onto the

eigenvector subspace.

In practice, the spectral projector must be approximated using a quadrature rule

using ne integration nodes and weights {(zj, ωj)}j=1,...,ne :

ρ(B−1A) ≈ ρ̃(B−1A) =
1

2πi

ne∑
j=1

ωj(zjB − A)−1B. (2.88)

57

In this case, the Cauchy integral cannot be computed exactly and the diagonal ele-

ments of ρ̃(Λ),

ρ̃(λi) =
1

2πi

ne∑
j=1

ωj(zj − λi)−1, (2.89)

are not exactly one or zero and depend on their proximity to the contour. Eigenvalues

that are well inside or outside the contour will have values very close to one and zero,

respectively. Eigenvalues near the contour edge, however, will have a significant

component and will be represented in Q. In fact, this rational function,

ρa(z) =
1

2πi

ne∑
j=1

ωj
(zj − z)

, (2.90)

will define the convergence rate of FEAST.

In practice, the projector itself cannot be formed directly and instead its action

onto a set of vectors must be computed:

Qm0 = ρ̃(B−1A)X̃m0 =
ne∑
j=1

ωj(zjB − A)−1BX̃m0 , (2.91)

where we also consider a search subspace of size m0 ≥ m. The computation of Qm0

amounts to solving a set of ne complex shifted linear-systems

(zjB − A)Q(j)
m0

= BX̃m0 with Qm0 =
ne∑
j=1

ωjQ
(j)
m0
. (2.92)

This matrixQm0 is then used as the Rayleigh-Ritz projection operator to form reduced

matrices Aq and Bq of (2.81). If the exact spectral projector was known, solving the

reduced eigenproblem in (2.82) will produce the exact eigenvalues Λ̃ = Λq = Λ and

eigenvectors X̃ = QWq = X. However, since it is only approximated, the Ritz-values

Λq and updated Ritz-vectors X̃ are only an approximation to the true eigenpairs.

Subspace iteration will then, in effect, tilt the subspace spanned by columns of X̃

58

Algorithm 1 The FEAST Algorithm

1: input: A, B, X̃m0
, {(zj , ωj)}1,...,ne

, ε

2: while (||AX̃m −BX̃mΛm|| > ε) do
3: Qm0 = 0

4: for (j = 0; j < ne; j = j + 1) do
5: Q

(j)
m0 ← (zjB −A)−1BX̃m0

6: Qm0
← Qm0

+ ωjQ
(j)
m0

7: end for
8: Aq = QHAQ Bq = QHBQ

9: Solve AqWq = BqWqΛq

10: X̃m0 = Qm0Wq Λ̃ = Λq

11: end while
12: output: X̃m, Λ̃m

toward the desire eigenspace. At convergence we will obtain X̃ = Q = X and Λ̃ = Λ.

The general outline can be seen in Algorithm 1 for computing m eigenpairs in a given

search interval. The input X̃ can be chosen as a set of m0 random vectors or a

previously calculated solution to a closely related problem.

2.4.4 From Hermitian FEAST to non-Hermitian FEAST

The work on DFT and TDDFT in this dissertation does not need to solve non-

Hermitian eigenvalue problems. Although Hermitian matrices are much more com-

mon, electronic structure and quantum chemistry applications do often create non-

Hermitian matrices,

A 6= AH , (2.93)

which are are not equal to their own conjugate transpose. These types of eigenvalue

problems can arise in open systems [74, 130, 165], the use of absorbing boundary

conditions [20, 152], complex scaling approaches [47], and computing complex band

structures [125].

By allowing the search contour to be placed at arbitrary locations in the complex

plane, the FEAST algorithm can be naturally extended to non-Hermitian problems

which produce complex eigenvalues [114, 196]. The algorithm retains most of the

59

properties of Hermitian FEAST including the multi-level parallelism. We note, how-

ever, a few theoretical and practical difficulties that distinguish the non-Hermitian

eigenvalue problems from Hermitian ones, including: (i) defective systems, which

must be treated using the Schur or Jordan forms; (ii) bi-orthogonality for dual right

and left eigenvector subspaces; (iii) ill-conditioned eigenvalue problems that produce

sensitive eigenvalues in finite precision arithmetic; (e.g. if a FEAST quadrature node

lies near a complex eigenvalue).

The key point at which the non-Hermitian FEAST algorithm differs from the

Hermitian one is the use of dual subspaces. Since the left and right eigenvectors

do not necessarily lie in the same subspace, two separate projectors must then be

calculated in order to recover both sets of vectors. A single sided algorithm where

only the right subspace is used to project is also possible [195] but will not return a B-

bi-orthogonal subspace of left and right eigenvectors, which can be of interest for many

applications. The non-Hermitian algorithm is similar to its Hermitian counterpart. A

comparison between the main numerical operations for the two algorithms is briefly

outlined in Figure 2.7 (quantities associated with the left eigenvectors are written with

a ‘̂’ symbol). A detailed description of the algorithm and software implementation

can be found in the appendix.

2.4.5 PFEAST: three levels of MPI parallelism

Inherent to the FEAST algorithm are three separate levels of parallelism which

will be denoted as L1, L2 and L3. At level L3, each linear system can be solved

in parallel. Parallelism for the linear system solutions can easily be accomplished

by using threaded linear system solvers such as the dense solvers in LAPACK, the

PARDISO [180, 100] or MUMPS [13] packages for sparse systems, and SPIKE-SMP

[145, 190] for banded matrices. This level has been upgraded. The FEAST computa-

tional kernel now allows for a distributed memory linear-system solver [113]. In this

60

Hermitian FEAST

Solving: AXm = BXmΛm

[Λm]ii ⊆ [λmin, λmax]

Inputs: A = AH , B hpd; m0 ≥ m;
{z1, . . . , zne}, {ω1, . . . , ωne}

Ym0
← m0 initial vectors

repeat
Qm0

= 0
for j = 1, ne
Q

(j)
m0 ← (zjB −A)−1BYm0

;

Qm0
← Qm0

+ ωjQ
(j)
m0

end
BQ ← QH

m0
BQm0

Check BQ hpd (resizing step)
AQ ← QH

m0
AQm0

Solve AQW = BQWΛQ; WHBQW = I
Ym0

← Qm0
W

until Convergence of Ym, ΛQm

with [ΛQm]ii ⊆ [λmin, λmax]

Output: Xm ≡ Ym (XH
mBXm = Im);

Λm ≡ ΛQm

Non-Hermitian FEAST

Solving: AXm = BXmΛm [Λm]ii ⊆ C
AHX̂m = BHX̂mΛ∗

m

Inputs: A and B general; m0 ≥ m;
{z1, . . . , zne

}, {ω1, . . . , ωne
}

Ym0
, Ŷm0

← m0 initial vectors;
repeat
Qm0 = Q̂m0 = 0
for j = 1, ne
Q

(j)
m0 ← (zjB −A)−1BYm0 ;

Q̂
(j)
m0 ← (z∗jB

H −AH)−1BH Ŷm0

Qm0 ← Qm0 + ωjQ
(j)
m0

Q̂m0 ← Q̂m0 + ω∗
j Q̂

(j)
m0

end
BQ ← Q̂H

m0
BQm0

Check BQ non-singular (resizing step)

AQ ← Q̂H
m0
AQm0

Solve AQW = BQWΛQ and

AQ
HŴ = BQ

HŴΛ∗
Q; ŴHBQW = I

Ym0
← Qm0

W, Ŷm0
← Q̂m0

Ŵ

until Convergence of Ym, Ŷm,ΛQm
with [ΛQm

]ii ⊆ C

Output: Xm ≡ Ym;
X̂m ≡ Ŷm (X̂H

mBXm = Im);
Λm ≡ ΛQm

Figure 2.7: Brief outlook and comparison between the main numerical operations for
the FEAST algorithms applied to the Hermitian and non-Hermitian problems.

61

case, an additional level of threaded parallelism takes place within level L3 and is

inherent to the specific MPI system solver implementation.

Figure 2.8: Overlapping MPI communicators for PFEAST. We refer to the collection
of MPI processes within an MPI communicator as a “Communication-World”. If
the first level of parallelism was also used, this picture would then represent a single
L1-Communication-World.

The second and third levels of parallelism overlap and must be managed. This

results in two separate MPI-Communicators shown in Figure 2.8. We refer to the col-

lection of MPI processes within an MPI communicator as a “Communication-World”.

At the second level, the L2 communicator (defining each L2-Communication-World)

is a carry-over from the previous FEAST distribution and specifies the mapping be-

tween MPI processes and quadrature nodes (i.e. linear systems). Each MPI process

in L2 maps directly to a set of quadrature nodes. Ideally, the number of members

within each L2 communicator will be equal to the number of quadrature nodes and

each linear-system is solved in parallel. In this case, using a direct solver, each ma-

62

trix factorization (ziB −A) must be computed only once since subsequent PFEAST

iterations solve a linear system at the same complex pivot, but with an updated set

of right-hand-sides. The set of processes at the third level of parallelism (i.e. L3-

Communication-World) is to be used by the distributed memory solver. In Figure 2.8

there are six total MPI processes P-0 through P-5. L2 communicator (MPI) ranks

F-0, F-1 and F-2 map to contour integration nodes z0, z1 and z2, where a linear

system (ziB − A)Q = BY must be solved. Each integration node then owns exactly

two L3 MPI processes S-0 and S-1 to be used by the distributed memory solver.

Dividing parallel resources among the second and third levels of parallelism re-

sults in a trade-off between memory and performance. The second level represents

ideal linear scaling, since each linear-system can be solved independently. However,

it also requires more memory. Each cluster of L3 MPI processes (within an L3-

Communication-World) will require a copy of the matrix. Placing more MPI processes

at the third level of parallelism, in turn, will reduce the amount of memory required

to store the matrix and eigenvector solutions (since they are distributed across the

L3 processes), which could become essential to many large-scale applications.

If the amount of memory required to store the matrix and eigenvector solutions is

too large, it can be reduced using the first and third levels of parallelisms L1 and L3.

The L1 level of parallelism subdivides the FEAST search interval resulting in fewer

calculated eigenpairs per subinterval. As shown in Figure 2.9, this reduces the number

columns in the eigenvector matrix per MPI process. Additional MPI processes at the

L3 level will allow the matrix and eigenvector solutions to be distributed by row. If

both L1 and L3 are used each MPI process will contain a subset of columns and rows

as seen in the bottom right of Figure 2.9.

All MPI solvers must adhere to a specific pre-defined data distribution, which can

differ for each implementation. The solver defines a data distribution for both the

matrix and rhs/solution vectors. PFEAST will require a predefined data distribution

63

Figure 2.9: Data distribution of input matrix A and eigenvector solutions X for
different configurations of parallel resources. Additional MPI processes at the L1 and
L3 levels reduce the memory required to store the matrix and solution. The L1 level
subdivides the PFEAST search interval and results in fewer number of eigenvectors
calculated per node. Likewise, the L3 level can be used to distribute X by row and
A (as well as B for generalized problems) by the distributed memory solver format.
MPI processes at the L2 level would result in additional copies of both A and X.

for its kernel as well. The distribution format for PFEAST is defined for the eigen-

vectors X (as well as Q and Ritz-vectors X̃), and is independent of the distribution

format of matrices A and B. The kernel then operates directly on the distributed

vectors.

The eigenvectors data distribution has been defined to be 1-dimensional and by

row. Each MPI process within an L3 communicator stores and operates on a spe-

cific subset of rows and all corresponding columns. The choice of a 1-dimensional

distribution can be justified by the fact that PFEAST calculates only a subset of

m0 eigenvectors; the number of rows n in the eigenvector matrix will, in general, be

much larger than the number of columns (i.e. n >> m0). Additionally, the eigenvec-

64

tor columns can be distributed independently of the PFEAST kernel with the first

level of parallelism L1. The data distribution will be the same for the right-hand-side

vector supplied by PFEAST and linear-system solutions returned to PFEAST as they

are directly related to the eigenvectors and have the same matrix dimensions. Since

the MPI solver must operate on rhs/solution vectors in its own format, a reordering

step with communication between the MPI processes within each L3 communicator

could be necessary.

The distribution of the eigenvectors is required to be the same for each of the

L3 communicators; i.e. the same number of MPI processes is applied to each linear-

system and equivalent processes for different L2 communicators must correspond to

the same eigenvector partition. Both the linear-system and eigenvectors solutions

are, in general, dense and will be stored in a matrix using the following 1-dimensional

distribution:

Qk =

[
qT1 , qT2 , . . . , qTs

]T
. (2.94)

Here the kth L2 (MPI) rank has its solution vector distributed across s L3 MPI

processes.

The data distribution will match for the members of each L2 communicator and

the distributed Ritz-vectors Q can be found through an all-reduce operation; i.e.

scaling each linear-system solution by the corresponding integration weight and sum-

ming the results. The PFEAST kernel then operates only on a local subset of rows qi

within Qk. This row range is specified in two entries within the PFEAST parameter

array and does not need to be equal for each L3 MPI process. Users can implement

their own matrix multiplication routine or linear system solver as long as the result

is placed back into the correct position within the 1-dimensionally distributed Qk

matrix.

It happens that, if the second level of parallelism L2 is used, a copy of Q will be

stored for each L2 (MPI) rank. Subsequently, at convergence multiple copies of the

65

eigenvectors X = X̃ = Q will also be stored across the L2 communicator (i.e. for

each L3-Communication-World). However, since PFEAST must compute two inner-

products of the form Aq = QHAQ and Bq = QHBQ further parallelization can be

achieved. Moreover, since all columns of Q are known across the L2 (MPI) ranks,

only a small m0 ×m0 communication is necessary.

After the contour integration has been evaluated to find Q, all MPI processes from

L2 and L3 become available. Both matrix multiplications Y = {AQ,BQ} (outside

kernel) and {Aq, Bq} = QHY (inside kernel) can take advantage of additional L2 MPI

processes. To make use of all MPI processes Q is subdivided and given a 2-dimensional

decomposition. The matrix Q, which has already been distributed by row across the

s MPI processes within an L3 communicator, is now further distributed by column

across the f L2 processes. This results in the 2-dimensional decomposition

Q =

q11 q12 . . . q1f

q21 q22 . . . q2f

...
...

. . .
...

qs1 qs2 . . . qsf

. (2.95)

Each block qij of matrix Q matches to exactly one MPI process. However, all columns

of the matrix qi = [qi1, ..., qif] are known for each MPI rank in the L2 communicator.

That is, each MPI process within an L2 communicator has in memory all the columns

of the 1-dimensionally distributed qi, but will only be performing the multiplication

for one piece qij of the 2-dimensional distribution. The multiplication result for each

qij must be placed back into the correct location within the matrix Y . After the

multiplication is performed on all s × f MPI processes, the matrix Y = {AQ,BQ}

will have the same decomposition as (2.95) except that each block is known only on

a single MPI process.

66

The matrix multiplication is needed for three separate stages of the algorithm

and the operations within the kernel, although transparent to the user, differ slightly.

First, it is used to compute the Rayleigh-Ritz projection for {Aq, Bq}. In this case,

the kernel leaves Y in its 2-dimensional distribution and the matrix multiplication

has the form

Aq = QHAX = QHY =

[
qH1 qH2 . . . qHs

]
×

y11 y12 . . . y1f

y21 y22 . . . y2f

...
...

. . .
...

ys1 ys2 . . . ysf

, (2.96)

where each local chunk yij is known on a single MPI process only. The vector qi,

however, is known for all f MPI processes with the L2 communicator. When per-

forming the dense multiplication {Aq, Bq} = QHY inside the kernel each yi1, ..., yif

must be multiplied with qHi . By storing the result of each qHi yij to the correct loca-

tion within {Aq, Bq}, only a small m0×m0 communication is necessary. Additionally,

both AQ and BQ are needed in the computation of the eigenvector residuals. The

result Y = {AQ,BQ} is again left in its 2-dimensional distribution. This result is

independent for each eigenvector and therefore for each MPI rank within an L2 com-

municator. And, since the L1 norm is used, the final residual for each vector can be

found by summing the scalar result within each of the L3-Communication-Worlds.

After the residuals are determined, the final (scalar) values are communicated among

all MPI processes. Also required is the right-hand-side for the linear-systems, which

must be updated as Y = BQ at the beginning of each PFEAST iteration. Here yi,

the 1-dimensionally distributed piece of Y , is required for each MPI process within

the L2 communicator and a reduction operations must be performed across the L2

communicator, summing the results for each L3-Communication-World.

67

2.4.5.1 PFEAST with a distributed-memory solver

Solving the linear-systems in (2.92) will be the dominant computational proce-

dure performed in the eigenvalue calculation. Different “black-box” direct distributed

memory solvers have been integrated with the PFEAST kernel. An interface has

been created for two sparse direct solvers: the cluster version [105] of PARDISO [180]

within the Intel Math Kernel Library [100] and MUMPS [13]. A banded interface has

also been created for the SPIKE-MPI [167], although we do not present any results

for banded matrices. Additionally, we highlight the versatility of the PFEAST kernel

by describing how to integrate a Schur complement type solver.

Each interface requires a matrix-matrix multiplication routine specific to the dis-

tribution format accepted by the solver. To interface these solvers with the PFEAST

kernel, linear-system solution and matrix multiplication results must be placed back

into the correct row corresponding to the PFEAST distribution for the eigenvec-

tors. Cluster-MKL-PARDISO offers multiple options for distributing the matrix and

rhs/solution vector. The matrix and vectors can be distributed 1-dimensionally by

row across the L3 MPI processes or stored locally on the head node. We have chosen

to distribute both the matrix and the right-hand-side vector for the linear-system

solver in order to match the eigenvector distribution. There is then no need for a re-

ordering step since the PFEAST data distribution matches with the solver. MUMPS

also offers multiple options for the matrix distribution and we have chosen to man-

ually distribute the matrix by row to be consistent. However, MUMPS requires the

rhs/solution to be fully constructed on the head node and an additional communica-

tion is then needed before and after the solve stage.

The PFEAST kernel can also be integrated within a domain decomposition frame-

work. One approach is to divide the matrix A using a graph partitioner. The re-

ordering will create a 2× 2 block matrix

68

A =

 C E

ET D

 , (2.97)

where C contains the independent blocks and E and D contain the connections be-

tween them. Linear-systems possessing this block form can be solved with a Schur

complement approach described in Section 2.4.2.

With PFEAST we are interested in a series of linear-systems in (2.92). The matrix

(zjB − A) can be reordered to posses a block form in (2.97). The goal of domain-

decomposition is then to obtain the solution to this linear systems in parallel using

the Schur complement. The matrix reordering will implicitly partition vectors Q and

Y = BX̃ (PFEAST inputs/outputs) into “local” and “external” pieces

Q ≡

 Ql

Qe

 and BX̃ = Y ≡

 Yl

Ye

 . (2.98)

It is then convenient to think of the “local” pieces Ql and Yl separately from the

“external” Qe and Ye.

The matrix C has a block diagonal form and the solution to the linear-system

CQl = Yl can be obtained in parallel. Each linear system Ciq
i
l = yil can be solved

independently on a different L3 MPI process. The vectors Ql and Yl should also be

distributed across the MPI processes in the same manner so that Ci, q
i
l and yil all

exist on the same node.

The Schur complement solve in step (ii) should also be computed in parallel by

distributing the vectors Qe and Ye among the L3 MPI processes. The PFEAST kernel

is independent of the ordering. Each piece of Q (resp. Y), local to the ith L3 MPI

process would contain a subset of rows from both Ql (resp. Yl) and Qe (resp. Ye):

69

qi =

 qil

qie

 with Q =

q1

...

qs

 . (2.99)

The “local” components yl would be extracted from the PFEAST work array and

operated on for steps (i) and (iii). The solution ql must then be placed back into the

work array at the correct location (i.e to match (2.99)). Step (ii) would also have to

extract a subset of the “external” points from the right-hand-side vector and place

the solution back into the correct location.

2.4.5.2 PFEAST with the muffin-tin solver

Linking PFEAST and the muffin-tine solver is similar to what was described in the

previous section. In this case the interstitial matrix becomes the Schur complement.

The eigenvectors would then be distributed 1-dimensionally as shown in (2.99), with

qi =

qiit

qiat1

qiat2
...

qiatn

, (2.100)

where the ith L3 MPI process contains one piece the corresponds to the distributed

interstitial matrix qiit as well as additional points qiat1 through qiatn corresponding to

the set atoms that it was assigned. The interface between the interstitial region and

the atoms is defined to exist in qiit. Thus, the size of each atom block qiat1 is nat−Ns,

where nat is the size of the atom matrix and Ns is the number of interface points, in

the overlapping approach.

The PFEAST kernel accepts and returns the eigenvectors in this format. The

muffin-tin solver described in Section 2.4.2 then must extract the interstitial and

70

atom points from the eigenvector and perform the three step procedure for solving a

Schur complement-type problem.

Here, the general approach of the muffin-tin solver can be seen in Figure 2.10 when

linked to PFEAST. FEAST must solve a linear system at each quadrature node with

the muffin solver, each of which can be distributred over L2 MPI processes. The

muffin solver must then solve multiple linear systems itself as described in Section

2.3.2. The solution to a linear equation is computed for each of the atoms, where

each is independent and can be solved in parallel using L3 level of MPI. The solution

to these problems is added into the interstitial matrix, which then becomes a Schur

complement. All L3 MPI processes are then used to solve a linear system correspond-

ing to the interstitial matrix (i.e. with a distributed memory solver) and the final

solution in this region is obtained. Another linear system must be solved for each

atom, which can again be performed with perfect parallelism, to obtain the solution

in atom regions.

Figure 2.10: Each linear
system of FEAST is solved
with the muffin solver. Lin-
ear systems for each atom
matrices can be solved in
parallelism, but must be
solved twice: once to gen-
erated the Schur comple-
ment (interstitial matrix)
and again to retrieve solu-
tion.

2.4.6 Mixing scheme for SCF convergence in DFT

The naive approach to updating the electron density at each SCF iteration is to

use directly the result output from the Kohn Sham procedure. However, this approach

may not converge as the initial guess for the density is usually far from the ground

71

state solution, which will result in large oscillations between SCF iterations. Instead

a mixing scheme can be employed. In this case two different electron densities must

be defined for the kth SCF iteration: the input density ρkin used to construct the Kohn

Sham Hamiltonian and the output density ρkout computed from the wave functions as

defined in Figure 2.1.

With simple mixing, the input electron density for the next iteration can be com-

puted as,

ρk+1
in = (1− β)ρkin + βρkout, (2.101)

where the parameter β is usually chosen less than 0.5. This, however, will converge

very slowly.

In order to increase the convergence rate, more sophisticated methods have been

developed for solving these fixed-point problems. Newton methods are impractical in

electronic structure since the Jacobian matrix is unobtainable. Other quasi-Newton

methods have been developed, notably by Anderson [16] and Broyden [37], which

do not require the Jacobian or Hessian. These techniques were later refined in the

context of SCF iteration by Pulay [169, 170] in the 1980s and have since been expanded

upon [77, 68, 123, 213, 51]. They are also related to Krylov methods [177, 211] and

GMRES [175]. For electronic structure calculations these iterative techniques are

usually referred to as Direct Inversion of the Iterative Subspace (DIIS) methods.

The general idea is to build the input electron density as a linear combination

of past densities and to compute the coefficient of expansion in a smart way. The

approach used to obtain the results in this dissertation computes both an input mixing

density,

ρ̂k+1
in = c0ρ

0
in + c1ρ

1
in + · · ·+ ckρ

k
in, (2.102)

and an output mixing density,

ρ̂k+1
out = c0ρ

0
out + c1ρ

1
out + · · ·+ ckρ

k
out, (2.103)

72

from the previous input and output densities. The input for the next iteration is

chosen as a linear combination of the mixing densities:

ρk+1
in = (1− β)ρ̂k+1

in + βρ̂k+1
out , (2.104)

where β is again referred to as the mixing parameter.

This approach can be truncated in order to keep the density subspaces small. We

have seen that the inclusion of more densities in the mixing subspace does result in

better convergence, but has diminishing returns. Keeping a history of twenty input

and output densities seems to be more than sufficient. Better performance can also

be obtained by choosing a larger value of β. Too large a value will result in instability,

even with a DIIS method. However, as the density converges, the input and output

densities become closer. A large improvement in convergence can be obtained by

increasing the β parameter along the SCF iterations. In NESSIE we choose β to be

proportional to the norm of the difference between input and output densities:

β = −0.1× log10

∣∣∣∣ρkin − ρk+1
out

∣∣∣∣ , (2.105)

where the value is also rounded up to the nearest tenth.

The coefficients {c0, ..., ck} of (2.102) and (2.103) are the same for both the input

and output mixing subspaces. They are computed by solving a k × k linear system

with one right-hand-side,

M × C = R, (2.106)

where the ith element of R is depends on the difference between the output and input

densities of the current iteration k and previous iteration i,

ri =

∫
Ω

(
ρkout − ρkin

)
×
[(
ρkout − ρkin

)
−
(
ρiout − ρiin

)]
dΩ, (2.107)

73

and each element mij of matrix M also take into account the densities of iteration j:

mij =

∫
Ω

[(
ρkout − ρkin

)
−
(
ρiout − ρiin

)]
×
[(
ρkout − ρkin

)
−
(
ρjout − ρ

j
in

)]
dΩ. (2.108)

74

CHAPTER 3

SIMULATION PROCESS

To perform linear response TDDFT calculations with NESSIE three steps must

be completed. First, the unstructured finite element mesh is created. Next, the

ground state DFT calculation is performed, to obtain the ground state electron den-

sity. Finally, the time dependent calculation can be run. Post processing of the time

dependent electron density is also necessary to extract observables, such as the ab-

sorption and emission spectrum. This section will explain the step-by-step process of

our modeling framework using a C6H6 benzene molecule as an example.

3.1 Mesh generation

The finite element muffin-tin discretization, outlined in Section 2.3.2, can be gen-

erated in a pre-processing stage. DFT and TDDFT simulations then read in the mesh

data for each simulation. Higher order p-refinements, however, must be computed at

run time. Only a few input parameters are necessary to set the size and granularity of

both the interstitial and atomic domains. Interstitial and atomic meshes can be seen

in figure 3.1. The surface and cross section of the atom mesh is shown on the top,

with the right most plot a zoom. A cross section of the interstitial mesh is plotted

on the bottom. With the muffin-tin domain decomposition, an empty region directly

surrounding each atom is created in the interstitial mesh and resembles the benzene

molecule. A zoom of the molecular region, which is more fine and has many more

nodes, is also shown.

75

Figure 3.1: Atomic (top) and interstitial (bottom) meshes for the benzene molecule.
The full cross section and zoom are shown for both, with atoms fitting into hole in
the interstitial.

It is important to keep the interstitial mesh large enough so that the wave func-

tions decay very close to zero at the boundary. Otherwise, the Dirichlet boundary

conditions will result in a confinement effect. In Figure 3.2, the total energy and

different eigenstates are plotted versus the size of the computational domain: varying

the interstitial mesh offset from (2.0, 2.0, 2.0) to (16.0, 16.0, 16.0) angstroms. For too

small a mesh, the ground state solutions will be inaccurate. As the size of the mesh is

increased the ground state energies begin to flatted and remain constant. The reason

we do not see monotonic decay here is due to the caclulation of the exact boundary

condition for the Poisson equation. A mesh offset of (8.0, 8.0, 8.0) angstroms is used

by default.

76

0 4 8 12 16
-6265
-6264
-6263
-6262
-6261
-6260
-6259

En
er

gy
 (e

V
)

Total Energy

0 4 8 12 16
Interstitial Mesh Offset (Angstrom)

-267

-266.5

-266

-265.5

-265
Min Energy State

0 4 8 12 16
-8

-6

-4

-2

0

HOMO and LUMO

Figure 3.2: Ground state energies plotted vs. the size of the interstitial mesh offset.
The total length in each direction is given by the interstitial mesh offset plus the size
of the molecule (including muffin-tins). Confinement from the Dirichlet boundary
conditions can have an effect on the ground state solutions if the mesh size is taken
too small.

An additional question is how many quadrature nodes should be used for generat-

ing the finite element matrix. In higher dimensions the Gaussian quadrature points

are no longer unique. We have used pre-generated quadrature nodes and weights. The

basis functions are second degree polynomials for P2 and third degree polynomials

for P3. Table 3.1 presents results for benzene using different numbers of quadrature

nodes and reports the total energy ET as well as the energy for the lowest core elec-

tron E1 and the HOMO level EH . The results suggest that 11 quadrature nodes (4th

degree accuracy for the integration over each element) for P2 calculations and 24

nodes (8th degree) for P3 calculations are optimal since these lead to the lowest total

energy.

77

Benzene with P2 Mesh Refinement
Gauss 4∗ 5∗ 11 24 45 Ref. [129]

E1 -265.63 -265.45 -266.39 -266.38 -266.32 -264.66
EH -7.02 -7.02 -7.04 -7.04 -7.04 -6.54
EL -1.82 -1.82 -1.86 -1.86 -1.86
ET -6220.30 -6212.13 -6244.45 -6244.24 -6243.27 -6226.57

Benzene with P3 Mesh Refinement
Gauss 11∗ 24 45 70 126 Ref. [129]

E1 -266.49 -266.49 -266.43 -266.36 -266.39 -266.38
EH -6.55 -6.55 -6.55 -6.55 -6.55 -6.53
EL -1.47 -1.47 -1.47 -1.47 -1.47
ET -6262.91 -6263.41 -6262.44 -6261.38 -6261.76 -6262.57

Table 3.1: Comparison between different accuracies for the numerical integration used
to include the potential in the finite element Hamiltonian.The total energy (ET),
lowest energy eigenstate (E1) and HOMO level (EH), and LUMO level (EL) are
reported (in eV). Results were reported in [129] using a similar all-electron finite
element basis and compared with the FHI-aims code with values: ET = −6263.83,
E1 = −266.44 and EH = −6.53. Note: P4 results in [129] matched very closely to
FHI-aims. Note: SCF iteration did not converge for results marked with an asterisk.

3.2 DFT calculation

The ground state DFT problem is solved on the finite element mesh. Both

threaded (OpenMP) and distributed (MPI) parallelism are used in the code. Be-

cause the main computation is solving the eigenvalue problems we define in NESSIE

the same three levels of MPI parallelism (L1, L2, L3) that exist in FEAST. All of

the mesh operations are parallelized over the three different levels. The user must

specify how to distribute parallel resources and supply the definition of the FEAST

eigenvalue search contours. At convergence the total energy and ground state eigen-

spectrum shown in Figure 3.4 will be obtained obtain along with the ground state

electron density plotted in Figure 3.3.

78

Figure 3.3: Converged electron density for P2 finite element mesh. The top plot
shows the density in the atomic mesh for a single hydrogen (left) and carbon (right)
atom. The electron density in the full mesh (interstitial+atomic) is shown on the
bottom. Hydrogen atoms have been clipped along the same plane as the interstitial
mesh. As can be seen in the top plot, the electron density is much higher around
carbon atoms than for hydrogen. The data in these regions has been replace by a
volume plot for aesthetic purposes.

79

Figure 3.4: Ground state eigenvalues of benzene for P2 and P3 levels of mesh re-
finement. The total energy was calculated as -6244.44652890041 (eV) for P2 and
-6263.41119295063 (eV) for P3.

3.2.1 SCF convergence

For the ground state calculation an Anderson mixing scheme outlined in Section

2.4.6 is employed to accelerate the convergence rate of the SCF procedure compared

to simple mixing. Parameters for the Anderson mixing can have an effect on the

convergence rate. The effect of beta mixing ratio β and the number of density mixing

subspaces kept in memory can bee seen in Figure 3.5. Here, because of the small

number of electrons, very few mixing subspaces must be kept in memory. And,

in general, incorporating additional subspaces will have diminishing returns, even for

larger systems with thousands of electrons; although the effect is much more apparent

for larger systems.

3.2.2 Parallelization of the search interval

For large scale molecules with more than a few hundred electrons, it becomes

necessary to slice the FEAST search interval for the eigenvalue problem. This is

a unique feature of the FEAST eigenvalue solver and a major benefit to electronic

structure calculations. Performance benefits of parallelization at this level will be

discussed in a later section. An example for C6H6 can be seen in Figure 3.6 that

uses three 30% elliptical contours. One to compute the core states and two others

80

0.1 0.2 0.3 0.4 0.5 0.6
Beta

0

10

20

30

40

50

60

70

80

90

100

#
 S

C
F

 I
te

ra
ti

o
n

Simple Mixing

0 0.2 0.4 0.6 0.8 1
Beta

0

5

10

15

20

25

30

35

40

#
 S

C
F

 I
te

ra
ti

o
n

Anderson Mixing

0 4 8 12 16 20 24 28 32
Subspaces

0

10

20

30

40

50

#
 S

C
F

 I
te

ra
ti

o
n

Anderson Mixing with Beta=0.1

Figure 3.5: The effect of SCF parameters of on the convergence. The number
of iterations are plotted until the total energy between consecutive SCF iterations
reaches a relative convergence of 10−10. For values of β = 0.1 and β > 0.5 the simple
mixing (left) does not converge. With Anderson mixing (middle) the total energy
converges much faster. For benzene only a few mixing subspaces must be kept in
memory (right).

that each compute half of the valence states. This example was run on using the

output of a previously converged ground state calculation and the search intervals

were chosen for aesthetic purposes. Eigenvalue states can move substantially in a

simulation started from a poor initial guess and contours should be chosen to cover

then entire space (i.e. the end of one search interval should also be the beginning

of the next). This approach is not necessary for a small molecule such as C2H6 and

is shown here as an illustration. For a molecule with thousands of electrons this

becomes mandatory and each interval would contain hundreds of eigenvalues.

81

-24 -20 -16 -12 -8 -4 0
Real Energy (eV)

Valence States

-268 -264 -260
Real Energy (eV)

-3

-2

-1

0

1

2

3

Im
ag

in
ar

y
En

er
gy

 (e
V

)

Contour
Full Contour
Eigenvalue

Core States

Figure 3.6: Splitting the full search interval into three separate contours. The lowest
(real) energy contour captures the core states while the other two target valence
electrons. Each contour has eight quadrature nodes shown as circles. Symmetry
allows the FEAST algorithm to only perform computations for the upper upper half
of the contour.

3.3 TDDFT calculation

Real time TDDFT propagates the ground state wave functions directly in time.

At the end of each DFT calculation, NESSIE saves the ground state potential as the

sum of the Hartree and exchange and correlation terms. The ground state Kohn Sham

Hamiltonian can be generated from this and the ionic potential. The wave functions

are then recovered by solving an eigenvalue problem at the beginning of each TDDFT

calculation. The electron density could also be stored and used to generate the

potential and the matrix. However, the electron density must be computed directly

at the quadrature nodes and, if stored at mesh nodes, would require an interpolation

introducing error. The potential is used since it is defined at the mesh nodes and

requires less storage space.

After solving the eigenvalue problem, the ground state wave functions are prop-

agated directly in time using the Crank Nicolson operator of (2.75). This requires

solving the linear system in (2.77) at each time step. As outlined in Section 2.2.2.2,

the Hamiltonian gains its time dependence from the Hartree potential and exchange

82

and correlation potentials that are functionals of the electron density. These must

also be recomputed at each step. The time dependent Hartree potential is computed

from the Poisson equation. Exchange and correlation terms must be computed with

time instantaneous electron density and the same approximation used in the ground

state calculation.

Observables can then be extracted from the time dependent density. In principle,

all time dependent observables are functionals of the density, however, in practice the

functional form is rarely known. Beside the electron density itself, the most straight-

forward observables to compute are the emission and absorption spectrum, which can

be calculated directly from the induced dipole moment. The induced dipole moment

is a measure of how far the electron density has moved away from the ground state

value and an example can be seen for benzene in Figure 3.7 for an excitation polarized

in the x̂, ŷ and ẑ directions. The absorption spectrum from an impulse excitation

can be calculated by taking a Fourier transform of the induced dipole moment, as

described in Section 2.2.2.3. The absorption spectrum for each direction specific

excitation can be seen in Figure 3.8 and the direction independent spectrum can then

be computed as the average from x̂, ŷ and ẑ.

Peaks in the absorption spectrum can be identified with specific phenomena. The

electron dynamics for a specific peak can be investigated further by applying a sinu-

soidal stimulus specific frequency. This is a benefit of the real-time approach which

gives direct access to the electron density at a resonant frequency.

3.3.1 Restarting the simulation

Larger molecules must perform a longer time propagation in order for the electron

density to cycle through a sufficient number of periods. The movement of the electron

density in TDDFT represents the movement of electrons. Quasiparticles and collective

excitations, such as plasmons, will take longer to propagate back and forth within a

83

Figure 3.7: Induced dipole moment for C6H6. The three plots show the response when
an impulse potential polarized in the x̂ (top), ŷ (middle) and ẑ (bottom) direction
excites the system. Time steps of 5 attoseconds are used. The right graphics show
the molecules orientation if the applied electric field was polarized from left to right
along the page.

molecule of greater length. For large scale molecules, that can take days or weeks

to simulate, it is beneficial to be able to restart the TDDFT simulation from an

intermediate time step. Large scale calculation that are computationally expensive

can be restarted as many times as needed to obtain an accurate result. This also can

be a safe-guard against losing information due to hardware failure or user error.

To restart the TDDFT simulation the time dependent wave functions are writ-

ten to a binary file in FORTRAN format. The time instantaneous density can be

computed from the wave functions, which can then be used to generate the time-

dependent potential and Hamiltonian. Nothing else is needed to propagate the set of

wave functions to the next time step. For generality, and to simplify some complexi-

ties in the code, the ground state wave functions are also stored and used to generate

the ground state electron density, which is also needed to compute the induced dipole

moment.

84

5 10 15 20 25
Frequency (eV)

0
0.5

1
1.5

2
2.5 Z - Direction

0
0.5

1
1.5

2
2.5

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

)

Y - Direction

0
0.5

1
1.5

2
2.5 X - Direction

Figure 3.8: Oscillator stregnth of C6H6 for an impluse excitation polarized along the
x̂, ŷ and ẑ directions.

Here we show this capability for the benzene molecule. Figure 3.9 shows the

induced dipole moment for a continuously executed simulation and for two separately

executed simulations connected using a single restart. As can be seen, the results

from the restart shown as circles and squares, fall exactly on the solid line of the

continuously executed simulation. This only requires the wave functions to be saved

at the end of a simulation. It allows longer simulation times to adhere to specific

requirements of the computing system, which could have a maximum time limit.

3.3.2 Static core approximation

The oscillating frequencies of core and valence electronic states differ by orders of

magnitude. Electromagnetic waves in the ultraviolet to visible range interact directly

with valence states. Atomic core states interact with higher frequency X-Rays. With

85

0 1e-15 2e-15 3e-15 4e-15
Time (s)

-2e-13

-1e-13

0

1e-13

2e-13

In
du

ce
d

D
ip

ol
e

(m
)

Initial
Restart

Restarted TDDFT Simulation

Figure 3.9: Induced dipole moment for continuously executed TDDFT simulation
(solid line) and a simulation with a single restart at time step t = 2× 10−15 seconds.
Results of the restarted calculation exactly match the one executed continuously with
no restart.

a real-time approach in TDDFT, where the wave functions are propagated directly in

time, a specific target frequency range must be chosen. The total simulated time must

be chosen large enough to allow for multiple periods at the lowest target frequency.

A time step must also be chosen to give sufficient accuracy. Because the time step is

generally chosen as large as possible to minimize computation (i.e. the total number

of time steps), it is not really possible to investigate the dynamics of both the core

and valence within the simulation.

Large scale calculations with many electrons must propagate the Kohn Sham

states in time. Since we are most interested in the UV-ViS range, and the time

step is chosen as a few atto seconds, the dynamics of the core states cannot be

captured accurately. We have employed a static core approximation, where the core

states are held stationary at their ground state configuration, and only the valence

states are time propagated. The total electron density ρ(t) = ρcore + ρvalence(t) is

used to compute the time-dependent potential and Hamiltonian, but only the valence

component changes in time.

A comparison is shown in Figure 3.10 between a full TDDFT simulation, where

core and valence states are time propagated, and a simulation employing the static

86

Figure 3.10: Only valence states are propagated within the static core approximation.
Core electronic states are held constant and do not move - their contribution to the
potential is the same as in the ground state. Bottom figure is a zoom of the first
femto second, where it can be seen that the two simulations look identical.

core approximation. The induced dipole moments are almost identical. Although it

cannot be easily seen from the plot, the results from the static core do vary slightly

from the full calculations by about 0.1− 1%.

3.4 Comparison between P2 and P3

The discretization in NESSIE is usually improved with polynomial refinement

(i.e. p-refinement). Edge refinement (i.e. h-refinement) can be accomplished for the

interstitial mesh, but is generally reserved for at the atomic muffin-tine domains.

Ground state calculations require the use of a third degree polynomial (i.e. P3)

basis to achieve accurate results for the total energy. Figure 3.11 shows the eigenvalue

spectrum for both P2 and P3 levels of refinement. As can be seen the core and valence

states are slightly different for P2 and P3, but the difference in total energy is more

drastic.

The computed absorption spectrum for both P2 and P3 is shown in Figure 3.12.

Time-dependent calculations are also slightly different for the two levels of refine-

87

ment. Generally only P2 accuracy is used for TDDFT as it is much less expensive

computationally and in good agreement with experiment.

Figure 3.11: Ground state eigenvalue spectrum for benzene with both P2 and P3
polynomial refinment for the finite element mesh. The total energy was calcualted as
-6244.44652890041 (eV) for P2 and -6263.41119295063 (eV) for P3.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Energy (eV)

0

0.5

1

1.5

2

2.5

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

) P2
P3

P2 vs. P3 Absorption Spectrum

Figure 3.12: The absorption spectrum averaged over excitations in x̂, ŷ and ẑ using
both P2 and P3 polynomial refinement for the finite element mesh. The first major
peak is located at 6.92 (eV) for P2 and 6.77 (eV) for P3.

3.5 Comparison between LDA and GGA

Both LDA and GGA functional can be employed in NESSIE. Here we compare

Perdew Zunger [159] and PBE [157] functionals for both DFT and TDDFT.

88

A P3 finite element basis is used to compare the ground state, as this is necessary

to achieve good accuracy. Core electronic states are shifted down in energy for GGA

while the HOMO level is shifted up. Results are in agreement with the all-electron

package NWChem [5] for both core and valence states, as well as the pseudopotential

code Octopus [6] where the same effect on the HOMO level was observed. The total

energy is significantly larger (in magnitude) using the GGA functional.

The absorption spectrum for LDA and GGA are compared using a P2 finite ele-

ment basis. Both LDA and GGA produce very similar results, with the fundamental

peak located at 6.9 (eV) for both.

89

-270 -269 -268 -267 -266
Energy (eV)

P2
P3

Core

-25 -20 -15 -10 -5 0
Energy (eV)

GGA
LDA

Valence

Figure 3.13: Ground state eigenvalue spectrum for benzene using both LDA and GGA
functionals with P3 polynomial refinment for the finite element mesh. The total
energy was calcualted as -6263.41119295063 (eV) for LDA and -6421.66928296016
(eV) for GGA.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Energy (eV)

0

0.5

1

1.5

2

2.5

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

) P2-GGA
P2-LDA

LDA vs. GGA Absorption Spectrum

Figure 3.14: The absorption spectrum averaged over excitations in x̂, ŷ and ẑ using
both LDA and GGA functionals with P2 polynomial refinement for the finite element
mesh. The first major peak is located at 6.92 (eV) for LDA and 6.92 (eV) for GGA.

3.6 Visualizing the response density

The response density δn(ω, r) is the change in electron density due to an excitation

at frequency ω. This can be visualized by applying a sinusoidal excitation at a given

frequency, waiting for the density to reach a steady state where it oscillates at ω, and

plotting the 4-dimensional data at a maximum and a minimum. Another approach

90

is to compute δn(ω, r) directly. This is just the Fourier transform of the time varying

electron density.

It is similar to the approach outlined in Section 2.2.2.3 for computing the pho-

toabsorption spectrum from the induced dipole moment. In that case the imaginary

part of the dipole Fourier transform was related to the photoabsortion cross section.

Instead, the Fourier transform could be computed first for the electron density. Then

taking the expected value would be exactly equivalent to the approach in the previous

chapter.

This approach allows one to produce these plots for many different excitation

frequencies at once. A set of frequencies can be selected and the Fourier transform for

the electron density then computed on-the-fly while performing the time-dependent

calculation. A exponential function,

β(t) = e−γt, (3.1)

multiplies the time varying electron density and acts as damping coefficient to simulat

relaxation from the excitation back to the ground state. This must be used with the

Fourier transform, which is taken as,

δn(r, ω) =

∫ T

0

(n(r, t)− n0(r))× β(t)× eiωtdt, (3.2)

to compute the response density for a given frequency. In practice the trapezoidal

rule is used to approximate the integral.

Results from this approach are shown in Figures 3.15 and 3.16 for P2-LDA benzene

excited with an impulse excitation polarized in the ẑ direction. Five values of ω (or

equivalently E) have been chosen corresponding to peaks in the absorption spectrum.

These including the fundamental frequency of 6.91 (eV), shown for the XY, YZ, and

91

XZ planes, and four higher energy excitations at 10.04, 13.61, 16.20 and 17.74 (eV)

shown only for the XZ plane.

92

Figure 3.15: P2-LDA response electron density for the first peak in absorption spec-
trum of benzene at 6.91 (eV) for an excitation in the ẑ direction. From left to right:
XY, YZ and XZ planes.

Figure 3.16: P2-LDA response electron density for four different peaks in absorption
spectrum of benzene shown in the XZ plane. Clockwise from the top left: excitations
at 10.04, 13.61, 16.20 and 17.74 (eV) in the ẑ (upward) direction.

93

CHAPTER 4

SIMULATIONS RESULTS

4.1 Small molecules

The following presents a catalog of NESSIE results for select small molecules.

Multiple comparisons are presented for each molecule. Ground-state results for the

eigenvalue spectrum and total energy are given for both P2 and P3 polynomial re-

finement. Both LDA, using Perdew Zunger correlation, and GGA, under the PBE

functional, are considered and compared. Time-dependent DFT results are also pre-

sented for P2 and P3, and for both LDA and GGA.

Results obtained with NESSIE have been compared (for both LDA and GGA) to

ground state calculations with NWChem and Octopus. Both the eigenstates and total

energies obtained using the “cc-PVQZ” basis set in NWChem were very close to values

computed in NESSIE. Qualitative behaviour of the eigenspectrum when moving from

LDA to GGA also matched. The Octopus code was also compared directly with

NESSIE for the ground state, using the standard pseudopotentials included with the

package and results matched qualitatively.

However, a direct comparison with other codes is not included here. It is difficult

to perform a fair comparison of time-dependent calculation since many advanced

options are available and the choice of pseudopotentials in Octopus and the atomic

basis set in NWChem can have a significant effect on results. Therefore, instead,

I compare directly to experimental data where possible. The results from NESSIE

seem to match them quite well.

94

The following presents, for each molecule, two tables and two graphs. Atom

coordinates are listed in the top left table (in Angstroms). A selection of ground state

Kohn Sham eigenvalue energies are given in the top right table(in electron volts). The

eigenvalues include the lowest energy state E1 and, if multiple types elements also

exist (beside hydrogen), the first core state of additional element are listed as E2, E3

etc. Also given are the HOMO and LUMO levels EH and EL, and the total energy

ET . The photoabsorption is plotted below for LDA (middle) and GGA (bottom),

where each figure contains two results. One curve is for results obtained with a P2

finite element discretization and the other is for P3. These curves correspond to the

photoabsorption averaged over excitations along each coordinate axis and required

three separate simulations unless symmetries were present.

95

4.1.1 H2

Atom Coordinates
Type X Y Z

H 0.0000 0.0000 -0.3705
H 0.0000 0.0000 0.3705

Ground-state Energies
LDA GGA

P2 P3 P2 P3

E1 -10.4360 -10.2781 -10.5836 -10.4001
EL 0.1014 0.1000 0.0820 0.0756
ET -30.9021 -30.9530 -33.4798 -33.5977

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Energy (eV)

0

0.05

0.1

0.15

0.2

0.25

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

) P2-LDA
P3-LDA

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Energy (eV)

0

0.05

0.1

0.15

0.2

0.25

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

) P2-GGA
P3-GGA

Figure 4.1: Simulation results for H2.

96

4.1.2 CH4

Atom Coordinates
Atom X Y Z

C 0.00000 0.00000 0.00000
H 0.62758 0.62758 0.62758
H -0.62758 -0.62758 0.62758
H 0.62758 -0.62758 -0.62758
H -0.62758 0.62758 -0.62758

Ground-state Energies
LDA GGA

P2 P3 P2 P3

E1 -265.265 -265.577 -268.096 -268.429
EH -9.776 -9.486 -9.767 -9.472
EL -0.445 -0.355 -0.485 -0.400
ET -1087.78 -1091.62 -1117.89 -1121.72

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Energy (eV)

0

0.2

0.4

0.6

0.8

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

) P2-LDA
P3-LDA

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Energy (eV)

0

0.2

0.4

0.6

0.8

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

) P2-GGA
P3-GGA

Figure 4.2: Simulation results for CH4.

97

4.1.3 H2O

Atom Coordinates
Atom X Y Z

O 0.0000 0.0000 0.0000
H 0.0000 0.0000 0.9600
H 0.0000 0.9292 -0.2410

Ground-state Energies
LDA GGA

P2 P3 P2 P3

E1 -507.253 -506.516 -511.284 -510.481
EH -7.948 -7.425 -7.857 -7.295
EL -1.051 -0.931 -1.102 -0.958
ET -2055.206 -2064.839 -2096.604 -2105.965

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Energy (eV)

0

0.05

0.1

0.15

0.2

0.25

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

) P2-LDA
P3-LDA

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Energy (eV)

0

0.05

0.1

0.15

0.2

0.25

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

) P2-GGA
P3-GGA

Figure 4.3: Simulation results for H2O.

98

4.1.4 CO

Atom Coordinates

Atom X Y Z

C 0.0000 0.0000 -0.565
O 0.0000 0.0000 0.565

Ground-state Energies

LDA GGA
P2 P3 P2 P3

E1 -510.512 -509.674 -514.310 -513.473
E2 -270.123 -269.679 -272.655 -272.243
EH -9.874 -9.160 -9.821 -9.102
EL -2.820 -2.291 -2.650 -2.068
ET -3054.19 -3060.84 -3119.82 -3126.37

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Energy (eV)

0

0.1

0.2

0.3

0.4

0.5

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

) P2-LDA
P3-LDA

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Energy (eV)

0

0.1

0.2

0.3

0.4

0.5

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

) P2-GGA
P3-GGA

Figure 4.4: Simulation results for CO.

99

4.1.5 C2H6

Atom Coordinates

Atom X Y Z

C 0.000 0.000 0.000
C 0.000 0.000 1.520
H 1.020 0.000 -0.390
H -0.510 0.000 -0.390
H -0.510 0.000 -0.390
H -1.020 0.000 1.920
H 0.510 0.000 1.920
H 0.510 0.000 1.920

Ground-state Energies

LDA GGA
P2 P3 P2 P3

E1 -265.439 -265.810 -268.235 -268.632
EH -8.381 -8.122 -8.411 -8.140
EL -0.549 -0.432 -0.557 -0.450
ET -2143.72 -2151.52 -2201.18 -2208.92

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Energy (eV)

0

0.2

0.4

0.6

0.8

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

) P2-LDA
P3-LDA

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Energy (eV)

0

0.2

0.4

0.6

0.8

1

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

) P2-GGA
P3-GGA

Figure 4.5: Simulation results for C2H6.

100

4.1.6 SiH4

Atom Coordinates
Type X Y Z

Si 0.0000 0.0000 0.0000
H 0.8544 0.8544 0.8544
H -0.8544 -0.8544 0.8544
H -0.8544 0.8544 -0.8544
H 0.8544 -0.8544 -0.8544

Ground-state Energies
LDA GGA

P2 P3 P2 P3

E1 -1771.43 -1771.97 -1778.94 -1779.58
EH -8.9985 -8.5467 -9.0167 -8.5416
EL -0.7307 -0.4925 -0.7240 -0.4880
ET -7865.62 -7907.53 -7957.94 -7999.02

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Energy (eV)

0

0.2

0.4

0.6

0.8

1

1.2

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

) P2-LDA
P3-LDA

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Energy (eV)

0

0.2

0.4

0.6

0.8

1

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

) P2-GGA
P3-GGA

Figure 4.6: Simulation results for SiH4.

101

4.1.7 Na2

Atom Coordinates
Type X Y Z

Na 0.00 0.00 -1.50
Na 0.00 0.00 1.50

Ground-state Energies
LDA GGA

P2 P3 P2 P3

E1 -1026.46 -1025.99 -1032.08 -1031.57
EH -3.5875 -3.2543 -3.5804 -3.1729
EL -2.1055 -1.8595 -2.1100 -1.7833
ET -8757.60 -8785.56 -8883.42 -8911.29

1 2 3 4 5 6
Energy (eV)

0

1

2

3

4

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

) P2-LDA
P3-LDA

1 2 3 4 5 6
Energy (eV)

0

1

2

3

4

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

) P2-GGA
P3-GGA

Figure 4.7: Simulation results for Na2.

102

4.1.8 C6H6

Atom Coordinates
Type X Y Z

C 1.3970 0.0000 0.0000
C 0.6985 0.0000 1.2098
C -0.6985 0.0000 1.2098
C -1.3970 0.0000 0.0000
C -0.6985 0.0000 -1.2098
C 0.6985 0.0000 -1.2098
H 2.4810 0.0000 0.0000
H 1.2405 0.0000 2.1486
H -1.2405 0.0000 2.1486
H -2.4810 0.0000 0.0000
H -1.2405 0.0000 -2.1486
H 1.2405 0.0000 -2.1486

Ground-state Energies
LDA GGA

P2 P3 P2 P3

E1 -266.388 -266.498 -269.092 -269.222
EH -7.038 -6.551 -6.852 -6.350
EL -1.858 -1.469 -1.654 -1.247
ET -6244.45 -6263.41 -6402.97 -6421.67

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Energy (eV)

0

0.5

1

1.5

2

2.5

Ph
ot

oa
bs

or
pt

io
n

C
ro

ss
 S

ec
tio

n
(e

V
-1

)

P2-LDA
P3-LDA

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Energy (eV)

0

0.5

1

1.5

2

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

) P2-GGA
P3-GGA

Figure 4.8: Simulation results for C6H6.

103

4.1.9 Na4

Atom Coordinates
Type X Y Z

Na 1.6030 0.0000 0.0000
Na -1.6030 0.0000 0.0000
Na 0.0000 3.3135 0.0000
Na 0.0000 -3.3135 0.0000

Ground-state Energies
LDA GGA

P2 P3 P2 P3

E1 -1026.322 -1026.258 -1031.926 -1031.828
EH -2.9424 -2.7604 -2.9136 -2.6889
EL -2.4109 -2.2118 -2.4063 -2.1358
ET -17509.73 -17571.27 -17760.95 -17822.34

0 1 2 3 4 5 6
Energy (eV)

0

0.5

1

1.5

2

2.5

3

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

) P2-LDA
P3-LDA

0 1 2 3 4 5 6
Energy (eV)

0

0.5

1

1.5

2

2.5

3

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

) P2-GGA
P3-GGA

Figure 4.9: Simulation results for Na4.

104

4.2 Discussion and comparison with experiment

Small molecule results will now be discussed and, where possible, compared di-

rectly to experiment. Most of the experimental values have been gathered from an

online database [10] and references to their original publication are given in the text.

Experimental results were gathered at room temperature. Although it is possible for

TDDFT calculations to include temperature, it was not incorporated in the present

simulations.

Comparing directly with experiment is the holy grail of numerical simulation.

However, this brings additional difficulties as well. For some materials and molecules

few experimental results are available. For others, there exists a vast library of results,

which can differ significantly. It is also difficult to measure absorption and emission

spectra experimentally and it is possible to miss electronic transitions entirely. A

good example of this can be seen for the H2 molecule in Section 4.2.1. Spectroscopy

is an extremely complex field with electronic transitions coupled to vibrational modes

(i.e. the Franck-Condon Principle). We are only interested in excited electronic states

since the atoms in our simulation do not move. It can be difficult experimentally to

decouple electronic and vibrational modes and thus to have a fair comparison with

these results.

However, as will be shown in the next few pages, NESSIE TDDFT simulations still

compare favorably with experiment. NESSIE results are plotted directly on top of

the experimental values with no other fitting parameters and show some remarkable

agreement.

4.2.1 H2

It is well known that the first excited state of molecular hydrogen is within the

range 11.19 to 11.37 eV. However, the experimental result for UV-ViS absorption

[25] compared directly to NESSIE in Figure 4.11 misses this peak entirely. The

105

measurement technique uses an incident beam of electrons and seems to excite other

vibrational modes altering the spectrum. The higher energy absorption, however,

seems to match extremely well.

Also shown in the figure are true electronic excited-states energies; from left to

right: the first singlet, first triplet, and second singlet excited states [93], and the

dissociation energy [172]. These states are known from other experiments and high-

lighted in Figure 4.10. Transitions from singlet to triplet states (i.e. from the ground

Figure 4.10: Experimental electronic excitation energies of H2 copied from [93]. First
singlet, first triplet and second singlet states are labeled and have values of 11.37eV,
11.87eV and 12.40eV, respectively.

state to the first triplet state) are forbidden as the total angular momentum must

be conserved for an isolated system. However, our simulations do not include spin

and it make sense that such a transition would be captured. The first peak for the

LDA functional are close to 11.19eV, which is another value often referenced for the

106

energy of the first excited state [182]. However, with the GGA functional the first

peak shifts back toward the value of 11.37, which is shown in Figures 4.10 and 4.11.

Figure 4.11: Comparison between NESSIE and experimental values for H2.

10 12 14 16 18 20 22
Energy (eV)

0

0.2

0.4

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

)

P2-LDA
Experiment
1st Singlet
1st Triplet
2nd Singlet
Dissociation

10 12 14 16 18 20 22
Energy (eV)

P3-LDA
Experiment
1st Singlet
1st Triplet
2nd Singlet
Dissociation

10 12 14 16 18 20 22
Energy (eV)

0

0.2

0.4

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

)

P2-GGA
Experiment
1st Singlet
1st Triplet
2nd Singlet
Dissociation

10 12 14 16 18 20 22
Energy (eV)

P3-GGA
Experiment
1st Singlet
1st Triplet
2nd Singlet
Dissociation

4.2.2 CH4

NESSIE simulation results for the photoabsorption spectrum of CH4 are compared

with experimental data: Experiment-A [50] and Experiment-B [106] in Figure 4.12.

The lowest energy absorption peak at E = 9.76eV in the experimental result is

again shifted to the right compared to NESSIE. However, there also exist a second

107

peak at E = 10.4eV that seems to be shifted to the left compared to the simulated

result. Again, as was the case with H2 the higher energy spectra match extremely

well. NESSIE does not include temperature, which could cause slower variation and

smoothing of the experimental result which were performed at T = 298K. The

maximum at E ≈ 13.6eV matches almost exactly with the P2 results from NESSIE,

although with P3 this shift considerably.

Figure 4.12: Comparison between NESSIE and experimental values for CH4.

8 10 12 14 16 18 20
Energy (eV)

0

0.2

0.4

0.6

0.8

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

)

P3-LDA
Experiment-A
Experiment-B

8 10 12 14 16 18 20
Energy (eV)

P3-LDA
Experiment-A
Experiment-B

8 10 12 14 16 18 20
Energy (eV)

0

0.2

0.4

0.6

0.8

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

)

P3-LDA
Experiment-A
Experiment-B

8 10 12 14 16 18 20
Energy (eV)

P3-LDA
Experiment-A
Experiment-B

108

4.2.3 H2O

In Figure 4.13, the photoabsorption spectrum of H2O computed with NESSIE is

compared directly to four different experimental results performed at room tempera-

ture: Experiment-A [56], Experiment-B [55], Experiment-C [112], and Experiment-D

[49]. Again we seem very good agreement between experimental results and NESSIE

simulations, which seems to capture the three major peaks. Again there is a small

shift which worsens for the more accurate discretization.

For P2-LDA, the three peaks corresponding to Experiments A, B and C have

values of E = 7.05eV, E = 9.23eV and E = 13.11eV, respectively. Experimental

values have been measured at E = 7.42eV, E = 9.68eV and E = 13.39eV, again

continuing the trend of NESSIE to underestimate. Overall, the general shape of the

Experiment-D curve matches quite well and an additional small peak at E ≈ 11eV is

present in both the experimental and simulated results. The peak at E ≈ 17eV can

be seen in the results from both NESSIE and Experiment-C.

4.2.4 CO

NESSIE simulation results for the photoabsorption spectrum of CO are compared

directly to experimental data from [48] in Figure 4.14. The first absorption peak

looks to be captured well by the TDDFT simulation. This is also the case for the

higher energy spectrum greater than 14eV.

However, it is not clear what is happening between 10 and 11 eV. With P2-LDA

data it seems that NESSIE finds an additional resonance at E = 10.25 not detected

by the experiment. Again, for P2-GGA, the resonance at E = 11.75 matches well

with the experimental result, but the simulation also produces this intermediate peak

in the absorption. Here, with P2-GGA, an additional resonance at 13eV emerges from

the large peak at 14eV. This is made even more confusing by the P3 data (both LDA

and GGA), where everything shifts down in energy and no longer lines up directly

109

Figure 4.13: Comparison between NESSIE and experimental values for H2O.

6 8 10 12 14 16 18 20 22
Energy (eV)

0

0.05

0.1

0.15

0.2

0.25

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

)

P2-LDA
Experiment-A
Experiment-B
Experiment-C
Experiment-D

6 8 10 12 14 16 18 20 22
Energy (eV)

P3-LDA
Experiment-A
Experiment-B
Experiment-C
Experiment-D

6 8 10 12 14 16 18 20 22
Energy (eV)

0

0.05

0.1

0.15

0.2

0.25

0.3

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

)

P2-GGA
Experiment-A
Experiment-B
Experiment-C
Experiment-D

6 8 10 12 14 16 18 20 22
Energy (eV)

P3-GGA
Experiment-A
Experiment-B
Experiment-C
Experiment-D

with experimental data. So, it is not clear which resonance the second peak in the

experimental result corresponds to or if anything has been missed in the experiment.

4.2.5 C2H6

Figure 4.15 compares the NESSIE simulation results for the photoabsorption spec-

trum of C2H6 directly to experimental data: Eperiment-A from [107] and Experiment-

B from [139]. All of the simulated results match the experimental result qualitatively

110

Figure 4.14: Comparison between NESSIE and experimental values for CO.

6 8 10 12 14 16 18 20
Energy (eV)

P3-LDA
Experiment

6 8 10 12 14 16 18 20
Energy (eV)

0

0.1

0.2

0.3

0.4

0.5

0.6
O

sc
ill

at
or

 S
tre

ng
th

 (e
V

-1
)

P2-LDA
Experiment

6 8 10 12 14 16 18 20
Energy (eV)

P3-GGA
Experiment

6 8 10 12 14 16 18 20
Energy (eV)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

)

P2-GGA
Experiment

reaching a broad maximum between 15 and 16eV. There is a small lower energy peak

measured around E = 9.5eV. It is not clear what this corresponds to in the simu-

lations, where we see three peaks at E ≈ 8.3, E ≈ 9.5 and E ≈ 10.3 that exist for

P2/P3 and LDA/GGA.

4.2.6 SiH4

NESSIE simulation results for the photoabsorption spectrum of SiH4 are compared

directly to experimental data from [59] in Figure 4.16. Here, the experimental result

111

Figure 4.15: Comparison between NESSIE and experimental values for C2H6.

8 10 12 14 16 18
Energy (eV)

P3-LDA
Experiment-B
Experiment-A

8 10 12 14 16 18
Energy (eV)

0

0.2

0.4

0.6

0.8

1
O

sc
ill

at
or

 S
tre

ng
th

 (e
V

-1
)

P2-LDA
Experiment-B
Experiment-A

8 10 12 14 16 18
Energy (eV)

P3-GGA
Experiment-B
Experiment-A

8 10 12 14 16 18
Energy (eV)

0

0.2

0.4

0.6

0.8

1

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

)

P2-GGA
Experiment-B
Experiment-A

does not have any distinguishable resonance aside from the maximum at E = 11

The simulated results match the overall shape of the measure absorption spectrum

well for all cases. The P2-LDA results has a maximum at E = 10.5eV, close to the

experimental maximum. For P3-LDA this peak diminishes slightly in strength and

the maximum simulated absorption shift to higher energy in more agreement with

the experimental result. The GGA results are similar, but the absorption around

112

E = 11eV seems to be slighly diminished while two peaks at E = 14eV are less

affected.

Figure 4.16: Comparison between NESSIE and experimental values for SiH4.

6 8 10 12 14 16 18 20
Energy (eV)

0

0.5

1

1.5

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

)

P2-LDA
Experiment

6 8 10 12 14 16 18 20
Energy (eV)

P3-LDA
Experiment

6 8 10 12 14 16 18 20
Energy (eV)

0

0.5

1

1.5

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

)

P2-GGA
Experiment

6 8 10 12 14 16 18 20
Energy (eV)

P3-GGA
Experiment

4.2.7 C6H6

Figure 4.17 compares NESSIE simulation results for the photoabsorption spectrum

of C6H6 directly to experimental data: Experiment-A from [65] and Experiment-B

from [171]. In all cases, P2/P3 and LDA/GGA the first absorption peak is captured

very well. The value of E = 6.9eV matches almost exactly with the experimental

113

values. Again, for P3 data, the peak shifts to lower energy, but is still a close match to

the measure value. The higher energy spectrum match qualitatively with experiment.

There is a small measured abosption peak around E = 9eV that matches the P2-LDA

results from NESSIE. However, this peak shifts for P3 and GGA. There seems to be

another measured peak at E ≈ 11eV, which is also captured by NESSIE for all cases.

Figure 4.17: Comparison between NESSIE and experimental values for C6H6.

6 8 10 12 14 16
Energy (eV)

0

0.5

1

1.5

2

2.5

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

) P2-LDA
Experiment-A
Experiment-B

6 8 10 12 14 16
Energy (eV)

P3-LDA
Experiment-A
Experiment-B

6 8 10 12 14 16
Energy (eV)

0

0.5

1

1.5

2

2.5

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

) P2-GGA
Experiment-A
Experiment-B

6 8 10 12 14 16
Energy (eV)

P3-GGA
Experiment-A
Experiment-B

114

4.3 Large-scale carbon nano-tubes

The parallel implementation of NESSIE is now used to investigate plasmon res-

onances in large-scale carbon nano-tubes (CNT). Results obtained previously with

NESSIE have reported the existence of plasmons in metallic (3,3) single-wall CNTs

up to seven unit cells [168]. The larger of the simulations presented in this section

were not possible with the previous shared-memory version of the code.

A single unit cell of the (3,3) nano-tubes exhibits both ‘A’ and ‘B’ type carbon

rings. Each tube is started with an ‘H’ hydrogen ring and terminated with both ‘A’

and ‘H’. The coordinates of the first three rings ‘H’, ‘A’ and ‘B’ are presented in Table

4.1 from which all other atom coordinates can be determined.

Table 4.1: Coordinates [X, Y, Z]T in nanometers for three types of atom rings making
up a (3,3) CNTs. Each unit cell contains both an ‘A’ and ‘B’ ring. In addition, the
CNT is started with an ‘H’ and terminated with both ‘A’ and ‘H’ (i.e H-AB-AB...AB-

A-H). Distance between rings can be determined from the values for Z. Rings are
shown below, in the order ‘H’, ‘A’, ‘B’. Technically, ‘H’ and ‘B’ have the exact same
in-plane coordinates but are distinguished for clarity.

Type Atom 1 Atom 2 Atom 3 Atom 4 Atom 5 Atom 6

H

1.04610
1.81190
0.00000

 −0.37258
2.05870
0.00000

 −2.09220
0.00000
0.00000

 1.59660
−1.35200

0.00000

 1.04610
−1.81190

0.00000

 1.96920
−0.70671

0.00000

A

2.09220
0.00000
1.24860

 1.59660
1.35200
1.24860

 −1.04610
1.81190
1.24860

 −1.96920
0.70671
1.24860

 −1.04610
−1.81190

1.24860

 0.37258
−2.05870

1.24860

B

1.04610
1.81190
2.49720

 −0.37258
2.05870
2.49720

 −2.09222
0.00000
2.49720

 −1.59660
−1.35200

2.49720

 1.04610
−1.81190

2.49720

 1.96920
−0.70671

2.49720

115

With the fully parallel code, simulations have now been run for CNTs up to

forty unit cells. Table 4.2 briefly presents some physical attributes of the simulated

molecules: 5-CNT, 10-CNT, 20-CNT and 40-CNT. The largest molecule contains 498

atoms and 2928 electrons and can be considered very large-scale in the context of

DFT and TDDFT, especially for a full-core all-electron approach. The size of the

discretization, which can be seen in Table 4.3 for each CNT molecule, grows linearly

with the number of atoms.

Nu Nat Ne L (nm)

5 78 408 1.2586
10 138 768 2.4927
20 258 1488 4.9944
40 498 2928 9.9888

Table 4.2: Some physical attributes of the fam-
ily of (3,3) CNTs with the number of unit cells
ranging from Nu = 5 to Nu = 40. The length L
does not include an additional ‘A’ and ‘H’ rings
that terminate the molecule. Also listed are the
total number of atoms Nat and electrons Ne.

CNT nat nit ntotal

5 2,065 149,499 302,925
10 2,065 126,431 397,877
20 2,065 233,696 741,182
40 2,065 446,559 1,426,125

Table 4.3: Mesh size for the finite element discretization used for each CNT simulta-
tion. The total number of discretization points (and matrix size) is related to the size
of the atomic mesh nat and the size of the interstitial mesh nit. The total number of
points is given by: ntotal = Nat × (nat − ns) + nit, where Nat is the number of atoms
and ns = 98 is the number of interface points between one atom and the interstitial
region (for a P2 finite element). A reduced discretization in the interstitial region was
used for the 10, 20 and 40 CNTs.

4.3.1 DFT Calculation

The major difficulty in the DFT calculation is solving the eigenvalue problem.

The timing results for various stages an SCF iteration is presented in Table 4.4 for

the family of (3,3) CNTs. Time results depend on the number of openMP thread

116

and the number of MPI processes at each level of parallelism. Here we consider

only the configuration of parallel resources used in the actual calculation. The time

presented is averaged over all SCF iterations. The eigenvalue calculation take by far

the most time for the 20 and 40 CNTs. On average, multiple FEAST iterations were

necessary. Load balancing was an issue as the FEAST interval with core electrons

generally converged in a single FEAST iteration, while intervals targetting valence

states close to the continuum took more for many of the SCF steps. Also shown is

the total number of SCF iterations to reach a convergence of 10−10 on the electron

density.

CNT OMP L1 L2 L3 tH tKS tnq teig tit Nit

5 12 1 4 1 8 12 5 58 79 40
10 12 2 4 2 7 11 7 42 64 42
20 24 4 4 1 34 45 38 373 474 58
40 24 4 4 1 67 91 93 455 706 45

Table 4.4: Parallel configuration used for ground-state calculation of CNTs and
timing results of various SCF operations. Listed are the number of openMP threads
OMP and the number of MPI processes at each levels of MPI parallelism L1, L2 and
L3. Times are listed for computing the Hartree potential tH , including the potential
into the Hamiltonian tKS and recomputing the electron density tnq . The reported
time for solving the eigenvalue problem teig is the average time per SCF step, which
varies depending on the number of FEAST iterations needed. Also reported are the
total time per SCF iteration tit and the total number of SCF iterations Nit.

After convergence the ground state electron density is obtained along with the

Kohn Sham potential. Table 4.5 lists the lowest energy eigenvalue, the HOMO and

LUMO levels, and the total energy for all four CNT molecules.

4.3.2 TDDFT Calculation

The induced dipole moment for the CNTs can be seen in Figure 4.18. The static-

core approximation has been employed to reduce the number of Kohn Sham states

propagated in time. This has very little effect on the result as the motion of inner core

electrons is orders of magnitude faster than valence states and do not participate in

117

CNT E1 EH EL ET

5 -267.73 -4.996 -4.640 -67713.28
10 -268.05 -4.823 -4.820 -128824.88
20 -268.07 -5.000 -4.799 -251350.58
40 -268.28 -4.955 -4.898 -496359.39

Table 4.5: Summary of the ground state calculation for the family of (3,3) CNTs.
The lowest energy state E1, the HOMO and LUMO levels EH and EL and total
energy ET are shown.

5-CNT 10-CNT 20-CNT 40-CNT

dt 0.01 0.01 0.01 0.01
T 15 30 45 65
Nit 1500 3000 4500 6500

Np 13 9 9 8

Table 4.6: TDDFT simulation parame-
ters: time step dt and total simulation
time T in femtoseconds, and the total
number of time-steps Nit. Also listed is
the approximate number of oscillations
Np of the main lowest frequency.

the simulation when using the time-step employed in these calculations. Here only the

first fifteen femtoseconds of the simulation is shown. The time-dependent calculation

is much more computationally expensive than the ground state calculation because

of the large number of time steps needed to capture the lowest energy excitations.

An overview of the total simulation time and time step used to perform the Crank

Nicolson propagation for each CNT can be seen in Table 4.6 along with the approx-

imate number of oscillations of the main lowest frequency. The time interval must

be increased with the length of the tube since the electrons take longer to travel the

full length and perform a single oscillation for the lowest frequency excitation. This

is shown in the figure, where the period grows much longer for the larger tubes. The

entire simulation can be seen in Figure 4.18 for the 5-CNT, while the 40-CNT barely

completes a single period over this time. However, frequency space TDDFT methods

also have difficulties with large molecules since the number of electrons increases and

a real-time approach is actually more scalable.

118

0.0 2.0×10-15 4.0×10-15 6.0×10-15 8.0×10-15 1.0×10-14 1.2×10-14 1.4×10-14

Time (s)

-4×10-12

0
4×10-12

In
du

ce
d

D
ip

ol
e

(m
)

40 CNT

-2×10-12

0
2×10-12 20 CNT

-5×10-13

0
5×10-13 5 CNT

Induced Dipole Moment for the Family of (3,3) Carbon Nano-tubes

-1×10-12

0
1×10-12 10 CNT

Figure 4.18: Induced dipole for 5, 10, 20 and 40 unit cell (3,3) carbon nanotubes.
Only the first fifteen femtoseconds of each simulation are pictured.

Timing results for the TDDFT simulations can be seen in Table 4.7. Along with

the parallel configuration used for the calculation, average times are presented for

various operations computed at each time step. Also shown is the time per time-

step. The table present performance tests for the 20-CNT with different parallel

configurations on top. As can be seen, the third level of parallelism L3 is actually

quite efficient for TDDFT. OpenMP threading is not as efficient for many of the

matrix operations. Also, the full interstitial matrix must no longer be build on each

MPI process and atom atom operations can be parallelized. The bottom shows the

119

CPU OMP L1× L2 L3 tH tKS tnq tprop t∆t

216 24 9 1 34 11 22 46 113
216 12 9 2 12 6 10 25 53
216 12 6 3 11 5 11 23 50
432 6 18 4 4 2 4 18 29
864 12 18 4 4 2 3 16 26

CNT CPU OMP L1× L2 L3 tH tKS tnq tprop t∆t

5 24 3 2 4 6 3 2 17 29
10 48 6 4 4 4 2 3 11 23
20 432 6 18 4 4 2 4 18 29
40 432 12 18 2 21 14 19 48 103

Table 4.7: Top: Performance testing for different parallel configurations (and num-
ber of CPU cores) with the 20-CNT. Bottom: Parallel configuration used for TDDFT
simulations and timing results of various SCF operations for all four CNTs. Listed are
the number of openMP threads OMP and the number of MPI processes at each levels
of MPI parallelism L1, L2 and L3. Times are listed for computing the Hartree po-
tential tH , including the potential into the Hamiltonian tKS, recomputing the electron
density tnq , time propagation tprop, and the time per time step t∆t.

timing results for all four CNT molecules with the parallel configuration used to obtain

the results. The total simulation time can be determined using the total number of

time steps (see Table 4.6).

After computing the induced dipole, the photoabsorption spectrum can be com-

puted via a Fourier transform as outlined in Section 2.2.2.3. Figure 4.19 shows the

photoabsorption spectrum for the 10, 20 and 40 CNT on the same scale. Figures

4.20 and 4.21 show the oscillator strength vs. excitation energy for all four CNTs

on a different scale so that the features can be more easily distinguished. Finally,

a comparison can be seen in Figure 4.22 between a transverse excitation along the

y-axis and the longitudinal excitations (shown in previous figures) along the z-axis for

the 20-CNT. Here we see the major peaks in the absorption disappear for excitations

less than 5eV. The inset shows a zoom from 2eV to 6eV where there exist activity at

3.25eV. We note that the band-to-band transition should not occur in perpendicular

120

excitation, but the intensity of this peak is actually very low and may be due to some

other effect. A new peak also forms around 6eV, which was previously reported for

the 5-CNT [168], and is due to a characteristic shift of the π plasmon to higher energy.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Energy (eV)

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

)

10 CNT
20 CNT
40 CNT

Photoabsorption Spectrum for (3,3) Carbon Nano-tubes

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Energy (eV)

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

)

10 CNT
20 CNT
40 CNT

Photoabsorption Spectrum for (3,3) Carbon Nano-tubes

Figure 4.19: Comparison between absorption spectrum for 10, 20 and 40 unit cell
(3,3) carbon nano-tubes. Full energy range of the simulation is shown on the top.
The bottom is a zoom of main region of interest.

121

0 2 4 6 8 10 12 14 16 18 20
Energy (eV)

0
50

100
150
200
250

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

)

40 CNT

0
20
40
60
80

20 CNT

0
5

10
15
20

5 CNT

Photoabsorption for the Family of (3,3) Carbon Nano-tubes

0
10
20
30
40

10 CNT

Figure 4.20: Absorption spectrum for 5, 10, 20 and 40 unit cell (3,3) carbon nan-
otubes.

4.3.3 Discussion

After computing the photoabsorption spectrum, interesting excitations can be fur-

ther investigated. The 4-dimensional surface plots of the response density δnq(ω, r)

can be calculated for specific resonances and used to determine the nature of the ex-

citation (i.e. whether or not it is a plasmon). This required an additional simulation,

where a set of resonances were identified beforehand and the response density was

computed as the Fourier transform on-the-fly as outlined in Section 2.2.2.3. Figures

122

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Energy (eV)

0

40

80

120

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

)

40 CNT

0

20

40

60 20 CNT

0

5

10

15

5 CNT

Photoabsorption for the Family of (3,3) Carbon Nano-tubes

0

10

20

30 10 CNT

Figure 4.21: Main area of interest of the absorption spectrum for 5, 10, 20 and 40
unit cell (3,3) carbon nanotubes.

4.30, 4.31 and 4.32 at the end of this section present the 4-dimensional surface plots

for interesting resonances in the 5, 10 and 20 CNTs below five electron volts.

Although we do not directly compute the recently proposed plasmon index [221]

that can be used to distinguish a plasmon from a single-particle excitations, it is

useful to transcribe the equation to gain more understanding of plasmon behaviour.

The plasmon index is defined as,

η =

∣∣∣∣
∫

Ω
δn(ω, r)v∗ind(ω, r)dr∫

Ω
δn(ω, r)v∗ext(ω, r)dr

∣∣∣∣ , (4.1)

123

0
20
40
60
80

Z Excitation

Longitudinal and Transverse Excitations for 20 CNT

0 2 4 6 8 10 12 14 16 18 20
Energy (eV)

0
20
40
60
80

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

)

Y Excitation3 4 5

1

2
Y Excitation

Figure 4.22: Comparison between a transverse (Y) and longitudinal (Z) excitations
for the 20-CNT.

where vind is the induced electrostatic potential and vext is the external potential.

Here, where the goal is to gain insight, the denominator can be safely ignored as it

just is a normalization condition. The induced potential,

vind(ω, r) =

∫
Ω

δn(ω, r′)

|r − r′|
dr′, (4.2)

is the classical electrostatic potential due to the induced charge from a specific ex-

citation. With TDDFT, this also includes the exchange and correlation energy [40].

As an aside, the numerator could be calculated directly as the Fourier transform of

the time-dependent Hartree potential and exchange and correlation potentials (more

specifically the difference from their ground state value). This would be similar to

the procedure used here for computing the response density on-the-fly at each time

step. In any case, the 4-dimensional surface plots can give some understanding of the

induced potential and the plasmon index.

First let us consider excitation peak at 10 electron volts, which is common to all

four CNTs. This is a π+σ plasmons [168] and thus does not change with tube length.

124

The π plasmon can also be seen in later 4-dimensional plots for each CNT around

E = 4.4eV. These plasmons can be detected experimentally [122, 121, 111, 151]. They

can be excited by a transverse excitation since they are of bulk-type, but shift to high

energies as seen in Figure 4.22. The surface plot is shown in Figure 4.23 and has a

similar character for each of the molecules, which shows good agreement between the

simulations.

Figure 4.23: Surface plot of
the response density δn(w, r)
taken at±109 for the π+σ peak
at ω ≈ 10 (eV) in the absorp-
tion spectrum; from top to bot-
tom: 5, 10 and 20 CNT. The 5
CNT is the only molcule with
an odd number of unit cell.

Next let us consider the lowest energy excitation for each of the CNTs. Figure

4.24 shows the corresponding 4-dimensional surface plots. It was labeled as a single-

particle excitation in [168] for the 5 CNT. However, this excitation also seems to

resemble a surface plasmon in the 4-dimensional plots for the 10 and 20 CNT since

a dipole moment exists across the tube, which results in a net potential (and a large

value for the integral defining the plasmon index).

The velocity of this excitation for larger tubes also surpasses the Fermi velocity

of 106 (m/s), as shown in Figure 4.25. The phase velocity is given by the equation,

v = λf = 2Lf, (4.3)

125

Figure 4.24: Surface plot of the
response density δn(w, r) taken
at ±109 for the first peak of the
absorption spectrum; from top
to bottom: 5, 10 and 20 CNT
with ω = {1.65, 1.24, 0.82} (eV),
respectively.

0 1 2 3 4 5 6 7 8 9 10 11
Length (nm)

0.5

1

1.5

2

2.5

3

V
el

oc
ity

 (1
06 m

/s
)

5-CNT
10-CNT
20-CNT
40-CNT

Plasmon Excitation Velocities for the Family of (3-3) Carbon Nano-tubes

CNT Length (nm) E (eV) fq (THz) v (m/s)

5 1.2486 1.62 394.13 0.98× 106

10 2.4927 1.24 299.83 1.49× 106

20 4.9944 0.82 198.27 1.98× 106

40 9.9888 0.525 126.94 2.54× 106

Figure 4.25: Velocity corresponding to the lowest energy peak in the absorption
spectrum for the 5, 10, 20 and 40 unit cell CNT. As the length of the tube increases
the speed increases past the Fermi velocity and the behavior seems to transform from
a single-particle type excitation to a collective plasmonic excitation.

126

where f is the frequency of the excitation and the wavelength λ = 2L is taken as twice

the length of the CNT. As these plasmons are localized to the surface, a reasonable

assumption is that they must travel back and forth the full length of the nano-tube

to complete a single oscillation. This is further supported by the 4-dimensional plots.

These could be Luttinger-liquid plasmons. Luttinger-liquid theory [140, 200] de-

scribes quantum confined electrons in 1-dimension and, as such, describes the be-

haviour of electrons in carbon nano-tubes which are quasi 1-dimensional nanostruc-

tures. The theory predicts the existence of Luttinger-liquid plasmons with a velocity

between 3× and 4× that of the Fermi velocity in single wall CNTs. In fact, the exis-

tence of Luttinger-liquid plasmons in CNTs has recently been verified experimentally

[184] using scattering-type scanning near-field optical microscopy. The curve in Fig-

ure 4.25 plots plasmon velocity against CNT length for the lowest energy excitation of

our simulations. It is beginning to approach a constant value and the slope suggests

that the velocity for 80, 160 and 320 unit cell (3,3) CNTs will be 2.92, 3.21 and 3.3

(×106 m/s), respectively. This is in close agreement with measured Luttinger-liquid

plasmon velocities [184] in one micron tubes, which had values in the range of 3.3− 4

(×106 m/s). Note that the diameter should not significantly change the plasmon

velocity according to the theory. The wavelengths for these observed plasmons were

much longer than the length of our CNTs with a value of 100 nanometers or 75

nanometers depending on the exciting frequency (this was said to vary due to the

frequency dependent dielectric constant of the substrate). Thus, the strong spatial

confinement would not appear in our simulations. The wavelength, however, would

be comparable to the length of a 320 unit cell tube where the velocity is predicted to

have a constant value.

There is a second series of plasmon peaks identified for the 5-CNT in [168]. The

first is located at 3.89eV, while the second at 4.76eV comes in the form of a double

peak. These appear to be related to the peaks near 3.61eV in the 10-CNT (see Figure

127

4.21). Note that the 7-CNT also showed a similar double peak in [168]. However,

for the longer tubes (20-CNT and 40-CNT) it becomes difficult to follow them as

they would appear in the region dominated by the band-to-band transition which

will be discussed next. This higher energy plasmon associated with the double peak

quickly reaches fairly large plasmon velocities of more than 3 (×106 m/s) for the 7-

CNT, as reported in [168]. The nature of these resonances is not clear as they could

point to a small molecule effect specific to short CNTs and may not be related to the

canonical Luttinger-liquid plasmon in the limit of very long tubes. This interpretation

is consistent with [108] which showed that the Luttinger-liquid model can be applied

to armchair CNTs if long-range electron-electron interactions are taken into account,

while neglecting short-range interactions. This second series of plasmon resonances

for shorter tubes could thus be influenced by short range interaction effects.

Another common peak at 3.25eV is also compared for all CNTs in Figure 4.19

which shows the 4-dimensional plots. This peak was labeled as a band-to-band transi-

tion in [168], which investigated nano-tubes up to seven unit cells. The band-to-band

transition has been detected experimentally at 3.1eV [135] for (3,3) CNTs, which is in

close agreement with other simulated resonances for the 20 (4D plot shown in Figure

4.32) and 40 unit cell tubes. The observed peak around 3eV for these tubes is also

close to other ab initio simulations [189, 137] identifying the band-to-band transition.

The character of this peak for the 10-CNT resembles the 5-CNT. However, the 20-

CNT seems to undergo a transition and obtain a more plasmon-like characteristics.

Excitonic effects have been attributed to resonances around 3eV in (3,3) CNTs [189]

and have an extension of around 5 nanometers, which is very close to the size of the

20 CNT.

Four-dimensional plots for the π plasmon peak are now presented in Figure 4.27,

which appear around E ≈ 4.4eV. Like the π + σ plasmon, this can be excited by

a transverse excitation but shifts to higher energy (around 6eV) as shown in Figure

128

Figure 4.26: Surface plot of
the response density δn(w, r)
taken at ±109 for the peak at
ω ≈ 3.25 (eV) in the absorp-
tion spectrum; from top to bot-
tom: 5, 10 and 20 CNT.

4.22. For the larger tubes it becomes more difficult to distinguish characteristics from

the 4-dimensional plot since the excitation is weaker compared to other resonances.

Figure 4.27: Surface plot of
the response density δn(w, r)
taken at ±109 for the peak at
ω ≈ 4.40 (eV) in the absorp-
tion spectrum; from top to bot-
tom: 5, 10 and 20 CNT.

For the larger tubes, we note that two additional small sharp peaks appear in the

gap between the main lowest frequency and the highly active area. A close up plot

of this region is shown in Figure 4.28 for the 20 and 40 CNT. Also shown, in Figure

4.29, is the surface plot for the 20 CNT excitation at 1.53eV and 2.02eV, which seems

to be quantized along the length of the tube. These peaks also resemble plasmons

and are likely to be second and third harmonics of the lowest energy resonance, which

have been witnessed in other TDDFT simulations of sodium chains [40]. Although

129

Photoabsorption Spectrum for Harmonic Resonances

1 1.5 2 2.5 3
Energy (eV)

0

1

2

3

4

5

O
sc

ill
at

or
 S

tre
ng

th
 (e

V
-1

) 20 CNT

1 1.5 2 2.5 3
Energy (eV)

0

5

10

15

20

40 CNT

Figure 4.28: Small sharp resonances that appear in gap between the main lowest
frequency and other excitations for the 20 and 40 unit cell CNTs.

Figure 4.29: Four dimensional surface plot taken at ±2× 108 of the 20 CNT. These
peaks, shown in Figure 4.28, are in the gap between the main lowest frequency and
other excitations. Top: response electron density for the peak at E = 1.53eV. Bottom:
response electron density for the peak at E = 2.02eV.

we do not expect an exact integer multiple, the values of 1.53 and 2.02 are somewhat

close to 2× and 3× the energy of the lowest excitation at 0.825eV for the 20-CNT.

These resonances appear from a screening effect of the main plasmon resonance that

hides the end of the nano-tube from other charge oscillations.

130

E = 1.65eV f = 398.66THz E = 3.25eV f = 785.85THz

E = 3.89eV f = 940.60THz E = 4.44eV f = 1073.59THz

E = 4.76eV f = 1150.96THz

Figure 4.30: Surface plot of the response density δn(w, r) taken at ±109 for the
5-CNT. Each plots is for a different ω corresponding to an energy E and frequency f
in the range of Figure 4.21.

131

E = 1.23eV
f = 297.41THz

E = 2.88eV
f = 696.38Thz

E = 3.29eV
f = 795.52

E = 3.61eV
f = 872.89Thz

E = 3.81eV
f = 921.25Thz

E = 4.21eV
f = 1017.97Thz

E = 4.39eV
f = 1061.50Thz

Figure 4.31: Surface plot of the response density δn(w, r) taken at ±109 for the
10-CNT. Each plots is for a different ω corresponding to an energy E and frequency
f in the range of Figure 4.21.

132

E = 0.825eV
f = 199.48THz

E = 3.05eV
f = 736.52

E = 3.22eV
f = 779.32Thz

E = 3.56eV
f = 859.60Thz

E = 3.94eV
f = 951.68Thz

E = 4.39eV
f = 1061.5Thz

Figure 4.32: Surface plot of the response density δn(w, r) taken at ±109 for the
20-CNT. Each plots is for a different ω corresponding to an energy E and frequency
f in the range of Figure 4.21.

133

CHAPTER 5

DISCUSSIONS ON PERFORMANCE AND SCALABILITY

5.1 PFEAST eigenvalue solver

We now discuss how to place parallel resources across the three different levels

of parallelism. The matrix systems used to gather results are a collection of Hamil-

tonians representing carbon nanotube (CNT) molecules of varying length (ranging

from 54 to 246 atoms). These finite-element systems are genereated from NESSIE

and use second degree polynomial refinement and are generated from a 3-3 CNT

unit cell. They are terminated with six hydrogen atoms at each end and follow a

(Uh|UaUb| . . . |UaUb|Ua|Uh) pattern (see a 3 unit cell CNT in Figure 5.1) with Uh rep-

resenting the six hydrogen atoms and Ua and Ub different configurations of six atom

carbon rings. Each carbon atom contains six electrons, which corresponds to three

eigenmodes (since the electron spin is not explicitly taken into account). The number

of sought eigenvalues m in a CNT system with nu unit cells is given by

m ≈ 6 + 18 + 36× nu, (5.1)

where the first six modes correspond to the twelve terminating hydrogen atoms, the

next eighteen modes to the Ua carbon ring and the additional factor of thirty-six

modes to the |UaUb| unit cells.

The experiments were performed on the Mesabi Linux cluster at Minnesota Su-

percomputing Institute. The compute nodes feature two sockets, each with a twelve

core 2.5 GHz Haswell E5-2680v3 processor. We define each MPI process as a single

134

Figure 5.1: 3-dimensional plot of a 3 unit cell CNT (3-CNT). The molecule is com-
posed of 3 |UaUb| units cells, includes an additional Ua ring, and is terminated with
hydrogen atoms Uh at each end.

socket and allow the distributed memory solver to use 12 openMP threads per MPI

process. The nodes are also equipped with 64 GB of system memory.

Although the PFEAST kernel could be interfaced with an iterative or hybrid

solver, we consider only the application of three different sparse direct solvers. Both

Cluster-MKL-PARDISO and MUMPS have been tested with the full matrices gener-

ated by stitching together the interstitial and atomic meshes within our finite-element

electronic structure code (as seen in the left plot of Figure 2.6). Our application

specific domain-decomposition solver (DD-Solver) reorders the matrix based on the

number of L3 MPI processes, in order to reduce communication. For consistency

the matrices have been permuted the exact same way for Cluster-MKL-PARDISO,

MUMPS and the DD-Solver. All tests have been run with default parameters for

the solvers operating in ‘in-core’ mode. Both Cluster-MKL-PARDISO and MUMPS

decompose the full matrix by row over L3 MPI processes and contain interstitial and

atomic points. The inputs to PFEAST will be consistent among the solvers with each

135

L3 MPI process assigned the exact same subset of the eigenvector solutions, as long

as the number of L3 MPI processes is divisible by the number of atoms.

The scalability of PFEAST will mainly depend on solving the complex linear

systems and choosing how to distribute the parallel resources. This results in the

trade-off between memory and performance mentioned in Section 2.4.5. If enough

resources are available, it is advisable to place as many MPI processes at the second

level of parallelism as possible. This level handles the independent linear systems and

requires a copy of the matrix and solution on each L3 MPI process. It should result

in close to ideal linear scaling. In contrast, if the matrix or solution can not fit into

memory, it may be distributed using the third level of parallelism. The scalability

then depends on the distributed memory solver.

5.1.1 Strong scalability of L2

The L2 scalability can be seen in Figure 5.2, where 3 MPI processes have been

assigned to L3 and the number of clusters of L3 MPI processes (i.e. the number of L2-

Communication-Worlds) is varied from 1 to 16 for a total of 3, 6, . . . , 48 MPI processes

(i.e. a total of 36 to 576 cores). These results have been gathered using the matrix

system CNT-5 comprised of five unit-cells with a total of 78 atoms and a dimension

of 302, 295. We note that the eigenvalue and eigenvectors obtained for this example

correspond the true converged DFT solutions. The right graph in Figure 5.2 shows the

ideal speedup in black that increases linearly with the number of L2-Communication-

Worlds. The actual speedups (compared to a single L2-Communication-World) for

the three solvers are plotted as points below the line. We see very close to linear

scaling at this level. The total time to solve the eigenvalue problem is plotted on the

left. Four PFEAST iterations were needed to reach the default convergence criteria

of 10−12 on the eigenvector residuals. The factorization stage was only computed

once for the case of 16 L2-Communication-Worlds, but did not result in super linear

136

scaling due the 20 total seconds spent in the PFEAST kernel computing the solution

to the reduced eigenvalue problem and performing communication.

Figure 5.2: Scalability of the second level of parallelism. The number of L2 processes
is increased from 1 to 16 while keeping the number of L3 MPI processes at a constant
value of 3 (for a total of 36 to 576 cores). This level is limited to 16 L2 MPI processes
since 16 quadrature points were used. These results are for the CNT-5 eigensystem
with m0 = 600 (226 eigenvalues). The left graph gives the total time to solve the
eigenvalue problem. The speedup compared to 1 cluster of L3 processes can be seen
on the right.

5.1.2 Strong scalability of L3

The scalability of the third level of parallelism L3 is limited by the properties of

the eigensystem and linear-system solver. The strong scalability of the DD-Solver,

specifically, may be limited by the number atoms. All L3 MPI processes can work

together in the solution to the interstitial matrix regardless of the number of atoms.

But, if the number of L3 MPI processes exceeds the number of atoms, not all MPI

processes will be used to solve distributed blocks (some will not have been assigned

an atom). It can also be unbalanced if a different number of atoms are assigned to

each MPI process. However, problems that require a distributed memory solver will

137

usually target nanostructures with many atoms; usually far outnumbering the parallel

resources. Figure 5.3 shows the strong scalability of the L3 level of parallelism within

PFEAST. The matrix system from the CNT-5 molecule is used again with m0 = 600

and the number of L3 MPI processes is varied from 1 to 32. We report the total

time required to solve the eigenvalue problem (four PFEAST iterations to reach

convergence) on the left. The speedup compared to 2 L3 MPI process can be seen on

the right. Here we compare with 2 L3 MPI processes because of the communication

overhead associated with the distributed memory solvers. The time should, ideally,

drop by half each time the number of MPI processes is doubled. As can be seen in

the graph, the efficiency of the L3 scaling is much worse than for L2.

Figure 5.3: Scalability of the third level of parallelism for 5-CNT system with m0 =
600 (226 eigenvalues). The left graph the total time to solve the eigenvalue problem.
Fully utilizing L2 (with a total of 12,288 cores) these times could be reduced by a
factor of 16. The scaling compared to 2 L3 MPI processes can be seen on the right.

5.1.3 A fixed number of CPUs

Another situation common within the scientific computing community is where

parallel resources are limited to a specific number processors. Here the three levels

138

of parallelism within PFEAST can help to optimally utilize all parallel resources and

achieve good performance. We only consider the second and third levels of parallelism

L2 and L3. The question becomes how to divide the resources among the two levels.

If 64 nodes are available on the system and 16 PFEAST contour points are used

there are then five ways to distribute the resources across the L2 and L3 levels of

parallelism. There is no restriction for the number of MPI processes applied to the

L3 level. Each L2-Communication-World, however, should have the same number

of linear systems for load balancing. With 16 contour nodes, the possible values are

1, 2, 4, 8, 16. In order to fully utilize the resources we choose the number of L3 MPI

processes as 64, 32, 16, 8, 4. Table 5.1 presents the total time to solve the eigenvalue

problem for a fixed number of MPI processes, but different distributions of parallel

resources over the L2 and L3 levels. As we initially predicted, it is optimal to place

as many resources as possible at the L2 level and the best performance happens for

one linear system per L2-Communication-World.

Table 5.1: Time (in seconds) to solve the 5-CNT eigenvalue problem with m0 = 600.
The total number of MPI processes is held constant, but can be split between the
second and third level of parallelism. More MPI processes at the L3 level will reduce
the memory required by each MPI process (i.e. the number of rows of the eigenvector
and system matrices assigned to each process).

L2 # L3 # Rows DD-Solver PARDISO MUMPS

1 64 6260 639 982 923

2 32 10553 323 511 643

4 16 19139 172 315 332

8 8 38277 116 171 194

16 4 76554 104 115 125

5.1.4 L1 scalability

With the first level of parallelism L1, multiple contours can be solved in parallel to

reduce m0 (the number of right-hand-sides and projected eigenproblem dimension).

139

Table 5.2: Scaling of the L1 level of parallelism. Together the three contours C1,
C2 and C3 - defined by (λmin λmax) - are equivalent to the full contour C0. Each
contour can be treated independently (in parallel) and calculates only a subset of
eigenvalues. Sub-dividing the contour results in a speedup for the solve stage since
the resulting linear-systems have fewer right-hand-sides (m0). The factorization and
solve times for a single PFEAST iteration are recorded in the table. Results use the
CNT-5 matrix system with a total of 13 MPI processes (156 cores), all placed at the
L
¯

3 level.

λmin λmax m0 # Eig Fact (s) Solve (s)

C0 -500 -2 600 273 96 170

C1 -500 -100 200 66 94 59
C2 -100 -16 200 92 99 57
C3 -16 -2 200 115 96 56

If the reduced eigenvalue problem becomes too large it can not be solved with a

traditional dense techniques and the contour must be sub-divided. Also, the L2 and

L3 will eventually saturate and performance can not be improved placing resources

at these levels of parallelism. Multiple contours at the first level L1 can then be

used to increase performance by speeding up the solve stage. For this example we

have again used the CNT-5 system with 78 atoms and present two separate cases.

The first uses a single contour C0 to calculate all eigenmodes with m0 = 600. The

next case sub-divides the entire search interval into three separate pieces C1, C2

and C3 which can be calculated in parallel. This first contour C1 targets the core

electronic modes within the system that are well separated from valance states. Two

contours C2 and C3 are then used to calculate the valance modes, which are much

more densely populated. The total time to solve the eigenvalue problem using the

L1 level of parallelism would then depend on the slowest sub-contour. Because the

separation between eigenvalues is small the second and third contours could exhibit

slower convergence than C1 and require more PFEAST iterations. However, for the

sake of comparison we only present the time of a single PFEAST iteration. Here

we report the factorization time, which does not change much between the three

140

contours, and the solve time for a single PFEAST iteration. Because m0 is small, the

time spent in the kernel is minimal for this example. Dividing the contour into three

segments results in a speedup of around three for the linear system solve.

5.1.5 Weak scalability

To highlight the weak scalability of PFEAST, we present results for a variety

of CNT systems. We consider only the L3 level of parallelism and place six atoms

on each MPI process (each unit cell places an additional 12 atoms in the system).

We then gather results, varying the length of the CNT up to 19 unit cells, using

9, 17, . . . , 41 L3 MPI processes (up to 492 cores) to optimally utilize the solver. The

weak scalability can be seen in Figure 5.4. Large sparse eigenvalue problems usually

attempt to calculate a percentage of the eigenpairs. However, with the L1 level of

parallelism the number of eigenvalues (and right-hand-sides) can be held constant.

To showcase the weak scalability we then use a constant value of m0 = 200 for all

matrix systems. The number atoms and system size are listed in the table for each

molecule. The factorization and solve times for a single iteration of PFEAST are

then plotted for all three solvers. We witness, for the factorization, a steeper increase

in the time for the smaller systems. The factorization times then begin to taper off

for larger systems. The solve time, however continue to increase for larger systems.

This behavior is more pronounced for the DD-Solver and Cluster-MKL-PARDISO

and is due to communication. MUMPS, however, ran out of system memory far

before Cluster-MKL-PARDISO or the DD-Solver. These results show that the DD-

Solver is not only faster (in total time), but has better weak scalability than the

“black-box” solvers. Much larger molecular systems can then be handled through the

domain-decomposition approach.

The total time to solve the eigenvalue problem will increase by an additional

multiplication factor depending on the number of PFEAST iterations to reach con-

141

MPI 9 17 25 33 41

Atoms 54 102 150 198 246
System Size 211,110 392,650 575,760 757,934 942,157

Figure 5.4: Weak scaling of factorization and solve stages (in seconds) for a single
PFEAST iteration using 16 contour points (16 linear-systems solved in total using #
L2=1) and 200 right-hand-sides. The matrix size is increased proportionally to the
number of MPI processes. Reported timings could be reduced by a factor of 16 if L2
was fully utilized. MUMPS ran into memory issues for more than 198 atoms (757,934
size, 33 MPI).

142

vergence. However, if the L2 level was fully utilized, resulting in a maximum of 7,872

cores, the absolute times could be reduced by a factor of 16 as discussed in Figure

6. In electronic structure applications, the number of wanted eigenvalues should also

grow linearly with the size of the atomistic system. If the spectrum can be sliced

uniformly at level L1 as illustrated in Table III, and assuming an access to ‘unlim-

ited parallel resources’ where the total number of L3 MPI processes (and then cores)

can grow linearly with the number of slices L1, the weak scalability and absolute

timing results (that can also be divided by the number of L2) presented in Figure

8, shall then be preserved. Solving for all the eigenpairs of the largest system in

Figure 6 that contains 246 atoms could use 5 slices each of block size 200, and re-

sult in (#L1)×(#L2)×(#L3)=3,280 total MPI processes (using #L1=5, #L2=16,

#L3=41) or 3280×12=39,360 total cores (using 12 cores per MPI process).

5.2 Benchmarking full DFT and TDDFT calculations

Previous results have shown the scalability of the linear system solver and eigen-

value solvers used within the NESSIE code. These are the two major computations

that take place in the DFT and TDDFT calculations. However, other operations can

take a substantial amount of time. This includes computing the Hartree potential,

adding the total potential into the Kohn Sham Hamiltonian and recomputing the

electron density from the single particle wave functions. Each of operations has been

parallelized over all three levels of MPI and with OpenMP directives.

Scalability for the major computational aspects of NESSIE are presented in Table

5.3 for five, ten and twenty unit cell CNTs containing 78, 138 and 258 atoms, re-

spectively. Two separate results exist for each molecule. The first uses the standard

NESSIE discretization. The second, labeled with a “-b”, uses a coarser mesh in the

molecular region and the interstitial matrix has approximately half the number of

points.

143

The results have been gathered on a single compute node on Comet, which is

comprised of two 12 core CPUs. Results presented in the table are for different

configurations of Nomp and Nmpi3: the number of OpenMP threads and the number

of MPI processes at L3, the third level of parallelism.

The reported total time corresponds to the observed time of a single SCF iteration

without L1 or L2 and using a single FEAST contour point. Timing results for both

DFT and TDDFT calculations can be extrapolated from these results. The number

of FEAST contour points has been set explicitly to one for benchmarking purposes.

This allows for time projections for both the eigenvalue computation and the Crank-

Nicoloson time propagation, which must solve a single linear system per time step.

All additional reported times correspond to operations existing in both DFT and

TDDFT.

For the ground state Kohn Sham eigenvalue problem it is assumed that the L2 level

of parallelism will be fully used and only the L3 level of parallelism must be considered.

Additional MPI processes at L2 will have an effect on the matrix vector multiplication

time tMV and kernel time tK , but not on times reported for the factorization tF and

solve tS.

With Crank-Nicoloson the L2 parallelism level distributes the time dependent

wave function (eigenvectors) and propagates them in parallel. This will not effect the

factorization time, but the solve time will have ideal scaling at L1 and L2. Further-

more, only M < M0 ground states need to be considered in this case, instead of the

larger subspace needed with FEAST.

The time to compute the Hartree potential tH includes calculating boundary con-

ditions and solving the Poisson equation. The time to include the potential in the

Hamiltonian tinc must perform and integration over all mesh elements. And, the time

to recomputing the electron density tnq sums over all occupied single particle wave

functions. The times tH , tinc, tnq , tK , and tMV do not take L1 or L2 into consideration,

144

which will have a performance benefit. The total reported time,

ttotal = tH + tinc + tnq + tF + tS + tMV , (5.2)

is just the sum of the times for each operation. The projected time of and SCF

iteration,

tSCF =
tH + tinc + tnq

L1 ∗ L2
+ tF + tS +

tMV + tK
L2

, (5.3)

assumes eight FEAST contour points (L2 = 8) and perfect scaling at both L1 and

L2 for these operations. The time for a single time step in the real-time TDDFT

calculation t∆t will include tH , tinc, tnq and tF , which will be the same as reported in

the table for the SCF iteration. However, the solve time will be reduced by a factor

of M/(M0 ∗ L2), since fewer right-hand-sides must be considered (M for TDDFT

compared to M0 for SCF) and these can also be distributed over L2 MPI processes.

A similar argument can be made for the matrix-vector multiplication here, but the

matrices are complex (i.e. twice the size) and an additional factor of two is included

in the projection.

t∆t =
tH + tinc + tnq

L1 ∗ L2
+ tF +

tS + 2× tMV

L2
× M

M0

(5.4)

Scalability for OpenMP can be seen from the (6, 1), (12, 1) and (24, 1) combi-

nations of (Nomp, Nmpi3). Not ideal, but still very good scaling is observed for all

operations except recomputing the electron density. Scalability for L3 can be seen

from the (6, 1), (6, 2) and (6, 4) and (12, 1) and (12, 2). Again, at this level fairly

good scaling is seen, especially for smaller molecules. However, a major drawback

of direct distributed memory linear system solvers can be witnessed. The solve time

tS has very poor scaling with L3, since communication must be performed. This is

especially pronounced for larger molecules, particularly with the fine molecular grid.

In many cases this performance hit negates all other gains. However, this level of

145

parallelism is meant to address weak scalability and should be used when the matrix

factorization can no longer fit into the memory of a single compute node.

146

10-CNT-3-3: Nat = 138, Ne = 768, n = 531244, nit = 259798, 2× (M0 = 400)

Nomp Nmpi3 tH tinc tnq tF tS tMV tK ttotal tSCF t∆t

1 1 110 24 24 138 105 92 21 514 266 158
6 1 28 12 27 36 20 32 9 154 65 43
6 2 19 8 12 23 46 23 5 136 75 29
6 4 14 5 6 18 34 11 2 90 55 22

12 1 19 9 27 24 12 23 8 122 43 29
12 2 14 5 12 18 27 12 4 92 48 22
24 1 16 7 25 20 9 25 8 110 36 25
10-CNT-3-3-b: Nat = 138, Ne = 768, n = 383328, nit = 111882, 2× (M0 = 400)

Nomp Nmpi3 tH tinc tnq tF tS tMV tK ttotal tSCF t∆t

6 1 14 7 16 13 12 16 7 85 30 17
6 2 9 5 8 8 16 11 4 61 27 11
6 4 6 3 4 6 9 6 2 35 17 8

12 1 10 6 19 11 8 12 6 72 24 14
12 2 7 3 8 7 10 6 3 44 19 9
24 1 9 5 16 10 6 8 5 59 18 13
20-CNT-3-3: Nat = 258, Ne = 1488, n = 978312, nit = 479826, 4× (M0 = 500)

Nomp Nmpi3 tH tinc tnq tF tS tMV tK ttotal tSCF t∆t

6 1 67 27 116 73 49 109 23 464 146 89
6 2 46 18 115 59 182 50 12 482 255 78
6 4 33 12 27 49 115 60 7 303 175 61

12 1 44 22 107 48 30 76 20 347 96 60
12 2 31 14 52 48 106 46 10 307 164 60
24 1 34 17 107 52 22 50 20 302 87 61
20-CNT-3-3-b: Nat = 258, Ne = 1488, n = 713162, nit = 205676, 4× (M0 = 500)

Nomp Nmpi3 tH tinc tnq tF tS tMV tK ttotal tSCF t∆t

6 1 35 17 108 26 38 37 17 278 76 35
6 2 21 11 105 21 50 26 9 243 80 30
6 4 15 7 18 12 29 15 5 101 45 16

12 1 23 14 79 21 17 28 14 196 47 27
12 2 15 8 35 14 21 15 7 115 40 18
24 1 19 12 74 19 13 18 13 168 38 24

Table 5.3: Performance results for major operations within a single NESSIE SCF
iteration; from left to right: (tH) computing the Hartree potential, (tinc) including the
potential into the Hamiltonian, (tnq) recomputing the electron density, and (tF , tS
and tMV) factorization, solve and mat-vec stages in FEAST. It is assumed c FEAST
contours will be used (where c×M0 is specified under each test). Projections assume
that L2 = 8 and ideal scaling of tH , tinc, tnq , and tMV . The “-b” molecules use a
coarser grid in the molecular region (set to 0.03) and have approximately half the
number of interstitial points.

147

CHAPTER 6

CONCLUSION

This dissertation has presented a complete parallel framework for density func-

tional theory and time-dependent density functional theory calculations. Specific

contributions outlined in this dissertation are focused on parallel scalability for DFT

and TDDFT. DFT is the general method applied to electronic structure calculation

involving more than a handful of atoms. A real-space real-time approach for TDDFT

is a scalable method for excited states calculations and can be applied to molecules

containing up to a thousand atoms with the current NESSIE framework. The NESSIE

code has been parallelized with a combination of MPI (for distributed memory) and

OpenMP (for sharded memory).

Details on the modeling framework were presented in Chapter 2 including back-

ground on the physical model (DFT and TDDFT), the discretization (finite element

combined with a muffin-tin domain decomposition) and numerical algorithms for solv-

ing linear algebra problems (mainly for eigenvalues and linear systems). An example

for running the code was the subject of Chapter 3 and provides a step-by-step pro-

cess for running the code and details for DFT and TDDFT calculations. Chapter 4

presented results for a collection of small molecules as well as a more detailed inves-

tigation of (3,3) carbon nano-tubes up to forty unit cells. Benchmarking of the codes

performance and scalability was then shown in Chapter 5.

Scalability in NESSIE has been achieved through the creation of parallel numer-

ical algorithms for linear systems and eigenvalue problems. A Schur complement

linear solver has been developed for linear systems arsing from the domain decom-

148

position. The PFEAST eigenvalue solver has also been created and integrated with

the numerical simulation procedure for ground state DFT calculations. PFEAST is

a stand-alone package that will be released in v4.0 of the FEAST Eigenvalue Solver

project and contains three levels of MPI parallelism as well as an additional level

of threading. In particular, it allows one to link a distributed memory linear solver

with FEAST and is appropriate for domain decomposition approaches like the one

employed in NESSIE. Since the eigenvalue problem in DFT is particularly difficult

due to the number of eigenpairs that must be calculated, the FEAST algorithm is an

ideal choice of algorithm as it allows for slices of eigenvalues and vectors to be com-

puted independently. This feature is necessary for simulations of large scale molecules

with more than a thousand electrons and used extensively for the large-scale results

in this dissertation. As PFEAST is the backbone of NESSIE, all other aspects of the

software package have been parallelized over the three levels of MPI inherent to the

algorithm to achieve good strong scalability of all mesh and matrix operations.

Results for small molecules have also been presented and compared directly to

experimental data, for which some remarkable agreement can be witnessed. The

capability of the code for large scale molecules has been demonstrated for a set of

carbon nano-tubes. These large-scale results were made possible by the weak scala-

bility of NESSIE on distributed memory machines, where more computing resources

were employed to solve larger problems. The investigation of plasmon resonances in

carbon nano-tubes produced interesting results which seem to hint at the presence of

a Luttinger-liquid.

Future directions in NESSIE could investigate X-ray absorption with little changes

required to the approach or to the software. Photoabsorption in the infrared frequency

range could also be handled within the real-space real-time framework. Simple vibra-

tions could be studied with only small changes in the current NESSIE implementation,

but challenges exist for a more general approach which would require mesh moving

149

techniques to allow for the actual movement of atoms. Furthermore, the current

NESSIE implementation can now investigate many interesting large-scale molecules

with up to one thousand atoms. This opens up interesting research directions in the

nanoengineering and biological application spaces.

This work was supported under NSF grant CCF #1510010 and by Intel, Co.

150

APPENDIX

NON-HERMITIAN FEAST

Details of the non-Hermitian FEAST algorithm will now be discussed. The
FEASTv3.0 software package can not be applied to non-Hermtitian matrices. Mod-
ifications to the algorithm are described here along with software implementation
details. In the following, all quantities associated with the left eigenvectors will be
written with a ’̂’ symbol (e.g. X̂, Ŷ and Q̂).

Defining a search interval
A key feature of FEAST is the ability to calculate a subset of eigenvalues that

exist within some interval. Figure 6.1 summarizes the different search contour options
possible for both the Hermitian and non-Hermitian FEAST algorithms.

For the Hermitian case, the user must then specify a 1-dimensional real-valued
search interval [λmin, λmax]. These two points are used to define a circular or ellipsoid
contour C centered on the real axis and along which the complex integration nodes
are generated. The choice of a particular quadrature rule will lead to a different set
of positions for the nodes and associated quadrature weights i.e. (zj, ωj). Since the
eigenvalues are real, it is convenient to select a contour symmetric to the real axis
(i.e. C = C∗) since the symmetry enables one to integrate over only half the contour
(e.g. upper half).

With a non-Hermitian problem, it is necessary to specify a 2-dimensional search
contour that surrounds the wanted complex eigenvalues. Circular or ellipsoid contours
can also be used and they can be generated using standard options included into
FEAST v3.0. These are defined by a complex midpoint λmid and a radius r for a
circle (for an ellipse the ratio between the horizontal axis and vertical axis diameter
can also be specified, as well as an angle of rotation). However, in some applications
where the eigenvalues of interest belong to a particular subset in the complex plane,
more flexibility for selecting a search contour with arbitrary shape could be needed.
This option also lends itself to parallelism, where a large number of eigenvalues can be
calculated by partitioning the complex plane into multiple contours. Consequently, a
“Custom Contour” feature is also supported in FEAST v3.0 that allows for arbitrary
quadrature nodes and weights.

151

Figure 6.1: Various search contour examples for the Hermitian and the non-Hermitian
FEAST algorithms. Both algorithms feature standard elliptical contour options and
the possibility to define custom arbitrary shapes. In the Hermitian case, the contour is
symmetric with the real axis and only the nodes in the upper-half may be generated.
n the non-Hermitian case, a full contour is needed to enclose the wanted complex
eigenvalues.

Dual subspaces: left and right spectral projectors

In this section, in addition to the right spectral projector ρ(B−1A) defined in
(2.85), we will be introducing a left spectral projector ρ(AB−1). In order to simplify
the discussion and offer some continuity with the notation used for the Hermitian
FEAST, we are here assuming that B is non-singular. The non-Hermitian FEAST
algorithm, however, is expected to work for cases where B is singular, assuming that
the zB−A is non-singular in the expression of the spectral projector and the targeted
eigenpairs are sufficiently well-conditioned. Since the non-Hermitian system may be
defective, the filtering function is applied to the Jordan normal form:

ρ(B−1A) = Xρ(J)X−1. (6.1)

When applied to each Jordan block Jk, the expression of the operator becomes [94]:

152

ρ(Jk) = ρ

λk 1 . . . 0

0 λk
. . .

...
...

. 1
0 . . . 0 λk

 =

ρ(λk)

ρ′(λk)

0!
. . .

ρ(m)(λk)

(m− 1)!

0 ρ(λk)
. . .

...
...

.
ρ′(λk)

0!
0 . . . 0 ρ(λk)

 (6.2)

Using the Cauchy integral formula (2.84), the diagonal elements of Jk take the values
one or zero, while all derivatives (i.e. off-diagonal elements) are zero. In practice,
this may not be guaranteed with FEAST as the filter is approximated by the rational
function (2.90). A generalization of the algorithm for addressing defective systems
requires further studies, and our current FEAST non-Hermitian algorithm assumes
that the Jordan form reduces to an eigenvalue decomposition. Consequently, we
consider:

ρ(B−1A) = Xρ(Λ)X−1 ≡ Xρ(Λ)X̂HB, (6.3)

where the left and right eigensubspaces satisfy the B-bi-orthonormal relationship i.e.
X̂HBX = I. For the case of the Hermitian problem, X̂ = X and the relation (2.86)
can then be recovered. It is also important to mention the particular case of complex
symmetric systems (i.e. A = AT and B = BT) which leads to X̂ = X∗. In general,
however, the left and right vectors are not straightforwardly related and they must
be calculated explicitly.

From (2.84), (2.86), and (6.3), one can compute the right spectral projector
ρ(B−1A) for the right eigenvector subspace Xm (i.e. ρ(B−1A)Xm = Xm) as follow:

ρ(B−1A) =
1

2πı

∮
C
dz(zB − A)−1B ≡ XmX̂

H
mB. (6.4)

For the treatment of the left eigenvector subspace solution of X̂HA = ΛX̂HB, it is
first convenient to define the following eigenvalue decomposition:

ρ(AB−1) = X̂−Hρ(Λ)X̂H ≡ BXρ(Λ)X̂H . (6.5)

One can then construct the left spectral projector ρ(AB−1) (i.e. X̂H
m = X̂H

mρ(AB−1))
as:

ρ(AB−1) =
1

2πı

∮
C
dzB(zB − A)−1 ≡ BXmX̂

H
m . (6.6)

In FEAST, the projectors are formulated using the rational function ρa (2.90) along
with the quadrature nodes and weights (zj, ωj)1≤j≤ne that approximate the contour

integrations in (6.4) and (6.6). The right and left subspaces Qm0 and Q̂m0 are then
obtained by applying the right and left projectors onto a set of m0 vectors i.e.

Qm0 = ρa(B
−1A)Ym0 =

ne∑
j=1

ωj(zjB − A)−1BYm0 ≡ Xρa(Λ)X̂HBYm0 . (6.7)

153

and

Q̂H
m0

= Ŷ H
m0
ρa(AB

−1) =
ne∑
j=1

ωjŶ
H
m0
B(zjB − A)−1 ≡ Ŷ H

m0
BXρa(Λ)X̂H . (6.8)

In practice, the calculation of both subspaces require solving a series of linear systems.
For the right subspace,

Qm0 =
ne∑
j=1

ωjQ
(j)
m0
, with Q

(j)
m0 solution of (zjB − A)Q(j)

m0
= BYm0 , (6.9)

which was already outlined in (2.92), and for the left subspace:

Q̂m0 =
ne∑
j=1

ω∗j Q̂
(j)
m0
, with Q̂

(j)
m0 solution of (zjB − A)HQ̂(j)

m0
= BH Ŷm0 . (6.10)

These numerical operations are also described in Figure 2.7. As a result of (6.7) and

(6.8), Qm0 (resp. Q̂m0) is formed by a linear combinations of the columns of Xm0

(resp. X̂m0). The Rayleigh-Ritz procedure involves the reduced matrices AQ and BQ

formed by projecting on the right with a subspace containing the right eigenvectors
Qm0 , and projecting on the left with a subspace containing the left eigenvectors Q̂m0 .
The resulting non-Hermitian reduced system can be solved using the QZ algorithm
[147] in LAPACK [17] to yield the right and left eigenvectors W and Ŵ defined
in Figure 2.7. The long right (resp. left) Ritz vectors can then be recovered as

Ym0 = Qm0W (resp. Ŷm0 = Q̂m0Ŵ) and used as initial guess subspaces for the next
FEAST iterations until convergence.

Convergence for 2-dimensional search intervals
In our implementation of FEAST, the convergence criterion is satisfied if the norm

of the relative residual associated with the eigenpairs (xi, λi) and (x̂i, λ
∗
i), is found

below an arbitrary threshold ε i.e.

resi = max

{
||Axi − λiBxi||1
||αBxi||1

,
||AH x̂i − λ∗iBH x̂i||1
||αBH x̂i||1

}
< ε, (6.11)

where the value of ε can be chosen typically equal to 10−13 if high accuracy is needed
using double precision arithmetic. The parameter α is relative to the eigenvalue
range in the search contour. The latter is defined differently for the Hermitian and
non-Hermitian cases (as discussed in Section 6), and a non-zero value for α can be
chosen as α = max(|λmin|, |λmax|) for the Hermitian case and α = (|λmid|+ r) for the
non-Hermitian case.

As discussed in the introduction, the right/left eigenvectors associated with λi
with i = 1, . . . ,m (and hence all associated residuals resi) are expected to converge

154

linearly along the FEAST subspace iterations at the rate: |ρa(λm0+1)/ρa(λi)| for
i = 1, . . . ,m. The convergence depends then on both the subspace size m0 (m0 ≥ m)
and the accuracy of the rational filter ρa (2.90) that should ideally provide values
very close to unity for eigenvalues on the interior of the search contour and zero
elsewhere. Although quite effective, the Gauss-quadrature approach along a circular
contour that was proposed in the original FEAST article [161], is clearly not the only
possible choice for optimizing the convergence ratio. Three other options have already
been considered for the Hermitian problem including [87]: (i) the trapezoidal rule;
(ii) different contour shapes beside a circle such as a finely tuned flat ellipse; (iii) a
new approximation of the spectral projector based on a Zolotarev approximant to the
sign function which, after transformations, provides complex poles on the unit circle
[223, 86]. Both Gauss and Zolotarev are well-suited choices for the Hermitian problem
since they favor an accentuation of the decay of |ρa| at the boundaries of the interval
along the real axis. The trapezoidal rule is well-known for its exponential convergence
property with the number of integration nodes ne [203]. It is also expected to provide
more consistency for capturing the complex eigenvalues of the non-Hermitian problem
since, unlike Gauss and Zolotarev quadratures, the nodes are placed an equal distance
apart along a circular contour. This leads to a similar decay for |ρa| along arbitrary
(equivalent) directions from the contour center.

Similarly to the Hermitian problem, the non-Hermitian FEAST algorithm also
requires as input a search subspace of size m0 chosen not smaller than the number
of eigenvalues m within a given complex contour. If m0 (m0 ≥ m) is chosen too
small, the ratio governing the convergence may be closer to one, leading to slow
convergence. Alternatively, if m0 is chosen too large, it may result in an unnecessary
high number of right-hand-sides when solving the shifted linear systems in (6.9) and
(6.10). We illustrate the dependence of the convergence rate on m0 with two example
with two examples. These tests use the QC324 matrix from the NEP collection [26].
A contour ithas been created with a single eigenvalue λ1 inside. The contour and
few closest eigenvalues can be seen in Figure 6.2. The rational function |ρa| which
has been generated using a six-point trapezoidal rule is also shown in the figure (as
a contour plot on the left and a 3-D surface plot on the right). Figure 6.3 shows
the convergence of the relative residual norms for all the m0 eigenvalues along the
FEAST subspace iterations in the cases m0 = 2 (left plot) and m0 = 4 (right plot).
For m0 = 2, λ3 is the closest eigenvalue outside of the search subspace and controls
the convergence rate. Since this eigenvalue is relatively close to the contour, FEAST
exhibits slow convergence. The case m0 = 4, in turn, leads to drastic improvement
in the convergence rate which benefits from the small values of ρa(λ5).

A typical recommended choice for the search subspace size is mo = 2m. In prac-
tice, however, the exact number of eigenvalues m is unknown beforehand and the user
must make an educated guess. Alternatively, m can also be estimated using, for ex-
ample, the fast stochastic estimation procedure [66] that has been recently introduced
in FEAST v3.0. It is important to note that in some situations slow convergence can
result if the value of m0 is only large enough to include the external eigenvalues bor-
dering the contour. This problem can arise when the eigenvalues of interest are near
a continuum or cluster of unwanted eigenvalues. With many unwanted eigenvalues

155

Figure 6.2: Value of the rational function, for the QC325 matrix, plotted as con-
tour plot (left) and surface plot (right). The contour has been generated using
a six-point trapezoidal rule and the FEAST ‘custom contour’ feature to position
the quadrature nodes along a circular arc. The left plot includes the positions of
the four closest eigenvalues. Only a single eigenvalue λ1 is inside of the contour.
More particularly, |ρa(λ1)| = 1.0000004 , |ρa(λ2)| = 1.7272309, |ρa(λ3)| = 0.4206553,
|ρa(λ4)| = 3.6296209 × 10−2, and |ρa(λ5)| = 6.9332547 × 10−3. Note that λ5 is not
visible in the figure.

closely bordering the contour, it may not be possible to improve convergence by in-
creasing the subspace size m0. In this case, using additional integration nodes to
increase the accuracy of ρa may be necessary. A utility routine for calculating the ra-
tional function has also been included in FEAST v3.0 and can be used to investigate
convergence for different contours and eigenvalue distributions.

Finally, and in contrast to the Hermitian problem where the contour nodes can
be placed away from the eigenvalues (i.e. far enough from the real axis), a contour
node could end up being located in the vicinity of a complex eigenvalue. In this
case the rational function could take on values larger than one, and it then becomes
possible for an eigenvalue outside of the contour to converge at a faster rate than
the wanted eigenvalues inside. This is what is happening to λ2 in Figures 6.2 and
6.3. If a quadrature node is located too close to an eigenvalue, however, it is likely
to worsen the conditioning of the corresponding shifted linear system in (6.9) and
(6.10), making the problem more challenging to solve using an iterative method.

156

Figure 6.3: Convergence of the residual norms (6.11) associated with eigenvalues
λi in Figure 6.2. Two search subspace sizes are considered: m0 = 2 (left plot) and
m0 = 4 (right plot). The dashed lines represent the theoretical linear convergence rate
|ρa(λm0+1)/ρa(λi)| which is perfectly matched by the values returned by FEAST. We
note that the convergence of the wanted eigenvalue λ1 is is considerably slower using
the smaller size subspace m0 = 2 since the eigenvalue λ3 that governs the convergence
rate for this case is too close to the search contour.

Resizing the subspace

The rank of the subspaces Qm0 (6.7) and Q̂m0 (6.8) is greater than or equal to the
number of wanted eigenvalues m (m0 ≥ m) since their columns contain components
from eigenpairs outside of the contour due to inaccuracies in the numerical integration.
If m0 is too great an overestimate of m, these matrices may be numerically rank
deficient, and the reduced matrix BQ = Q̂H

m0
BQm0 may be singular. Consequently,

m0 must be adjusted at runtime. Otherwise, the QZ algorithm used in the solution of
the reduced system can produce infinite eigenvalue solutions [147]. Re-injecting these
solutions into the subspace iteration would cause problems for the algorithm. The
upper bound for the choice of m0 should be the largest value before the subspaces
become numerically rank deficient. One possible way to determine this threshold value
consists of performing the spectral decomposition of BQ and analyzing its eigenvalues.
This approach is particularly well suited for our non-Hermitian algorithm since the
spectral decomposition will be re-used at a later stage. It comes:

157

BQ = V ΓV̂ H , (6.12)

where Γ is the diagonal matrix for the eigenvalues {γi}i=1,...,m0 , and V and V̂ are
respectively the corresponding left and right bi-orthonormal eigenvector subspaces
(i.e. V̂ HV = Im0). For the Hermitian case where B and hence BQ must be positive
definite, this step can replaced by monitoring the failure of the Cholesky factorization
ofBQ that could return a negative pivot. The position of the latter helped determining
the threshold value for m0 used to resize the subspace accordingly. For the non-
Hermitian problem, the matrix BQ is singular if there exists an eigenvalue equal to
zero. In finite precision arithmetic, a zero eigenvalue must be characterized relatively
i.e.

|γi| < η ∗max (|γ1|, ..., |γm0|) , (6.13)

where η is on the order of machine precision; e.g. 10−16 in double precision. If an
eigenvalue γi is 16 orders-of-magnitude smaller than the maximum eigenvalue then
it is out of range for the double precision arithmetic and is counted as a zero. The
subspace size m0 is reduced to m̃0 such that BQ has no eigenvalues satisfying (6.13).
The spectral decomposition of BQ is computed at each FEAST iteration, and as will
be discussed in the next section, the resizing is performed in conjunction with a B-bi-
orthonormalization for the subspaces Qm̃0 and Q̂m̃0 . The additional numerical cost
of diagonalizing BQ is on the order of (but less expensive than) the cost associated
with the diagonalization of the reduced generalized system.

As a side remark, it interesting to note that using (6.7) and (6.8), BQ can also be
written as:

BQ = (Ŷ H
m0
BX)ρ2

a(Λ)(X̂HBYm0). (6.14)

Starting from the second FEAST iteration where the Ritz vectors Ym0 and Ŷm0 not
only are approximately spanned respectively by the true eigenvector subspaces X and
X̂ but they also satisfy the property of B-bi-orthonormality (i.e. Ŷ H

m0
BYm0 = I since

ŴHBQW = I in Figure 2.7), it is possible to directly identify (6.14) with (6.12). It

comes that V = Ŷ H
m0
BX, V̂ H = X̂HBYm0 , and Γ = ρ2

a(Λ). The latter indicates that
the eigenvalues of BQ are related to the rational function ρa, and can then be used
to estimate the convergence rate [197].

B-biorthonormalization of projectors
The intended result of FEAST is a set of B-bi-orthonormal vectors. However,

the B-bi-orthogonality is not guaranteed after the contour integration due to numer-
ical inaccuracies. This is especially pronounced in large problems in which many
eigenvalues border the search contour. The contour integration could potentially
include a large number of mixed states from the continuum in the subspaces Qm0

(6.7) and Q̂m0 (6.8). In our numerical experiments, we have found that an explicit

B-bi-orthonormalization of the FEAST subspaces Qm0 and Q̂m0 helps improve the
stability of the algorithm. Rather than performing a QR factorization or SVD of the

158

subspaces, we are taking advantage of the eigen-decomposition of BQ (6.12) that is
already performed in FEAST as discussed in the previous section. From (6.12) and

since BQ = Q̂H
m0
BQm0 , it comes:

Γ = V̂ HBQV = (V̂ HQ̂H
m0

)B(Qm0V) ≡ (Q̂m0V̂)HB(Qm0V). (6.15)

As a result, B-bi-orthonormal subspaces Um0 and Ûm0 can be generated by updating

the current subspaces Qm0 and Q̂m0 as follows:

Um0 = Qm0V Γ−1/2, Ûm0 = Q̂m0V̂ Γ−H/2. (6.16)

As discussed in the previous section, the subspace size m0 may have already been
reduced to m̃0 at this stage by allowing the eigenvectors in V and V̂ corresponding
to the zero eigenvalues in Γ to be removed from the subspace. In practice, a subset
of V and V̂ composed of m̃0 column vectors can be easily extracted if the eigenpairs
{γi, vi ≡ V ei, v̂i ≡ V̂ ei}i=1,...,m0 are first sorted by decreasing values of |γi|. Denoting

Vm0×m̃0 and V̂m0×m̃0 the subsets of the new V and V̂ subspaces restricted to their
first m̃0 columns, and Γm̃0×m̃0 the matrix of the first m̃0 sorted eigenvalues, (6.16)
becomes:

Um̃0 = Qm0Vm0×m̃0Γ
−1/2
m̃0×m̃0

, Ûm̃0 = Q̂m0V̂m0×m̃0Γ
−H/2
m̃0×m̃0

. (6.17)

Thereafter, the matrices of the reduced system can be obtained using a new
Rayleigh-Ritz projection for A and B i.e. BU = ÛH

m̃0
BUm̃0 and AU = ÛH

m̃0
AUm̃0 .

In spite of our B-bi-orthonormalization procedure, the resulting BU is not necessarily
exactly identity, or even diagonal, due to numerical inaccuracies and finite precision
arithmetic. However, this procedure is beneficial as a precursor to the QZ algorithm
for solving the reduced generalized system, since it can help reducing the “over-
representation” of the unwanted eigenpairs that lie close to the contour. The benefits
of B-bi-orthonormalization can be seen in Figure 6.4. This test has uses the CSH4
matrix [47], an 801 × 801 complex scaled Hamiltonian from the BigDFT electronic
structure code [79]. The eigenspectrum and the desired eigenvalues inside of a FEAST
custom contour can be seen on the left side of Figure 6.4. One edge of the contour is
parallel to the eigenvalue continuum. This results in a large number of mixed states
after spectral projections in (6.7) and (6.8). Without bi-orthonormalization, the QZ
algorithm fails to return a B-bi-orthogonal set of eigenvectors for large values of m0.
The minimum obtained residual norm then degrades for larger subspace sizes. By em-
ploying bi-orthogonalization the QZ algorithm is more stable and is able to return a
B-bi-orthogonal set. The minimum obtained norm remains constant for all m0 values
as shown in Figure 6.4 (right plot). Note that the BQ matrix remains non-singular for
all values of m0 and no resizing operations have then been performed (i.e. BU ≡ BQ).

159

Figure 6.4: On the left: eigenvalue spectrum of CSH4. On the right: minimum
obtained residual norm (6.11) after 20 FEAST iterations plotted in function of the
subspace size m0. With bi-orthonormalization, the minimum norm stays relatively
constant for all m0.

Removal of spurious solultions
In certain situations incorrect eigenvalues, so called spurious solutions, appear

inside of the FEAST contour. These spurious eigenvalues do not converge. It is
important to note that the corresponding spurious eigenvectors do not need to be
explicitly removed from the search subspace to guarantee that the true solutions
will converge as the FEAST iterations progress. Spurious solutions can be flagged a
posteriori once FEAST has converged. This problem, however, leads to the practical
issue of devising a suitable convergence test.

In FEAST v2.1 for the Hermitian case using Gauss quadrature along a circular
contour, the true number of eigenvalues m could be obtained by counting the eigen-
values of BQ (see (6.12) using V̂ = V) satisfying the condition |γi| ≤ 1/4 [197, 76]
(i.e. |ρa(λi)| ≤ 1/2 from (6.14)) which guaranteed that λi is a true eigenvalue within
[λmin, λmax]. Since FEAST v3.0 allows for a custom contour in the complex plane,
it is not possible to perform a similar test by simply analyzing the values |γi|. A
new strategy has been developed, which can be used to provide increasingly better
estimates of the number of true eigenvalue solutions in the search subspace at each
subsequent iteration.

By definition, if a Ritz eigenpair (λi, yi, ŷi) obtained after solving the reduced
system is a genuine eigenpair of the matrix pencil (A,B), then (ρ(λi), yi, ŷi) yields
eigenpairs of ρ(B−1A) (6.3) and ρ(AB−1) (6.5). In practice, one can perform a com-

160

parison between a direct calculation of ρ(λi) where λi is the Ritz value, and the
value ρ(λi) obtained by solving ρ(B−1A)yi ' ρ(λi)yi (which is only approximate if
the Ritz vectors have not yet converged). A suitable choice for the function ρ should
allow these two values for ρ(λi) to differ significantly if λi is spurious, with the con-
dition that ŷHi Bρ(B−1A)yi ' ρ(λi) can also be easily calculated. The choice of the
approximate spectral projector ρ2

a (2.88) satisfies both conditions. Using (6.7) and
(6.14):

ρ2
a(λi) ' ŷHi Bρ

2
a(B

−1A)yi = ŷHi BXρ
2
a(Λ)X̂HByi ≡ [BQ]i,i, (6.18)

where [BQ]ii denotes the ith diagonal element of BQ. Our identification procedure for
the spurious solutions can then be summarized by the following three steps:

1. Compute the corresponding {ρa(λi)}i=1,...,m0 using (2.88) and the Ritz values
solution of the reduced system {λi}i=1,...,m0 ; i.e.

ρa(λi) =
ne∑
j=1

ωj
zj − λi

, (6.19)

2. Form the Ritz vectors and wait for the contour integration to be performed and
BQ constructed at the next FEAST iteration.

3. Compare the calculated values of ρa(λi) with the corresponding diagonal values
of BQ (which are already sorted), and label λi as spurious if it satisfies the
following inequality: ∣∣∣∣ρ2

a(λi)− [B]ii
ρ2
a(λi)

∣∣∣∣ ≥ µ, (6.20)

where µ is empirically chosen to be 10−1. We have found that this criterion is
both large enough to flag all the spurious solutions, and small enough to ensure
that true solutions are not mislabeled as soon as they start converging.

Once a Ritz eigenpair is flagged as spurious, it is kept in the search subspace but it
is not accounted for in the test for the residual convergence (6.11). On exit, however,
FEAST uses a sorting procedure on the subspace to return the converged eigenpairs
free from spurious solutions.

Complete non-Hermitian algorithm
The algorithm in Figure 6.5 provides a complete description of non-Hermitian

FEAST. The algorithm is divided into six stages from initialization to convergence
test, that further detail the different numerical operations in Figure 2.7. If the non-
Hermitian eigenvalue problem is non-defective, FEAST is expected to converge and
return the wanted eigenvalues associated with the B-bi-orthonormal right and left
eigenvector subspaces. The convergence rate that was discussed in Section 6 depends
on the quality of the filter to approximate the spectral projector, and the size of
the search subspace (hence it depends on the number of the contour points ne, and
subspace size m0).

161

Solving: AXm = BXmΛm and AHX̂m = BHX̂mΛ∗
m with [Λm]ii ⊆ C

Inputs: A and B general matrices in Cn×n; Search subspace size m0 ≥ m;
Search contour nodes/weights {z1, . . . , zne}, {ω1, . . . , ωne}

0- Initialization

0.a Choose m0 independent vectors Ym0
= {y1, . . . , ym0

}n×m0
(random or initial

guess)

0.b Choose m0 independent vectors Ŷm0
= {ŷ1, . . . , ŷm0

}n×m0
(random or initial

guess)

1- Contour Integration (optimization schemes detailed in Section 6)

For each pair (zj , ωj)
1.a Solve: (zjB −A)Q

(j)
m0 = BYm0 −→ Qm0 = Qm0 + ωjQ

(j)
m0

1.b Solve: (zjB −A)HQ̂
(j)
m0 = BH Ŷm0 −→ Q̂m0 = Q̂m0 + ω∗

j Q̂
(j)
m0

2- Spurious Detection

2.a Form the projected matrix BQ = Q̂H
m0
BQm0

2.b Identify the number of spurious solutions ms starting from the second FEAST iter-
ation (Section 6)

3- Resize and B-bi-orthonormalization

3.a Perform the spectral decomposition BQ = V ΓV̂ H

3.b Define new subspace dimension m̃0 if needed (Section 6)

3.c Extract the m̃0 columns of V and V̂ with largest magnitude entries of Γm0

3.d Form B-bi-orthonormal subspaces Um̃0
and Ûm̃0

(Section 6)

4- Rayleigh-Ritz Procedure

4.a Form the matrices BU = ÛH
m̃0
BUm̃0

and AU = ÛH
m̃0
AUm̃0

4.b Solve AUW = BUWΛU and AU
HŴ = BU

HŴΛ∗
U ; with ŴHBUW = I

4.c Compute ρa(λi) (2.88) for the Ritz values (λi = [ΛU]ii); To be used by Step-2.b

4.d Compute Ritz vectors Ym̃0
= Um̃0

W and Ŷm̃0
= Ûm̃0

Ŵ

5- Convergence Test

5.a Find the number of Ritz values mr located inside the search contour

5.b Compute the residuals (6.11) of the corresponding mr eigenpairs

5.c If convergence criteria is not reached for the m = (mr − ms) lowest calculated
residuals, begin next iteration at Step-1 with m̃0 → m0

5.d Place the converged eigenpairs within the first m columns of Ym, Ŷm and ΛQm, and
exit

Output: Xm ≡ Ym; X̂m = Ŷm; X̂H
mBXm = Im; Λm ≡ ΛQm

Figure 6.5: FEAST Non-Hermitian general algorithm

162

Limitations of the algorithm
Ill-conditioned linear systems - In contrast to Hermitian FEAST which allows

the selection of complex shifts (contour points) that are not located on the
real axis, some of these shifts could potentially come close to a complex eigen-
value using non-Hermitian FEAST. Similar to a traditional (Hermitian or non-
Hermitian) Arnoldi algorithm using shift-and-invert strategy, the resulting lin-
ear systems may become ill-conditioned. This can result in accuracy loss for
all eigenvalues and, if the shift happens to be at the exact position of an eigen-
value, the linear system will also be singular. One practical solution of this
problem consists of moving or dropping the problematic quadrature node (see,
e.g. [149, 150]) which could be achieved by analyzing the eigenspectrum on-
the-fly.

Defective system - Currently if the system is defective, the QZ algorithm used
to solve the reduced system in Step-4b of Figure 6.5 will not produce a set
of B-bi-orthogonal subspaces. In practice, the algorithm may still converge
(without Step-2), but further studies are required to analyze the action of the
approximate spectral projector on the Jordan form (6.1) and (6.2).

Ill-conditioned eigenvalue problem - Non-Hermitian systems can have poorly
conditioned eigenvalues [81]. A well-known case is the real non-symmetric Grcar
matrix [202, 67] (e.g. with n = 100), which has extremely sensitive eigenval-
ues. There are some noticeable differences in the eigenvalues calculated using
LAPACK-MATLAB, while comparing between the eigenvalue solutions of the
matrix and its transpose. To get double precision accuracy for larger values of
n, the computation must be carried out in higher-precision arithmetic. Interest-
ingly, when FEAST operates on the Grcar matrix (n = 100) or its transpose, the
problem of sensitivity of the eigenvalues is not observed in any selected regions
of the complex plane. For this matrix case, the projected reduced eigenvalue
problem is then likely to be better conditioned than the original one. On the
other hand, we have found that enforcing the condition of bi-orthogonality could
affect the FEAST convergence for some other systems e.g. see the case of the
QC2534 matrix discussed in [195]. Further studies are clearly needed to better
understand the properties of FEAST when applied to ill-conditioned eigenvalue
systems.

Reduced computational cost for matrix cases

Non-Hermitian eigenvalue problems come in three flavors: (i) complex general,
(ii) real non-symmetric, and (iii) complex symmetric. The major computational task
performed by FEAST is the numerical integration, where a set of linear systems must
be solved along a complex contour. In the complex general case both Qm0 and Q̂m0

are computed explicitly by solving the 2ne (independent) linear systems defined in
(6.9) and (6.10). It is important to note that most modern numerical libraries that
include direct methods for solving linear systems supply a “conjugate transpose solve”

163

feature as well (i.e. a linear system AHx = f can be solved using the factorization
of A). Consequently, once the (zjB −A) matrices are factorized in (6.9), the system
solves in (6.10) can be performed without re-factorizing the conjugate transpose of
the matrices. Similarly using iterative methods, the conjugate transpose solve could
be performed without factorizing twice the preconditioner. If such option is available,
the contour integration in the most general case should involve only ne (independent)
factorizations and 2ne (independent) solves with m0 right hand sides. For the cases
(ii) and (iii) above, it is possible to further reduce the workload by taking advantage
of some additional matrix properties:

Complex symmetric - For the complex symmetric case (A = AT and B = BT),
there exists a relationship between the left and right eigenvectors, which can
be expressed as conjugate pairs i.e. X̂ = X∗. This allows the left subspace
Q̂ to be expressed in terms of the right Q using the same simple relationship
Q̂ = Q∗. Therefore Q̂ (6.10) does not need to be calculated, and only the ne
factorizations and ne solves in (6.9) are then necessary.

Real non-symmetric - In general the treatment of the real non-symmetric case
(A = A∗ and B = B∗) is identical to the complex non-symmetric one. However,
there exist savings for specific contours exhibiting symmetry across the real
axis (i.e C = C∗). For this particular case, each integration node zj with j =
1, . . . , ne/2 in the upper half of the complex plane has a conjugate pair z∗j in
the lower half. From the relationships:

(zjB − A)∗ = (z∗jB − A) and (zjB − A)H = (z∗jB − A)T ,

one can show that only the ne/2 factorizations of (zjB − A) in the upper-half

contour, along with 2ne total solves, are needed to obtain both Qm0 and Q̂m0

in (6.9) and (6.10).

Table 6.1 summarizes the number of factorizations and solves effectively needed
to perform the full contour integration using a total of ne nodes for problems with
various symmetries. The cost of the Hermitian FEAST algorithm is also provided for
reference.

164

Family of eigenvalue problems (A,B) properties #Factorizations #Solves

Complex general N/A ne 2ne
Complex symmetric A = AT , B = BT ne ne
Complex Hermitian with C = C∗ A = AH , B hpd ne/2 ne
Real non-symmetric N/A ne 2ne
Real non-symmetric with C = C∗ N/A ne/2 2ne
Real symmetric with C = C∗ A = AT , B spd ne/2 ne/2

Table 6.1: Summary of the total number of factorizations and solves effectively
needed by FEAST to perform the full contour integration using a total of ne nodes.
It is also assumed that the conjugate transpose solve feature is available for the system
solver.

Validation and verification of the algorithm

Matrices obtained from the non-Hermitian eigenvalue problem (NEP) collection
[26] and the MatrixMarket collection [34], have been used for testing and development.
Our test parameters and results for a set of selected system matrices are provided
in Table 6.2. The trapezoidal quadrature has been used by FEAST to obtain the
results in Tables 2, 3, and 4. A subset of the eigenpairs has been targeted for each
system matrix corresponding to the information provided in the NEP collection, if
available. Only a few FEAST subspace iterations are needed for most systems to
reach convergence.

Matrix n m0 m λmid r #Iteration

BFW782 782 44 22 (-5300,300) 10000.0 2
BWM200 200 36 18 (-1200,0.0) 60.0 2
CDDE5 961 140 70 (4.75,0.0) 0.25 2
GRCAR 100 38 19 (0.3,2.0) 0.5 4
QC324 324 72 37 (0.0,0.0) 0.04 3
RBS480 480 112 56 (0.0,0.5) 0.5 9
RW136 136 38 19 (1.0,0.0) 0.5 5
TOLS340 340 16 8 (-60,300) 30.0 3
TOLS4000 4000 144 72 (-60,300) 233.0 8

Table 6.2: Non-Hermitian test cases. The contour is chosen as a full circle defined
by the center and radius (λmid, r) using ne = 16 trapezoidal quadrature nodes, and
the convergence tolerance for the residual is set at 10−12. The system size n, the
subspace size m0, the final number of eigenvalues m found within the search contour,
and number of FEAST iterations to reach convergence are also listed.

165

Performance results

Multiple search intervals

As mentioned previously, a major advantage of FEAST are the multiple levels of
parallelism naturally contained within the algorithm. Here, we investigate the effect
of using two levels of MPI parallelism by considering multiple search contours over
the whole spectrum with multiple integration poles by contour. Although FEAST
is generally applied to large sparse matrices, we consider only dense matrices in this
section. The results aim to highlight the convergence properties and robustness of
FEAST that remain independent of the linear-system solver. Load balancing and
general scalability trends will remain valid for sparse and banded matrices as well as
domain-decomposition methods. We note that a third level of MPI parallelism that
would act on the individual linear systems using a distributed memory solver is also
possible and considered elsewhere [113].

Multiple contours can be solved independently using the first level of parallelism
of FEAST (overall orthogonality is also largely preserved [197, 75]). However, there
is a threshold on the number of eigenvalues that can be calculated efficiently using a
single FEAST contour. In practice m0 should represent only a small percentage of the
matrix size and it may not be suitable for m0 to be larger than few thousands because
of the O(m3

0) complexity of the reduced system solve. If enough parallel resources
are available, however, the solution for an arbitrarily large number of eigenvalues can
be obtained by partitioning the entire search domain into multiple contours. FEAST
can then be applied to each in parallel with a reduced value for m0. An example
of such partitioning is illustrated in Figure 6.6. The test uses the general complex
FEAST dense interfaces on a 4000 × 4000 dense matrix constructed such that all
eigenvalues exist within the unit disk. Two sets of contours are considered: First,
squares with 4 trapezoidal intervals along each line segment for a total of 16 linear
systems to be solved; Next, circles defined by 16 integration nodes. In all cases the
size of the search subspace is set at m0 = 200, and the criteria of convergence for the
residual at 10−12. At first we consider using only one MPI process per contour, so
the 16 linear systems are solved one after another using the LAPACK dense solver.
Table 6.3 reports the number of eigenvalues found in each contour, the number of
FEAST iterations, and the total simulation times. Two simulation times are given,
the fastest has been obtained using a new option offered in FEAST v3.0 that allows
to save and reuse the factorization at each iteration (increasing the memory footprint
by the number of integration nodes but removing the need to perform this costly
step multiple times). Saving the factorization between FEAST iterations produced a
2−3× speed improvement for all contours. As it can be observed from the number of
FEAST iterations and the simulation times in Table 6.3, load balancing becomes an
issue with some contours taking more than twice the time of the fastest converging
contour. Since FEAST runs in parallel, its overall efficiency depends on the slowest
converging contour (i.e Square 5 or Circle 3).

Even better performance can be achieved by taking advantage of another level of
parallelism for solving the set of independent linear systems. In the general case, a

166

Contour No m #Iterations Time-1 (s) Time-2 (s)

Square
1 84 9 127 49
2 85 7 102 41
3 95 15 207 75
4 83 12 168 62
5 73 19 255 90
6 69 12 165 61

Circle
1 120 4 62 28
2 129 8 111 45
3 137 11 150 58
4 118 8 112 45
5 109 6 86 37
6 104 4 61 28

Table 6.3: Timing results, number of eigenvalue m and number of iterations obtained
using FEAST for each contour in Figure 6.6. We use m0 = 200, ne = 16 and one MPI
process per contour. Two total times are reported by contour: Time-1 for FEAST
normal use, and Time-2 that does not account for the cost of the multiple matrix
factorizations along the FEAST iterations which are saved in memory. We note that
the overall parallel FEAST efficiency is limited by the slowest individual performance
on a single contour obtained here for either Square 5 or Circle 3.

167

Figure 6.6: A 4000 × 4000 dense matrix has been constructed such that all eigen-
values exist within the unit disk. Multiple FEAST contours, employing a trapezoidal
quadrature, have been used to calculate a subset of the eigenvalues in parallel.

single factorization and two solves must be performed at each integration node. With
a total of ne factorizations and 2ne solves, the simulation time could then potentially
be reduced by a factor ne or more (since the linear systems do not need to be re-
factorized at each iteration if ne is equal to the #MPI processes). Table 6.4 presents
scalability results for the 4000×4000 dense matrix considered in Figure 6.6 and Table
6.3.

For this dense example, one observes a maximum of ∼ 19× speed-up for a cir-
cular contour and ∼ 23× for a square contour compared to a single process when
using 16 MPI. The super linear scaling is witnessed for both contours and is more
pronounced for the square, which required a larger number of FEAST iterations to
reach convergence.

Comparison with LAPACK

We now compare non-Hermitian FEAST directly to the LAPACK dense eigen-
solver. The entire spectrum of a 4000 size non-Hermitian matrix can be computed
using the LAPACK in 220 seconds on 12 threads. Interestingly, the results in Tables
6.3 and 6.4 show that the FEAST dense interface targeting only a subset of the spec-
trum, is capable to perform always better than the LAPACK direct solver on the full
spectrum (in particular when saving the factorization or by distributing the linear
systems in parallel). Given enough parallelism, the entire spectrum can potentially

168

Contour No 1 2 3 4 5 6 Speed-up

Square
1 MPI 127 102 207 168 255 165 1.00
2 MPI 62 51 104 85 128 82 1.9
4 MPI 34 27 55 44 68 44 3.7
8 MPI 18 14 30 24 37 24 6.9

16 MPI 6 5 8 9 11 8 23.1

Circle
1 MPI 62 111 150 112 86 61 1.00
2 MPI 31 56 76 57 43 31 1.9
4 MPI 16 29 40 30 124 17 3.7
8 MPI 9 16 22 16 13 9 6.8

16 MPI 4 5 8 6 4 3 19.5

Table 6.4: MPI scalability results for the system matrix and contours (ne = 16)
considered in Figure 6.6 and Table 6.3. The first column indicated the cluster of MPI
processes being used by each contour to distribute the linear systems. The last column
indicates the speed-up performance associated with the slowest contour (Square 5 or
Circle 3).

be divided into multiple independent non-overlapping ‘square’ contours, and the re-
sults in Table 6.4 suggests that all the 4000 eigenpairs could optimally be computed
in 11 seconds using 16 ∗ p MPI, with p the number of contours (i.e. 20 times faster
than LAPACK). We note that a direct comparison with ScaLAPACK [33], the MPI
version of LAPACK, would be more appropriate using a fixed number of MPI pro-
cessors. In this study, however, we focus on the general scalability trend of the first
two levels of FEAST parallelism that would remain unchanged using ‘unlimited’ MPI
parallel resources (since FEAST could also be linked with a dense distributed-memory
ScaLAPACK linear system solver [113]).

Table 6.3 shows that the time to reach convergence depends on the slowest con-
verging FEAST contour. The previous results have used a FEAST contour consisting
of the default value of ne = 16 quadrature nodes. The number of quadrature nodes
used within FEAST will affect the convergence rate and can be seen as a tuning
parameter. Fewer quadrature nodes will generally increase the number of FEAST
iterations to reach convergence. However, it could also reduce the total number of
linear system factorizations/solves since fewer linear systems are required per FEAST
iteration. Table 6.5 presents FEAST solution times for the slowest converging square
contours using 4, 8 and 16 quadrature nodes. Even without saving the factorization,
the performance of FEAST surpasses that of LAPACK for the case of 4 or 8 quadra-
ture nodes. The best performance was achieved using ne = 8, which converged in
fewer iterations than ne = 16. The seemingly slower convergence rate of ne = 16 can
be attributed to the need of additional FEAST iterations for automatically identify-
ing the spurious solutions (i.e. Step 2 of Figure 6.5). Saving the factorization between

169

iterations results in a performance gain and all three cases become faster than LA-
PACK. Even larger improvements can be made by distributing the linear systems as
in Table 6.4. Timing results using an optimal number of MPI processes (i.e. #MPI =
ne) for the three contours are also reported in Table 6.5. Fewer quadrature nodes will
limit the amount of parallelism that can be applied at this level. Thus, the optimal
value of ne for the single node case may not result in the best performance using
MPI.

ne Contour #Iterations #Solve Time-1 (s) Time-2 (s) Time-MPI (s)

4 3 40 160 142 58 24
8 5 16 128 104 42 10
16 5 19 304 255 90 11

Table 6.5: Timing results using FEAST for the slowest converging square contour us-
ing ne = 4, 8, 16 quadrature nodes. The definition of Time-1 and Time-2 is described
in Table 6.3. Time-MPI uses the number of MPI processes equal to the number of
quadrature nodes for optimal performance. For the single node cases, both ne = 4
and ne = 8 perform better than LAPACK, which took 220 seconds to compute the
entire spectrum. All three values of ne were faster than LAPACK when using MPI to
distribute the linear systems (Time-MPI) or when saving the factorization (Time-2)
using a single MPI processor.

A more comprehensive study is presented in Figure 6.7, where we consider the
slowest converging square contour (i.e. from Figure 6.6) for matrices ranging in size
from 1000 to 6000. The number of eigenvalues within each contour will increase
with the size of the matrix. The value of m0 varies proportionally in order to keep
it approximately twice the size of the number of eigenvalues within each contour.
Three cases are shown to highlight the performance of FEAST for different operational
modes. Each graph reports the speedup of FEAST using ne = 4, 8 and 16 quadrature
nodes compared to LAPACK. The reported LAPACK times use 12 threads, which
was optimal for all the matrices. When using a single MPI process (i.e. the linear
systems are solved sequentially), the contours with 4 and 8 quadrature nodes are faster
than LAPACK for all matrices, but the 16 node contour is slower for many of the
sizes. When saving the factorization and reusing them at each subsequent iteration,
however, FEAST is faster than LAPACK in all cases. Finally, using MPI to distribute
the linear systems, FEAST is significantly, up to 35 times, faster than LAPACK. In
all cases we see larger speedups when increasing the matrix size indicating better
scaling for the dense linear system solves than the eigenvalue decomposition.

Comparison with ARPACK

We now compare the FEAST sparse interface directly to the ARPACK package
that is also capable of obtaining a subset of the eigenspectrum by computing the m

170

1000 2000 3000 4000 5000 6000
0

2

4

6

8

10

12

14

S
p

ee
d
u
p

 R
at

io

Ne = 4

Ne = 8

Ne=16

1MPI

1000 2000 3000 4000 5000 6000

Matrix Size

0

2

4

6

8

10

12

14

1MPI and Saving Factorization

0 1000 2000 3000 4000 5000 6000
0

5

10

15

20

25

30

35

#MPI = Ne

Figure 6.7: The speedup ratio comparing the slowest converging FEAST con-
tour to LAPACK for different matrix sizes. LAPACK using 12 threads took
{13, 25, 127, 221, 578, 1025} seconds to compute the entire spectrum for matrices of
size nmat = {1000, 2000, 3000, 4000, 5000, 6000}, respectively. The speedup ratio
depends on the performance of LAPACK for the given matrix size, but also the
number of FEAST iterations to reach convergence. Since the number of eigen-
values within each contour grows with the matrix size we have chosen values of
m0 = {50, 100, 150, 200, 250, 300} to be proportional to nmat. For cases nmat =
{4000, 5000, 6000} the 8 node FEAST contour needed fewer iterations to reach con-
vergence and had better overall performance than when using 16 quadrature nodes.

eigenvalues closest to a given complex shift λmid. Analogous to the subspace size
m0 in FEAST, the number of basis vectors to use in the Krylov subspace must be
specified. To perform the comparison we have integrated the same PARDISO solver
used in FEAST into ARPACK through its reverse-communication-interface. Just like
FEAST, ARPACK must solve many complex linear systems of the form (zB − A).
However, unlike FEAST, ARPACK has only a single shift at z = λmid and the matrix
can then be factorized once and for all at the beginning of the process. The ARPACK
RCI then supplies each right-hand-side to the solver one after another and uses the
solutions to build a Krylov subspace. A fair comparison can be made by using a
circular FEAST contour, picking the same λmid for each eigensolver and choosing the
FEAST contour radius to include exactly m eigenvalues. The subspace size for both
FEAST and ARPACK is kept at m0 = 2m for all examples.

The matrices used in this section to gather performance results have an eigenspec-
trum similar to what is shown in Figure 6.6. The eigenvalues are randomly distributed
in the complex plane over the unit disk. The matrix structure, however, is no longer
dense and instead has a block diagonal form:

A = diag{A1, A2, ..., Ak}. (6.21)

The matrix A has a bandwidth determined by the size of each dense block Ai, which
are formed in the same way as the matrices in the previous sub-section, but are com-

171

plex and symmetric instead of general complex. Consequently, the left eigenvectors
are conjugate of the right eigenvectors. We note that for the general complex case,
the FEAST interfaces would end up being twice slower (i.e. it would require twice
the number of solves as reported in Table 6.1). Similarly, it would also be necessary
for ARPACK to solve explicitly for the left eigenvectors, which would increase the
ARPACK time by a factor of two and require the user to manually bi-orthogonalize
the two eigenspaces. Finally, in all our numerical experiments, PARDISO is used as
a general sparse solver and we do not take advantage of the special structure of the
matrix (6.21).

In our experiments, the performance of FEAST is compared to ARPACK on a
single shared memory node with 24 cores in Table 6.6. Six different matrices have been
constructed and range in size from nmat = 25, 000 to nmat = 100, 000. Each matrix
has a bandwidth nb = 10 or nb = 40. The amount of time to calculate 100, 200 and
400 eigenvalues is then recorded. We also vary the number of FEAST quadrature
nodes from ne = 8 to ne = 32. For these matrices we see that increasing the number
of contour points decreases the number of FEAST iterations to reach convergence
and the best time is achieved at 32 quadrature nodes. In our particular example,
the factorization time of the FEAST linear systems is negligible. We expect that
those comparative results will hold using any other general sparse matrices only if it
is possible to store the ne FEAST factorizations on a single shared memory node. We
note that ARPACK is in average two times faster than FEAST for all the recorded
cases.

In contrast to FEAST, ARPACK must use the previous solution to generate the
next basis vector and this process cannot be parallelized over the linear system solves.
More linear systems must then be solved with ARPACK, but since each has only a
single right-hand-side the total number of solution vectors is actually much less than
FEAST. FEAST increases the total amount of work, but transforms the problem into
one that can be broken down into independent blocks. While the current ARPACK
implementation works at the level of BLAS-2, FEAST can take better advantage of
both BLAS-3 and multi-threading over the cores. Interestingly, we have found out
that FEAST can outperform ARPACK on a single node if MPI is used to distribute
the linear systems. Since the parallel resources are limited for a single node (i.e.
limited to 24 cores in our case), increasing the number of MPI processes will then
decrease the number of openMP threads available to the linear system solver. Table
6.7 reports various FEAST timing results for different combinations of MPI processes
and openMP threads using ne = 24 contour points. The configuration that uses 4-
MPI and 6 threads per MPI, in particular, appears to be as fast as, or faster than,
ARPACK in 11 out of 18 examples.

Finally, each quadrature node of FEAST is independent and the associated linear
systems can also be solved in parallel. Consequently, if more parallelism were available
using multiple physical nodes each MPI process could be assigned a single linear
system. Linear scaling should then be expected in agreement with the results of Table
6.4 (i.e. all the FEAST timing results in Table 6.6 would be divided by at least ne
using ne nodes). This is the optimal configuration for FEAST and represents a level of
parallelism not present within ARPACK. Indeed, while multiple shifts could be used

172

m = 100 and m0 = 200

nb nmat 8-ne (s) 16-ne (s) 24-ne (s) 32-ne (s) ARPACK (s)

10 25,000 20 14 13 12 3
10 50,000 39 26 23 24 8
10 100,000 87 56 44 43 17

40 25,000 31 18 14 13 7
40 50,000 59 32 27 24 14
40 100,000 136 72 51 46 24

m = 200 and m0 = 400

nb nmat 8-ne (s) 16-ne (s) 24-ne (s) 32-ne (s) ARPACK (s)

10 25,000 59 32 24 22 8
10 50,000 92 55 42 39 29
10 100,000 182 114 87 80 45

40 25,000 82 44 30 26 17
40 50,000 161 81 57 51 39
40 100,000 352 195 134 117 56

m = 400 and m0 = 800

nb nmat 8-ne (s) 16-ne (s) 24-ne (s) 32-ne (s) ARPACK (s)

10 25,000 174 88 62 55 47
10 50,000 328 149 127 97 84
10 100,000 670 341 290 217 159

40 25,000 251 121 98 72 57
40 50,000 477 259 158 168 101
40 100,000 1570 738 489 412 180

Table 6.6: Timing results for FEAST and ARPACK on a single shared memory node
(24 cores). The different matrices are defined by their dimension nmat and the size of
the dense sub-blocks nb. Results are presented for different number of eigenvalues m,
which require a larger subspace size m0 for FEAST and ARPACK. The total time
(in seconds) to solve the eigenvalue problem is reported. A circular FEAST contour
is used and the four reported times 8-ne, 16-ne, 24-ne, and 32-ne correspond to 8, 16,
24, and 32 quadrature nodes. The time for ARPACK to solve the problem is reported
in the ‘ARPACK’ column.

in ARPACK along with a reduced subspace size, it would not be possible to define
non-overlapping regions for breaking up the spectrum. Beside the impracticality of
the implementation, it would lead to degradation of performances in load balancing,
in particular.

173

m = 100 and m0 = 200

nb nmat 2-mpi (s) 4-mpi (s) 6-mpi (s) 12-mpi (s) ARPACK (s)

10 25,000 6 6 7 8 3
10 50,000 11 11 14 16 8
10 100,000 22 22 28 31 17

40 25,000 8 7 8 9 7
40 50,000 17 14 16 17 14
40 100,000 33 28 32 34 24

m = 200 and m0 = 400

nb nmat 2-mpi (s) 4-mpi (s) 6-mpi (s) 12-mpi (s) ARPACK (s)

10 25,000 15 14 18 20 8
10 50,000 26 25 31 35 29
10 100,000 57 57 60 66 45

40 25,000 19 17 19 21 17
40 50,000 36 32 36 38 39
40 100,000 69 61 71 73 56

m = 400 and m0 = 800

nb nmat 2-mpi (s) 4-mpi (s) 6-mpi (s) 12-mpi (s) ARPACK (s)

10 25,000 41 42 54 65 47
10 50,000 79 79 101 117 184
10 100,000 147 137 173 205 159

40 25,000 62 48 70 68 57
40 50,000 106 79 95 106 101
40 100,000 224 168 166 196 180

Table 6.7: Timing results for FEAST (ne = 24) using MPI to distribute the linear
systems on a single shared memory node (24 cores). Increasing the number of MPI
processes reduces the number of threads available to the linear system solver. The
fastest times are highlighted in bold. Results for 24 MPI processes are not shown and
performed significantly worse.

174

BIBLIOGRAPHY

[1] Abinit. https://www.abinit.org/. Accessed: 2017-09-14.

[2] BigDFT. http://bigdft.org. Accessed: 2017-09-14.

[3] FHI-aims. https://aimsclub.fhi-berlin.mpg.de/. Accessed: 2017-09-14.

[4] GPAW. https://wiki.fysik.dtu.dk/gpaw/. Accessed: 2017-09-14.

[5] NWChem. http://www.nwchem-sw.org. Accessed: 2017-09-14.

[6] Octpus. http://octopus-code.org. Accessed: 2017-09-14.

[7] Parsec. http://parsec.ices.utexas.edu/. Accessed: 2017-09-14.

[8] Quantum Espresso. http://www.quantum-espresso.org/. Accessed: 2017-09-14.

[9] Siesta. https://departments.icmab.es/leem/siesta/. Accessed: 2017-09-14.

[10] The MPI-Mainz UV/VIS Spectral Atlas of Gaseous Molecules of Atmospheric
Interest. http://satellite.mpic.de/spectral atlas. Accessed: 2018-05-07.

[11] VASP. https://www.vasp.at/. Accessed: 2017-09-14.

[12] Wikipedia: List of Quantum Chemistry Software.
https://en.wikipedia.org/wiki/ListZ of quantum chemistry and solid-
state physics software. Accessed: 2017-09-14.

[13] Amestoy, P. R., Duff, I. S., L’Excellent, J., and Koster, J. MUMPS: a general
purpose distributed memory sparse solver. In Applied Parallel Computing. New
Paradigms for HPC in Industry and Academia. Springer, 2000, pp. 121–130.

[14] Amestoy, P R et al. Mumps multifrontal massively parallel solver version 5.1.2.

[15] Amestoy, Patrick R, Duff, Ian S, and L’Excellent, J-Y. Mumps multifrontal
massively parallel solver version 2.0.

[16] Anderson, Donald G. Iterative procedures for nonlinear integral equations.
Journal of the ACM (JACM) 12, 4 (1965), 547–560.

[17] Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J.,
Du Croz, J., Greenbaum, A., Hammerling, S., McKenney, A., et al. LAPACK
Users’ guide, vol. 9. SIAM, 1999.

175

[18] Ando, Tsuneya. Inter-subband optical absorption in space-charge layers on
semiconductor surfaces. Zeitschrift für Physik B Condensed Matter 26, 3 (1977),
263–272.

[19] Andrade, Xavier, Botti, Silvana, Marques, Miguel AL, and Rubio, Angel. Time-
dependent density functional theory scheme for efficient calculations of dynamic
(hyper) polarizabilities. The Journal of chemical physics 126, 18 (2007), 184106.

[20] Arnold, Anton. Numerically absorbing boundary conditions for quantum evo-
lution equations. VLSI design 6, 1-4 (1998), 313–319.

[21] Arnoldi, Walter Edwin. The principle of minimized iterations in the solution of
the matrix eigenvalue problem. Quarterly of applied mathematics 9, 1 (1951),
17–29.

[22] Asakura, J., Sakurai, T., Tadano, H., Ikegami, T., and Kimura, K. A numeri-
cal method for nonlinear eigenvalue problems using contour integrals. JSIAM
Letters 1, 0 (2009), 52–55.

[23] Astapenko, Valeriy. Interaction of Ultrashort Electromagnetic Pulses with Mat-
ter. Springer, 2013.

[24] Austin, A. P., and Trefethen, L. N. Computing eigenvalues of real symmetric
matrices with rational filters in real arithmetic. SIAM Journal on Scientific
Computing 37, 3 (2015), A1365–A1387.

[25] Backx, C, Wight, GR, and Van der Wiel, MJ. Oscillator strengths (10-70 ev)
for absorption, ionization and dissociation in h2, hd and d2, obtained by an
electron-ion coincidence method. Journal of Physics B: Atomic and Molecular
Physics 9, 2 (1976), 315.

[26] Bai, Z., Day, D., Demmel, J., and Dongarra, J. A test matrix collection for
non-hermitian eigenvalue problems, 1996.

[27] Balay, Satish, Abhyankar, Shrirang, Adams, M, Brune, Peter, Buschelman,
Kris, Dalcin, L, Gropp, W, Smith, Barry, Karpeyev, D, Kaushik, Dinesh, et al.
Petsc users manual revision 3.7. Tech. rep., Argonne National Lab.(ANL),
Argonne, IL (United States), 2016.

[28] Barone, Vincenzo, Cossi, Maurizio, and Tomasi, Jacopo. Geometry optimiza-
tion of molecular structures in solution by the polarizable continuum model.
Journal of Computational Chemistry 19, 4 (1998), 404–417.

[29] Bartlett, Rodney J, and Musia l, Monika. Coupled-cluster theory in quantum
chemistry. Reviews of Modern Physics 79, 1 (2007), 291.

[30] Becke, Axel D. Density-functional exchange-energy approximation with correct
asymptotic behavior. Physical review A 38, 6 (1988), 3098.

176

[31] Becke, Axel D. A multicenter numerical integration scheme for polyatomic
molecules. The Journal of chemical physics 88, 4 (1988), 2547–2553.

[32] Becke, Axel D. Density-functional thermochemistry. iii. the role of exact ex-
change. The Journal of chemical physics 98, 7 (1993), 5648–5652.

[33] Blackford, L Susan, Choi, Jaeyoung, Cleary, Andy, D’Azevedo, Eduardo, Dem-
mel, James, Dhillon, Inderjit, Dongarra, Jack, Hammarling, Sven, Henry, Greg,
Petitet, Antoine, et al. ScaLAPACK users’ guide, vol. 4. Siam, 1997.

[34] Boisvert, Ronald F., Pozo, Roldan, Remington, Karin, Barrett, Richard F., and
Dongarra, Jack J. Matrix market: A web resource for test matrix collections.
In Proceedings of the IFIP TC2/WG2.5 Working Conference on Quality of
Numerical Software: Assessment and Enhancement (London, UK, UK, 1997),
Chapman & Hall, Ltd., pp. 125–137.

[35] Bollhoefer, M., and Notay, Y. JADAMILU: a software code for computing
selected eigenvalues of large sparse symmetric matrices. Comput. Phys. Comm.
177 (2007), 951–964.

[36] Briggs, EL, Sullivan, DJ, and Bernholc, J. Real-space multigrid-based approach
to large-scale electronic structure calculations. Physical Review B 54, 20 (1996),
14362.

[37] Broyden, Charles G. A class of methods for solving nonlinear simultaneous
equations. Mathematics of computation 19, 92 (1965), 577–593.

[38] Burke, Kieron, and Gross, EKU. A guided tour of time-dependent density
functional theory. In Density Functionals: Theory and Applications. Springer,
1998, pp. 116–146.

[39] Burnus, Tobias, Marques, Miguel AL, and Gross, Eberhard KU. Time-
dependent electron localization function. Physical Review A 71, 1 (2005),
010501.

[40] Bursi, Luca, Calzolari, Arrigo, Corni, Stefano, and Molinari, Elisa. Quantifying
the plasmonic character of optical excitations in nanostructures. ACS Photonics
3, 4 (2016), 520–525.

[41] Cai, Xiao-Chuan, and Saad, Yousef. Overlapping domain decomposition algo-
rithms for general sparse matrices. Numerical linear algebra with applications
3, 3 (1996), 221–237.

[42] Car, Richard, and Parrinello, Mark. Unified approach for molecular dynamics
and density-functional theory. Physical review letters 55, 22 (1985), 2471.

[43] Carrion, Enrique, Muthee, Martin, Chen, Zuojing, Nicholsosn, J, Polizzi, Eric,
and Yngvesson, KS. Single wall carbon nanotube (swcnt) devices as thz detec-
tors and mizers. In Proc. 21th Intern. Symp. Space Terahertz Technol., Oxford
(2010).

177

[44] Casida, Mark E. Response theory for molecules. Recent Advances in Density
Functional Methods:(Part I) 1 (1995), 155.

[45] Castro, A, Marques, MAL, Alonso, JA, Bertsch, GF, and Rubio, Angel. Ex-
cited states dynamics in time-dependent density functional theory. The Euro-
pean Physical Journal D-Atomic, Molecular, Optical and Plasma Physics 28, 2
(2004), 211–218.

[46] Castro, Alberto, Marques, Miguel AL, and Rubio, Angel. Propagators for the
time-dependent kohn–sham equations. The Journal of chemical physics 121, 8
(2004), 3425–3433.

[47] Cerioni, A., Genovese, L., Duchemin, I., and Deutsch, T. Accurate complex
scaling of three dimensional numerical potentials. The Journal of Chemical
Physics 138, 20 (2013), 204111.

[48] Chan, WF, Cooper, G, and Brion, CE. Absolute optical oscillator strengths for
discrete and continuum photoabsorption of carbon monoxide (7–200 ev) and
transition moments for the x 1σ+ a 1π system. Chemical physics 170, 1 (1993),
123–138.

[49] Chan, WF, Cooper, G, and Brion, CE. The electronic spectrum of water in
the discrete and continuum regions. absolute optical oscillator strengths for
photoabsorption (6–200 ev). Chemical physics 178, 1-3 (1993), 387–400.

[50] Chen, FZ, and Wu, CY Robert. Temperature-dependent photoabsorption cross
sections in the vuv-uv region. i. methane and ethane. Journal of Quantitative
Spectroscopy and Radiative Transfer 85, 2 (2004), 195–209.

[51] Chen, Ya Kun, and Wang, Yan Alexander. Listb: a better direct approach to
list. Journal of chemical theory and computation 7, 10 (2011), 3045–3048.

[52] Chen, Z., and Polizzi, E. Spectral-based propagation schemes for time-
dependent quantum systems with application to carbon nanotubes. Physical
Review B 82, 20 (2010), 205410.

[53] Chen, Zuojing. Computational all-electron time-dependent density functional
theory in real space and real-time: Applications to molecules and nanostruc-
tures.

[54] Chen, Zuojing, and Polizzi, Eric. Spectral-based propagation schemes for time-
dependent quantum systems with application to carbon nanotubes. Physical
Review B 82, 20 (2010), 205410.

[55] Cheng, Bing-Ming, Chung, Chao-Yu, Bahou, Mohammed, Lee, Yuan-Pern, Lee,
LC, van Harrevelt, Rob, and van Hemert, Marc C. Quantitative spectroscopic
and theoretical study of the optical absorption spectra of h 2 o, hod, and d 2
o in the 125–145 nm region. The Journal of chemical physics 120, 1 (2004),
224–229.

178

[56] Chung, Chao-Yu, Chew, Eh Piew, Cheng, Bing-Ming, Bahou, Mohammed, and
Lee, Yuan-Pern. Temperature dependence of absorption cross-section of h2o,
hod, and d2o in the spectral region 140–193 nm. Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment 467 (2001), 1572–1576.

[57] Cole, Daniel J, and Hine, Nicholas DM. Applications of large-scale density
functional theory in biology. Journal of Physics: Condensed Matter 28, 39
(2016), 393001.

[58] Colle, Renato, and Salvetti, Oriano. Approximate calculation of the correlation
energy for the closed shells. Theoretica chimica acta 37, 4 (1975), 329–334.

[59] Cooper, Glyn, Burton, Gordon R, Chan, Wing Fat, and Brion, CE. Absolute
oscillator strengths for the photoabsorption of silane in the valence and si 2p
and 2s regions (7.5–350 ev). Chemical physics 196, 1-2 (1995), 293–306.

[60] Crank, John, and Nicolson, Phyllis. A practical method for numerical evalu-
ation of solutions of partial differential equations of the heat-conduction type.
In Mathematical Proceedings of the Cambridge Philosophical Society (1947),
vol. 43, Cambridge University Press, pp. 50–67.

[61] Dagum, Leonardo, and Menon, Ramesh. Openmp: an industry standard api
for shared-memory programming. IEEE computational science and engineering
5, 1 (1998), 46–55.

[62] Davis, Timothy A. Umfpack version 4.1 user guide. Department of Computer
and Information Science and Engineering, University of Florida (2003).

[63] Davis, Timothy A. A column pre-ordering strategy for the unsymmetric-pattern
multifrontal method. ACM Transactions on Mathematical Software (TOMS)
30, 2 (2004), 165–195.

[64] Davis, Timothy A, and Duff, Iain S. An unsymmetric-pattern multifrontal
method for sparse lu factorization. SIAM Journal on Matrix Analysis and
Applications 18, 1 (1997), 140–158.

[65] Dawes, Anita, Pascual, Natalia, Hoffmann, Søren V, Jones, Nykola C, and
Mason, Nigel J. Vacuum ultraviolet photoabsorption spectroscopy of crystalline
and amorphous benzene. Physical Chemistry Chemical Physics 19, 40 (2017),
27544–27555.

[66] Di Napoli, E., Polizzi, E., and Saad, Y. Efficient estimation of eigenvalue counts
in an interval. arXiv preprint arXiv:1308.4275 (2013).

[67] Embree, M., and Trefethen, L. N. Pseudospectra gateway.

179

[68] Fang, Haw-ren, and Saad, Yousef. Two classes of multisecant methods for
nonlinear acceleration. Numerical Linear Algebra with Applications 16, 3 (2009),
197–221.

[69] Fermi, Enrico. Un metodo statistico per la determinazione di alcune priorieta
dellatome. Rend. Accad. Naz. Lincei 6, 602-607 (1927), 32.

[70] Fermi, Enrico. Eine statistische methode zur bestimmung einiger eigenschaften
des atoms und ihre anwendung auf die theorie des periodischen systems der
elemente. Zeitschrift für Physik 48, 1-2 (1928), 73–79.

[71] Fiolhais, Carlos, Nogueira, Fernando, and Marques, Miguel AL. A primer in
density functional theory, vol. 620. Springer Science & Business Media, 2003.

[72] Fock, V. Näherungsmethode zur lösung des quantenmechanischen
mehrkörperproblems. Zeitschrift für Physik 61, 1-2 (1930), 126–148.

[73] Foulkes, WMC, Mitas, L, Needs, RJ, and Rajagopal, G. Quantum monte carlo
simulations of solids. Reviews of Modern Physics 73, 1 (2001), 33.

[74] Frensley, William R. Boundary conditions for open quantum systems driven far
from equilibrium. Reviews of Modern Physics 62, 3 (1990), 745.

[75] Galgon, M., Krämer, L., and Lang, B. The feast algorithm for large eigenvalue
problems. In Proceedings in Applied Mathematics and Mechanics (2011), vol. 11,
pp. 747–748.

[76] Galgon, M., Krämer, L., and Lang, B. Counting eigenvalues and improving the
integration in the feast algorithm. Preprint BUW-IMACM 12 (2012), 22.

[77] Garza, Alejandro J, and Scuseria, Gustavo E. Comparison of self-consistent
field convergence acceleration techniques. The Journal of chemical physics 137,
5 (2012), 054110.

[78] Gavin, B., and Polizzi, E. Non-linear eigensolver-based alternative to traditional
scf methods. The Journal of Chemical Physics 138, 19 (2013), 194101.

[79] Genovese, L., Videau, B., Ospici, M., Deutsch, T., Goedecker, S., and
Méhautois, J. Daubechies wavelets for high performance electronic structure
calculations: The bigdft project. High Performance Computing 339, 2 (2011),
149–164.

[80] Godby, RW, Schlüter, M, and Sham, LJ. Accurate exchange-correlation poten-
tial for silicon and its discontinuity on addition of an electron. Physical review
letters 56, 22 (1986), 2415.

[81] Golub, G. H., and Van Loan, C. F. Matrix Computations, vol. 3. JHU Press,
2012.

180

[82] Gonze, Xavier. Adiabatic density-functional perturbation theory. Physical Re-
view A 52, 2 (1995), 1096.

[83] Gonze, Xavier, and Vigneron, J-P. Density-functional approach to nonlinear-
response coefficients of solids. Physical Review B 39, 18 (1989), 13120.

[84] Gropp, William, Lusk, Ewing, Doss, Nathan, and Skjellum, Anthony. A high-
performance, portable implementation of the mpi message passing interface
standard. Parallel computing 22, 6 (1996), 789–828.

[85] Gross, Eberhard KU, and Dreizler, Reiner M. Density functional theory,
vol. 337. Springer Science & Business Media, 2013.

[86] Güttel, S., Polizzi, E., Tang, P. T. P., and Viaud, G. Zolotarev quadrature rules
and load balancing for the feast eigensolver. to appear in SIAM Journal on
Scientific Computing (2015). arXiv preprint arXiv:1407.8078 (2014).

[87] Guttel, Stefan, Polizzi, Eric, Tang, Ping Tak Peter, and Viaud, Gautier.
Zolotarev quadrature rules and load balancing for the feast eigensolver. SIAM
Journal on Scientific Computing 37, 4 (2015), A2100–A2122.

[88] Hamann, DR, Schlüter, M, and Chiang, C. Norm-conserving pseudopotentials.
Physical Review Letters 43, 20 (1979), 1494.

[89] Hartree, Douglas R. The wave mechanics of an atom with a non-coulomb central
field. part i. theory and methods. In Mathematical Proceedings of the Cambridge
Philosophical Society (1928), vol. 24, Cambridge Univ Press, pp. 89–110.

[90] Hellmann, Hans. A new approximation method in the problem of many elec-
trons. The Journal of Chemical Physics 3, 1 (1935), 61–61.

[91] Hernandez, V., Roman, J. E., and Vidal, V. SLEPc: A scalable and flexible
toolkit for the solution of eigenvalue problems. ACM Transactions on Mathe-
matical Software 31, 3 (2005), 351–362.

[92] Heroux, M. A., Bartlett, R. A., Howle, V. E., Hoekstra, R. J., Hu, J. J., Kolda,
T. G., Lehoucq, R. B., Long, K. R., Pawlowski, R. P., Phipps, E. T., et al. An
overview of the trilinos project. ACM Transactions on Mathematical Software
31, 3 (2005), 397–423.

[93] Herzberg, Gerhard. Molecular spectra and molecular structure. vol. 1: Spectra
of diatomic molecules. New York: Van Nostrand Reinhold, 1950, 2nd ed. (1950).

[94] Higham, N. J. Functions of matrices: theory and computation. SIAM, 2008.

[95] Hilborn, Robert C. Einstein coefficients, cross sections, f values, dipole mo-
ments, and all that. American Journal of Physics 50, 11 (1982), 982–986.

[96] Hohenberg, Pierre, and Kohn, Walter. Inhomogeneous electron gas. Physical
review 136, 3B (1964), B864.

181

[97] Hughes, Thomas JR. The finite element method: linear static and dynamic
finite element analysis. Courier Corporation, 2012.

[98] Ikegami, T., Sakurai, T., and Nagashima, U. A filter diagonalization for gen-
eralized eigenvalue problems based on the sakurai–sugiura projection method.
Journal of Computational and Applied Mathematics 233, 8 (2010), 1927–1936.

[99] Imakura, A., Du, L., and Sakurai, T. A block arnoldi-type contour integral
spectral projection method for solving generalized eigenvalue problems. Applied
Mathematics Letters 32 (2014), 22–27.

[100] Intel math kernel library. http://software.intel.com/en-us/intel-mkl.

[101] Jacquemin, Denis, Perpete, Eric A, Scuseria, Gustavo E, Ciofini, Ilaria, and
Adamo, Carlo. Td-dft performance for the visible absorption spectra of organic
dyes: conventional versus long-range hybrids. Journal of chemical theory and
computation 4, 1 (2008), 123–135.

[102] Jacquemin, Denis, Perpète, Eric A, Vydrov, Oleg A, Scuseria, Gustavo E, and
Adamo, Carlo. Assessment of long-range corrected functionals performance for
n π* transitions in organic dyes. The Journal of chemical physics 127, 9 (2007),
094102.

[103] Jerome, Joseph W, and Polizzi, Eric. Discretization of time-dependent quantum
systems: real-time propagation of the evolution operator. Applicable Analysis
93, 12 (2014), 2574–2597.

[104] Kalantzis, VASSILIS, Kestyn, JAMES, Polizzi, ERIC, and Saad, YOUSEF. Do-
main decomposition approaches for accelerating contour integration eigenvalue
solvers for symmetric eigenvalue problems. preprint (2016).

[105] Kalinkin, A., and Arturov, K. Asynchronous approach to memory management
in sparse multifrontal methods on multiprocessors. Applied Mathematics 2013
(2013).

[106] Kameta, Kosei, Kouchi, Noriyuki, Ukai, Masatoshi, and Hatano, Yoshihiko.
Photoabsorption, photoionization, and neutral-dissociation cross sections of
simple hydrocarbons in the vacuum ultraviolet range. Journal of Electron Spec-
troscopy and Related Phenomena 123, 2-3 (2002), 225–238.

[107] Kameta, Kosei, Machida, Shuntaro, Kitajima, Masashi, Ukai, Masatoshi,
Kouchi, Noriyuki, Hatano, Yoshihiko, and Ito, Kenji. Photoabsorption, pho-
toionization, and neutral-dissociation cross sections of c2h6 and c3h8 in the
extreme-uv region. Journal of electron spectroscopy and related phenomena 79
(1996), 391–393.

[108] Kane, Charles, Balents, Leon, and Fisher, Matthew PA. Coulomb interactions
and mesoscopic effects in carbon nanotubes. Physical review letters 79, 25
(1997), 5086.

182

[109] Karypis, George, and Kumar, Vipin. Metis–unstructured graph partitioning
and sparse matrix ordering system, version 2.0.

[110] Karypis, George, and Kumar, Vipin. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM Journal on scientific Computing 20, 1
(1998), 359–392.

[111] Kataura, Hiromichi, Kumazawa, Y, Maniwa, Y, Umezu, I, Suzuki, S, Ohtsuka,
Yo, and Achiba, Y. Optical properties of single-wall carbon nanotubes. Syn-
thetic metals 103, 1-3 (1999), 2555–2558.

[112] Katayama, DH, Huffman, RE, and O’Bryan, CL. Absorption and photoioniza-
tion cross sections for h2o and d2o in the vacuum ultraviolet. The Journal of
Chemical Physics 59, 8 (1973), 4309–4319.

[113] Kestyn, J., Kalantzis, V., Polizzi, E., and Saad, Y. PFEAST: A high perfor-
mance sparse eigenvalue solver using distributed-memory linear system solvers.
In Proceedings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (2016), ACM.

[114] Kestyn, James, Polizzi, Eric, and Peter Tang, Ping Tak. Feast eigensolver for
non-hermitian problems. SIAM Journal on Scientific Computing 38, 5 (2016),
S772–S799.

[115] Keyes, David E, Saad, Youcef, and Truhlar, Donald G. Domain-based paral-
lelism and problem decomposition methods in computational science and engi-
neering. SIAM, 1995.

[116] Knyazev, A. V., Argentati, M. E., Lashuk, I., and Ovtchinnikov, E. E. Block lo-
cally optimal preconditioned eigenvalue xolvers (blopex) in hypre and petsc.
SIAM Journal on Scientific Computing 29, 5 (2007), 2224–2239.

[117] Koch, Wolfram, and Holthausen, Max C. A chemist’s guide to density functional
theory. John Wiley & Sons, 2015.

[118] Kohn, Walter. Nobel lecture: Electronic structure of matterwave functions and
density functionals. Reviews of Modern Physics 71, 5 (1999), 1253.

[119] Kohn, Walter, Becke, Axel D, and Parr, Robert G. Density functional theory of
electronic structure. The Journal of Physical Chemistry 100, 31 (1996), 12974–
12980.

[120] Kohn, Walter, and Sham, Lu Jeu. Self-consistent equations including exchange
and correlation effects. Physical review 140, 4A (1965), A1133.

[121] Kramberger, C, Hambach, R, Giorgetti, C, Rümmeli, MH, Knupfer, M, Fink,
J, Büchner, B, Reining, Lucia, Einarsson, E, Maruyama, S, et al. Linear plas-
mon dispersion in single-wall carbon nanotubes and the collective excitation
spectrum of graphene. Physical review letters 100, 19 (2008), 196803.

183

[122] Kramberger, C, Thurakitseree, T, Maruyama, S, and Knupfer, M. π and π+
σ plasmon localization in single-walled carbon nanotube meta-materials. Nan-
otechnology 24, 40 (2013), 405202.

[123] Kudin, Konstantin N, Scuseria, Gustavo E, and Cances, Eric. A black-box
self-consistent field convergence algorithm: One step closer. The Journal of
chemical physics 116, 19 (2002), 8255–8261.

[124] Kuzmin, Andrey, Luisier, Mathieu, and Schenk, Olaf. Fast methods for comput-
ing selected elements of the greens function in massively parallel nanoelectronic
device simulations. In European Conference on Parallel Processing (2013),
Springer, pp. 533–544.

[125] Laux, S. E. Solving complex band structure problems with the feast eigenvalue
algorithm. Physical Review B 86, 7 (2012), 075103.

[126] Lawson, Chuck L, Hanson, Richard J., Kincaid, David R, and Krogh, Fred T.
Basic linear algebra subprograms for fortran usage. ACM Transactions on Math-
ematical Software (TOMS) 5, 3 (1979), 308–323.

[127] Lee, Chengteh, Yang, Weitao, and Parr, Robert G. Development of the colle-
salvetti correlation-energy formula into a functional of the electron density.
Physical review B 37, 2 (1988), 785.

[128] Lehoucq, R. B., Sorensen, D. C., and Yang, C. ARPACK Users’ guide: solu-
tion of large-scale eigenvalue problems with implicitly restarted Arnoldi methods,
vol. 6. SIAM, 1998.

[129] Lehtovaara, Lauri, Havu, Ville, and Puska, Martti. All-electron density func-
tional theory and time-dependent density functional theory with high-order
finite elements. The Journal of chemical physics 131, 5 (2009), 054103.

[130] Lent, Craig S, and Kirkner, David J. The quantum transmitting boundary
method. Journal of Applied Physics 67, 10 (1990), 6353–6359.

[131] Levin, A. R., Zhang, D., and Polizzi, E. FEAST fundamental framework for
electronic structure calculations: Reformulation and solution of the muffin-tin
problem. Computer Physics Communications 183, 11 (2012), 2370–2375.

[132] Levin, Alan, and Polizzi, Eric. Embedded self-energy technique for solving ar-
bitrary nanoelectronic systems using feast. In Nanotechnology (IEEE-NANO),
2011 11th IEEE Conference on (2011), IEEE, pp. 1155–1158.

[133] Levy, Mel. Electron densities in search of hamiltonians. Physical Review A 26,
3 (1982), 1200.

[134] Li, Xiaoye S, Demmel, James W, Gilbert, John R, Grigori, Laura, Shao, Meiyue,
and Yamazaki, Ichitaro. Superlu users guide. Lawrence Berkeley National Lab-
oratory (1999).

184

[135] Li, ZM, Tang, ZK, Liu, HJ, Wang, Ning, Chan, Che Ting, Saito, Riichiro,
Okada, S, Li, GD, Chen, JS, Nagasawa, Nobukata, et al. Polarized absorption
spectra of single-walled 4 å carbon nanotubes aligned in channels of an alpo 4-
5 single crystal. Physical review letters 87, 12 (2001), 127401.

[136] Lin, Lin, Yang, Chao, Meza, Juan C, Lu, Jianfeng, Ying, Lexing, et al. Selinv—
an algorithm for selected inversion of a sparse symmetric matrix. ACM Trans-
actions on Mathematical Software (TOMS) 37, 4 (2011), 40.

[137] Liu, HJ, and Chan, Che Ting. Properties of 4 å carbon nanotubes from first-
principles calculations. Physical Review B 66, 11 (2002), 115416.

[138] Liu, Joseph WH. The multifrontal method for sparse matrix solution: Theory
and practice. SIAM review 34, 1 (1992), 82–109.

[139] Lombos, BA, Sauvageau, P, and Sandorfy, C. The electronic spectra of n-
alkanes. Journal of Molecular Spectroscopy 24, 1-4 (1967), 253–269.

[140] Luttinger, JM. An exactly soluble model of a many-fermion system. Journal
of Mathematical Physics 4, 9 (1963).

[141] Marques, Miguel AL, and Gross, EKU. Time-dependent density functional
theory. Annu. Rev. Phys. Chem. 55 (2004), 427–455.

[142] Marques, Miguel AL, López, Xabier, Varsano, Daniele, Castro, Alberto, and
Rubio, Angel. Time-dependent density-functional approach for biological chro-
mophores: the case of the green fluorescent protein. Physical review letters 90,
25 (2003), 258101.

[143] Marques, Miguel AL, Oliveira, Micael JT, and Burnus, Tobias. Libxc: A library
of exchange and correlation functionals for density functional theory. Computer
Physics Communications 183, 10 (2012), 2272–2281.

[144] Martin, Richard M. Electronic structure: basic theory and practical methods.
Cambridge university press, 2004.

[145] Mendiratta, K., and Polizzi, E. A threaded spike algorithm for solving general
banded systems. Parallel Computing 37, 12 (2011), 733–741.

[146] Meng, Sheng, and Kaxiras, Efthimios. Real-time, local basis-set implemen-
tation of time-dependent density functional theory for excited state dynamics
simulations. The Journal of chemical physics 129, 5 (2008), 054110.

[147] Moler, C. B., and Stewart, G. W. An algorithm for generalized matrix eigen-
value problems. SIAM Journal on Numerical Analysis 10, 2 (1973), 241–256.

[148] Montgomery Jr, John A, Frisch, Michael J, Ochterski, Joseph W, and Petersson,
George A. A complete basis set model chemistry. vi. use of density functional
geometries and frequencies. The Journal of chemical physics 110, 6 (1999),
2822–2827.

185

[149] Murakami, A. A filter diagonalization method by the linear combination of
resolvents. IPSJ Trans. Adv. Comput. Syst. 49 (2008), 66–87.

[150] Murakami, A. A filter diagonalization method by the linear combination of
resolvents. IPSJ SIG Technical Report 43 (2008-HPC-115), Information Pro-
cessing Society of Japan.

[151] Murakami, Yoichi, Einarsson, Erik, Edamura, Tadao, and Maruyama, Shigeo.
Polarization dependence of the optical absorption of single-walled carbon nan-
otubes. Physical review letters 94, 8 (2005), 087402.

[152] Neuhasuer, Daniel, and Baer, Michael. The time-dependent schrödinger equa-
tion: Application of absorbing boundary conditions. The Journal of Chemical
Physics 90, 8 (1989), 4351–4355.

[153] Parlett, B. A. The symmetric eigenvalue problem, vol. 7. SIAM, 1980.

[154] Pask, JE, Klein, BM, Fong, CY, and Sterne, PA. Real-space local polynomial
basis for solid-state electronic-structure calculations: A finite-element approach.
Physical Review B 59, 19 (1999), 12352.

[155] Perdew, John P. Density-functional approximation for the correlation energy
of the inhomogeneous electron gas. Physical Review B 33, 12 (1986), 8822.

[156] Perdew, John P. Jp perdew and y. wang, phys. rev. b 45, 13244 (1992). Phys.
Rev. B 45 (1992), 13244.

[157] Perdew, John P, Burke, Kieron, and Ernzerhof, Matthias. Generalized gradient
approximation made simple. Physical review letters 77, 18 (1996), 3865.

[158] Perdew, John P, and Wang, Yue. Accurate and simple analytic representation
of the electron-gas correlation energy. Physical Review B 45, 23 (1992), 13244.

[159] Perdew, John P, and Zunger, Alex. Self-interaction correction to density-
functional approximations for many-electron systems. Physical Review B 23,
10 (1981), 5048.

[160] Petersilka, MGUJ, Gossmann, UJ, and Gross, EKU. Excitation energies from
time-dependent density-functional theory. Physical Review Letters 76, 8 (1996),
1212.

[161] Polizzi, E. Density-matrix-based algorithm for solving eigenvalue problems.
Physical Review B 79, 11 (2009), 115112.

[162] Polizzi, E. FEAST eigensolver, 2009–2015. http://www.feast-solver.org/.

[163] Polizzi, E., and Kestyn, J. A high-performance numerical library for solv-
ing eigenvalue problems: FEAST solver v3.0 user’s guide. arXiv preprint
arXiv:1203.4031 (2015).

186

[164] Polizzi, Eric. Density-matrix-based algorithm for solving eigenvalue problems.
Physical Review B 79, 11 (2009), 115112.

[165] Polizzi, Eric, and Abdallah, N Ben. Self-consistent three-dimensional models for
quantum ballistic transport in open systems. Physical Review B 66, 24 (2002),
245301.

[166] Polizzi, Eric, and Kestyn, James. Feast eigenvalue solver v3. 0 user guide. arXiv
preprint arXiv:1203.4031 (2015).

[167] Polizzi, Eric, and Sameh, Ahmed H. A parallel hybrid banded system solver:
the spike algorithm. Parallel computing 32, 2 (2006), 177–194.

[168] Polizzi, Eric, and Yngvesson, Sigfrid K. Universal nature of collective plasmonic
excitations in finite 1d carbon-based nanostructures. Nanotechnology 26, 32
(2015), 325201.

[169] Pulay, Péter. Convergence acceleration of iterative sequences. the case of scf
iteration. Chemical Physics Letters 73, 2 (1980), 393–398.

[170] Pulay, Peter. Improved scf convergence acceleration. Journal of Computational
Chemistry 3, 4 (1982), 556–560.

[171] Rennie, EE, Johnson, CAF, Parker, JE, Holland, DMP, Shaw, DA, and Hayes,
MA. A photoabsorption, photodissociation and photoelectron spectroscopy
study of c6h6 and c6d6. Chemical physics 229, 1 (1998), 107–123.

[172] Richardson, Owen Willans. Molecular hydrogen and its spectrum, vol. 23. Yale
University Press, 1934.

[173] Runge, Erich, and Gross, Eberhard KU. Density-functional theory for time-
dependent systems. Physical Review Letters 52, 12 (1984), 997.

[174] Saad, Y. Numerical methods for large eigenvalue problems, vol. 158. SIAM,
1992.

[175] Saad, Youcef, and Schultz, Martin H. Gmres: A generalized minimal residual
algorithm for solving nonsymmetric linear systems. SIAM Journal on scientific
and statistical computing 7, 3 (1986), 856–869.

[176] Saad, Yousef. Iterative methods for sparse linear systems, vol. 82. siam, 2003.

[177] Saad, Yousef, Chelikowsky, James R, and Shontz, Suzanne M. Numerical meth-
ods for electronic structure calculations of materials. SIAM review 52, 1 (2010),
3–54.

[178] Sakurai, T., and Sugiura, H. A projection method for generalized eigenvalue
problems using numerical integration. Journal of Computational and Applied
Mathematics 159, 1 (2003), 119–128.

187

[179] Sakurai, T., and Tadano, H. CIRR: a rayleigh-ritz type method with contour
integral for generalized eigenvalue problems. Hokkaido Mathematical Journal
36, 4 (2007), 745–757.

[180] Schenk, O., and Gärtner, K. On fast factorization pivoting methods for sparse
symmetric indefinite systems. Electronic Transactions on Numerical Analysis
23, 1 (2006), 158–179.

[181] Schenk, Olaf, and Gärtner, Klaus. Solving unsymmetric sparse systems of linear
equations with pardiso. Future Generation Computer Systems 20, 3 (2004),
475–487.

[182] Sharp, TE. Potential-energy curves for molecular hydrogen and its ions. Atomic
Data and Nuclear Data Tables 2 (1970), 119–169.

[183] Sherrill, C David, and Schaefer III, Henry F. The configuration interaction
method: Advances in highly correlated approaches. In Advances in quantum
chemistry, vol. 34. Elsevier, 1999, pp. 143–269.

[184] Shi, Zhiwen, Hong, Xiaoping, Bechtel, Hans A, Zeng, Bo, Martin, Michael C,
Watanabe, Kenji, Taniguchi, Takashi, Shen, Yuen-Ron, and Wang, Feng. Obser-
vation of a luttinger-liquid plasmon in metallic single-walled carbon nanotubes.
Nature Photonics 9, 8 (2015), 515.

[185] Silva-Junior, Mario R, Schreiber, Marko, Sauer, Stephan PA, and Thiel, Wal-
ter. Benchmarks for electronically excited states: Time-dependent density func-
tional theory and density functional theory based multireference configuration
interaction. The Journal of chemical physics 129, 10 (2008), 104103.

[186] Slater, John C. Note on hartree’s method. Physical Review 35, 2 (1930), 210.

[187] Slater, John C. A simplification of the hartree-fock method. Physical Review
81, 3 (1951), 385.

[188] Smith, Barry, Bjorstad, Petter, and Gropp, William. Domain decomposition:
parallel multilevel methods for elliptic partial differential equations. Cambridge
university press, 2004.

[189] Spataru, Catalin D, Ismail-Beigi, Sohrab, Benedict, Lorin X, and Louie,
Steven G. Excitonic effects and optical spectra of single-walled carbon nan-
otubes. Physical Review Letters 92, 7 (2004), 077402.

[190] Spring, B. Enhanced capabilities of the spike algorithm and a new spike-openmp
solver. Master’s thesis, University of Massachusetts Amherst, 2014.

[191] Stathopoulos, A., and McCombs, J. R. PRIMME: Preconditioned iterative
multimethod eigensolver: methods and software description. ACM Transac-
tions on Mathematical Software 37, 2 (2010), 21.

188

[192] Stephens, PJ, Devlin, FJ, Chabalowski, CFN, and Frisch, Michael J. Ab initio
calculation of vibrational absorption and circular dichroism spectra using den-
sity functional force fields. The Journal of Physical Chemistry 98, 45 (1994),
11623–11627.

[193] Sternheimer, R. On nuclear quadrupole moments. Physical Review 80, 1 (1950),
102.

[194] Suryanarayana, Phanish, Gavini, Vikram, Blesgen, Thomas, Bhattacharya,
Kaushik, and Ortiz, Michael. Non-periodic finite-element formulation of kohn–
sham density functional theory. Journal of the Mechanics and Physics of Solids
58, 2 (2010), 256–280.

[195] Tang, P. T. P., Kestyn, J., and Polizzi, E. A new highly parallel non-hermitian
eigensolver. In Proceedings of the High Performance Computing Symposium
(San Diego, CA, USA, 2014), Society for Computer Simulation International.

[196] Tang, P. T. P., Kestyn, J., and Polizzi, E. Subspace iteration on steroids–a new
highly parallel non-hermitian eigensolver. In Proceedings of the International
MultiConference of Engineers and Computer Scientists (2015), vol. 1.

[197] Tang, P. T. P., and Polizzi, E. FEAST as a subspace iteration eigensolver accel-
erated by approximate spectral projection. SIAM Journal on Matrix Analysis
and Applications 35, 2 (2014), 354–390.

[198] Tao, Jianmin, Perdew, John P, Staroverov, Viktor N, and Scuseria, Gustavo E.
Climbing the density functional ladder: Nonempirical meta–generalized gradi-
ent approximation designed for molecules and solids. Physical Review Letters
91, 14 (2003), 146401.

[199] Thomas, Llewellyn H. The calculation of atomic fields. In Mathematical Pro-
ceedings of the Cambridge Philosophical Society (1927), vol. 23, Cambridge Univ
Press, pp. 542–548.

[200] Tomonaga, Sin-itiro. Remarks on bloch’s method of sound waves applied to
many-fermion problems. Progress of Theoretical Physics 5, 4 (1950), 544–569.

[201] Toselli, Andrea, and Widlund, Olof B. Domain decomposition methods: algo-
rithms and theory, vol. 34. Springer, 2005.

[202] Trefethen, L. N. Pseudospectra of matrices. Oxford University, Computing
Laboratory Numerical Analysis Group, 1991.

[203] Trefethen, L. N., and Weideman, J. A. C. The exponentially convergent trape-
zoidal rule. SIAM Review 56, 3 (2014), 385–458.

[204] Ullrich, CA. Ca ullrich, uj gossmann, and eku gross, phys. rev. lett. 74, 872
(1995). Phys. Rev. Lett. 74 (1995), 872.

189

[205] Ullrich, CA. Time-dependent kohn–sham approach to multiple ionization. Jour-
nal of Molecular Structure: THEOCHEM 501 (2000), 315–325.

[206] Ullrich, CA. Semiconductor nanostructures. In Time-Dependent Density Func-
tional Theory. Springer, 2006, pp. 271–285.

[207] Ullrich, CA, Erhard, S, Gross, EKU, Muller, HG, and Fedorov, MV. Super
intense laser atom physics iv, 1996.

[208] van Leeuwen, Robert. Mapping from densities to potentials in time-dependent
density-functional theory. Physical review letters 82, 19 (1999), 3863.

[209] Vanderbilt, David. Soft self-consistent pseudopotentials in a generalized eigen-
value formalism. Physical Review B 41, 11 (1990), 7892.

[210] Vosko, Seymour H, Wilk, Leslie, and Nusair, Marwan. Accurate spin-dependent
electron liquid correlation energies for local spin density calculations: a critical
analysis. Canadian Journal of physics 58, 8 (1980), 1200–1211.

[211] Walker, Homer F, and Ni, Peng. Anderson acceleration for fixed-point itera-
tions. SIAM Journal on Numerical Analysis 49, 4 (2011), 1715–1735.

[212] Wang, Endong, Zhang, Qing, Shen, Bo, Zhang, Guangyong, Lu, Xiaowei, Wu,
Qing, and Wang, Yajuan. Intel math kernel library. In High-Performance
Computing on the Intel R© Xeon Phi. Springer, 2014, pp. 167–188.

[213] Wang, Yan Alexander, Yam, Chi Yung, Chen, Ya Kun, and Chen, Guan-
Hua. Communication: Linear-expansion shooting techniques for accelerating
self-consistent field convergence, 2011.

[214] Wimmer, E, Krakauer, H, Weinert, M, and Freeman, AJ. Full-potential self-
consistent linearized-augmented-plane-wave method for calculating the elec-
tronic structure of molecules and surfaces: O 2 molecule. Physical Review
B 24, 2 (1981), 864.

[215] Yabana, K, Nakatsukasa, T, Iwata, J-I, and Bertsch, GF. Real-time, real-space
implementation of the linear response time-dependent density-functional theory.
physica status solidi (b) 243, 5 (2006), 1121–1138.

[216] Yabana, Kazuhiro, and Bertsch, GF. Time-dependent local-density approxima-
tion in real time. Physical Review B 54, 7 (1996), 4484.

[217] Yang, Weitao. Direct calculation of electron density in density-functional theory.
Physical Review Letters 66, 11 (1991), 1438.

[218] Zhang, D, and Polizzi, E. Mode decomposition techniques for electronic struc-
ture calculations of 3d nanowire devices. In Computational Electronics, 2009.
IWCE’09. 13th International Workshop on (2009), IEEE, pp. 1–4.

190

[219] Zhang, D, and Polizzi, E. A bottom-up computational framework for first-
principle all-electron calculations. In Nanotechnology (IEEE-NANO), 2010 10th
IEEE Conference on (2010), IEEE, pp. 821–825.

[220] Zhang, Deyin, and Polizzi, Eric. Efficient modeling techniques for atomistic-
based electronic density calculations. Journal of Computational Electronics 7,
3 (2008), 427–431.

[221] Zhang, Runmin, Bursi, Luca, Cox, Joel D., Cui, Yao, Krauter, Caroline M.,
Alabastri, Alessandro, Manjavacas, Alejandro, Calzolari, Arrigo, Corni, Ste-
fano, Molinari, Elisa, Carter, Emily A., Garca de Abajo, F. Javier, Zhang, Hui,
and Nordlander, Peter. How to identify plasmons from the optical response of
nanostructures. ACS Nano 11, 7 (2017), 7321–7335.

[222] Zienkiewicz, Olgierd Cecil, Taylor, Robert Leroy, Zienkiewicz, Olgierd Cecil,
and Taylor, Robert Lee. The finite element method, vol. 3. McGraw-hill London,
1977.

[223] Zolotarev, E. I. Application of elliptic functions to questions of functions de-
viating least and most from zero. Zap. Imp. Akad. Nauk. St. Petersburg 30, 5
(1877), 1–59.

191

	Parallel Algorithms for Time Dependent Density Functional Theory in Real-space and Real-time
	Recommended Citation

	tmp.1533177725.pdf.vzR8X

