3,910 research outputs found

    An Optimisation-Driven Prediction Method for Automated Diagnosis and Prognosis

    Get PDF
    open access articleThis article presents a novel hybrid classification paradigm for medical diagnoses and prognoses prediction. The core mechanism of the proposed method relies on a centroid classification algorithm whose logic is exploited to formulate the classification task as a real-valued optimisation problem. A novel metaheuristic combining the algorithmic structure of Swarm Intelligence optimisers with the probabilistic search models of Estimation of Distribution Algorithms is designed to optimise such a problem, thus leading to high-accuracy predictions. This method is tested over 11 medical datasets and compared against 14 cherry-picked classification algorithms. Results show that the proposed approach is competitive and superior to the state-of-the-art on several occasions

    COMET: A Recipe for Learning and Using Large Ensembles on Massive Data

    Full text link
    COMET is a single-pass MapReduce algorithm for learning on large-scale data. It builds multiple random forest ensembles on distributed blocks of data and merges them into a mega-ensemble. This approach is appropriate when learning from massive-scale data that is too large to fit on a single machine. To get the best accuracy, IVoting should be used instead of bagging to generate the training subset for each decision tree in the random forest. Experiments with two large datasets (5GB and 50GB compressed) show that COMET compares favorably (in both accuracy and training time) to learning on a subsample of data using a serial algorithm. Finally, we propose a new Gaussian approach for lazy ensemble evaluation which dynamically decides how many ensemble members to evaluate per data point; this can reduce evaluation cost by 100X or more

    Evolving Ensemble Fuzzy Classifier

    Full text link
    The concept of ensemble learning offers a promising avenue in learning from data streams under complex environments because it addresses the bias and variance dilemma better than its single model counterpart and features a reconfigurable structure, which is well suited to the given context. While various extensions of ensemble learning for mining non-stationary data streams can be found in the literature, most of them are crafted under a static base classifier and revisits preceding samples in the sliding window for a retraining step. This feature causes computationally prohibitive complexity and is not flexible enough to cope with rapidly changing environments. Their complexities are often demanding because it involves a large collection of offline classifiers due to the absence of structural complexities reduction mechanisms and lack of an online feature selection mechanism. A novel evolving ensemble classifier, namely Parsimonious Ensemble pENsemble, is proposed in this paper. pENsemble differs from existing architectures in the fact that it is built upon an evolving classifier from data streams, termed Parsimonious Classifier pClass. pENsemble is equipped by an ensemble pruning mechanism, which estimates a localized generalization error of a base classifier. A dynamic online feature selection scenario is integrated into the pENsemble. This method allows for dynamic selection and deselection of input features on the fly. pENsemble adopts a dynamic ensemble structure to output a final classification decision where it features a novel drift detection scenario to grow the ensemble structure. The efficacy of the pENsemble has been numerically demonstrated through rigorous numerical studies with dynamic and evolving data streams where it delivers the most encouraging performance in attaining a tradeoff between accuracy and complexity.Comment: this paper has been published by IEEE Transactions on Fuzzy System

    Feature Selection Inspired Classifier Ensemble Reduction

    Get PDF
    Classifier ensembles constitute one of the main research directions in machine learning and data mining. The use of multiple classifiers generally allows better predictive performance than that achievable with a single model. Several approaches exist in the literature that provide means to construct and aggregate such ensembles. However, these ensemble systems contain redundant members that, if removed, may further increase group diversity and produce better results. Smaller ensembles also relax the memory and storage requirements, reducing system's run-time overhead while improving overall efficiency. This paper extends the ideas developed for feature selection problems to support classifier ensemble reduction, by transforming ensemble predictions into training samples, and treating classifiers as features. Also, the global heuristic harmony search is used to select a reduced subset of such artificial features, while attempting to maximize the feature subset evaluation. The resulting technique is systematically evaluated using high dimensional and large sized benchmark datasets, showing a superior classification performance against both original, unreduced ensembles, and randomly formed subsets. ? 2013 IEEE

    Incremental learning algorithms and applications

    Get PDF
    International audienceIncremental learning refers to learning from streaming data, which arrive over time, with limited memory resources and, ideally, without sacrificing model accuracy. This setting fits different application scenarios where lifelong learning is relevant, e.g. due to changing environments , and it offers an elegant scheme for big data processing by means of its sequential treatment. In this contribution, we formalise the concept of incremental learning, we discuss particular challenges which arise in this setting, and we give an overview about popular approaches, its theoretical foundations, and applications which emerged in the last years
    corecore