33 research outputs found

    KRYTYCZNY PRZEGLĄD MODELI UŻYWANYCH W SYMULACJI NUMERYCZNEJ ELEKTROFILTRÓW

    Get PDF
    The electrostatic precipitators (ESP) have been drawing more and more attention due to their high efficiency and low costs. Numerical simulation is a powerful, economical and flexible tool to design ESP for industry applications. This review summarizes the available numerical models to simulate different physical processes in ESP, including ionized electric field, air flow, particle charging and motion. It has been confirmed that the available models could provide acceptable results and the computing requirements are affordable in industry applications. The coupling between different physical processes can also be considered in simulation. However, there are still some problems not solved, such as selection of a suitable turbulence model in EHD simulation and the coupling criteria. The future study should focus on these issues. This review also includes new types of ESP developed in recent years, such as dielectric barrier discharge (DBD) ESP and corona assisted fibrous filter. These new types of ESP have had high efficiency and low energy consumption. Even though nearly all new ESP types can be modeled using the available numerical models, the most challenging issue is the DBD simulation.Elektrofiltry są obiektem nieustającej uwagi ze względu na ich wysoką sprawność i niski koszt. Symulacja numeryczna jest bardzo skutecznym, ekonomicznym i elastycznym narzędziem przy projektowaniu przemysłowych elektrofiltrów. Ten artykuł podsumowuje dostępne modele numeryczne do symulacji różnych procesów fizycznych występujących w elektrofiltrach, włączając zjonizowane pole elektryczne, przepływ powietrza, ładowanie cząstek i ich trajektorie. Zostało potwierdzone, że dostępne modele mogą dostarczyć zadowalających wyników nawet używając sprzętu komputerowego dostępnego w zastosowaniach przemysłowych. Wzajemne sprzężenia między różnymi procesami fizycznymi mogą być analizowane podczas symulacji. Ciągle istnieją jednak problemy nierozwiązane, na przykład wybór odpowiedniego modelu turbulencji przeplywu gazu albo kryteriów sprzężeń. Przyszłe badania powinny skoncentrować się na ich rozwiązaniu. Ten przegląd omawia też nowe rodzaje elektrofiltrów zaproponowanych w ostatnich latach, na przykład elektrofiltry oparte na wyładowaniach z barierą dielektryczną albo wspomagane wyładowaniem koronowym filtry włókniste. Te nowe typy elektrofiltrów mają wysoką sprawność i niski pobór energii. Jeśli nawet prawie wszystkie nowe typy elektrofiltrów mogą być modelowane z użyciem istniejących modeli numerycznych, najtrudniejsze jest modelowanie wyładowania z barierą dielektryczną

    Secondary Electrohydrodynamic Flow Generated by Corona and Dielectric Barrier Discharges

    Get PDF
    One of the main goals of applied electrostatics engineering is to discover new perspectives in a wide range of research areas. Controlling the fluid media through electrostatic forces has brought new important scientific and industrial applications. Electric field induced flows, or electrohydrodynamics (EHD), have shown promise in the field of fluid dynamics. Although numerous EHD applications have been explored and extensively studied so far, most of the works are either experimental studies, which are not capable to explain the in depth physics of the phenomena, or detailed analytical studies, which are not time effective. The focus of this study is to provide the model that in a reasonable computational time is able to give us accurate results in different electric-fluid interactions. So, the main goals of this study is to provide a model to simulate all essential physical phenomena, applicable in different EHD systems. So, in this thesis, first, a two-dimensional numerical solver is presented for the dynamic simulation of the Dielectric Barrier Discharge (DBD) and the Corona Discharge (CD) in point to plane configuration. The simulations start with the single-species model and the different steps of the numerical technique are tested for this simplified model. The ability of the technique to model the expected physical behavior of ions and electric field is investigated. The studied physics were implemented in different geometry configurations such as wire to plane, wire to wire, and plane to plane geometries. The electrostatic field and ionic space charge density due to corona discharge were computed by numerically solving Poisson and current continuity equations, using a Finite Element method (FEM). The detailed numerical approach and simulation procedure is discussed and applied throughout the thesis. Then, the technique is applied to a more complicated model in order to address several existing EHD applications. The complicated mutual interaction between the three coexisting phenomena of electrostatic field, the charge transport, and fluid dynamics, which affect the EHD process, were taken into account in all the simulations. Calculations of the gas flow were carried out by solving the Reynolds-averaged Navier-Stokes (RANS) equations using FEM. The turbulence effect was included by using the k-ε model included in commercial COMSOL software. An additional source term was added to the gas flow equation to include the effect of the electrostatic body force. In all the simulations, the effects of different parameters on the overall performance of the system and its characteristics are investigated. In some cases, the simulation results were compared with the existing experimental data published in literature

    FEM-FCT Based Dynamic Simulation of Trichel Pulse Corona Discharge in Point-Plane Configuration

    Get PDF
    In this thesis, a new two-dimensional numerical solver is presented for the dynamic simulation of the Trichel pulse regime of negative corona discharge in point-plane configuration. The goal of this thesis is to simulate the corona discharge phenomenon and to improve the existing models so that the results have an acceptable compatibility with the experimentally obtained data. The numerical technique used in this thesis is a combination of Finite Element Method (FEM) and Flux Corrected Transport (FCT). These techniques are proved to be the best techniques, presented so far for solving the nonlinear hyperbolic equations that simulate corona discharge phenomenon. The simulation begins with the single-species corona discharge model and thedifferent steps of the numerical technique are tested for this simplified model. The ability of the technique to model the expected physical behaviour of ions and electric field is investigated. Then, the technique is applied to a more complicated model of corona discharge, a three-specie model, in which three ionic species exist in the air gap: electrons, and positive and negative oxygen ions. Avalanche ionization, electron attachment and ionic recombination are the three ionic reactions which this model includes. The macroscopic parameters i.e., the average corona current and the Trichelpulses period are calculated and compared with the available experimental data. The technique proves to be compatible with the available experimental results. Finally, the effects of different parameters on the Trichel pulse characteristics are investigated. The results are further compared against the available experimental data for the effect of pressure on Trichel pulse characteristics and are reported to be compatible

    Voltage-current characteristics of needle-plate system with different media on the collection plate

    Get PDF
    Abstract The hybrid electrostatic precipitator and media filtration system is significantly more promising than traditional filtration methods. This paper investigated the electrostatic characteristics of different filter media types used in the hybrid filtration system. The voltage-current (V-I) characteristics of needle-plate system, the collection plate of which is covered by filter media, were measured. Seven types of filter media and collection plate including iron plate, iron grid and activated carbon layer were considered. The glass fiber and polyethylene media reduce approximately 20% of the current value. The bag filter increases the current value because of the back corona effect. Polyester and polyethylene terephthalate materials with activated carbon attached can increase the current value significantly. In addition, this paper studied the effects of cake thickness on V-I characteristics. The results show that the cake layer has little influence on the V-I character when its thickness is not very big

    Modelling of baffles in electostatic precipitator (ESP0 to achieve optimum flow distribution

    Get PDF
    Papers presented to the 11th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, South Africa, 20-23 July 2015.Electrostatic Precipitators (ESP) are the most reliable emission control devices that are used in coal fired power plants to capture fine particles for reducing exhaust emission. Its efficiency is more than 99% or more. However, capturing submicron particles are still a problem due to complex flow distributions and design limitations of ESP. In this study, two different shapes of baffles inside the ESP have been considered to assess their influence on the flow pattern using computational fluid dynamics (CFD) code ‘ANSYS FLUENT’.. Due to different shapes, the flow distribution will be changed inside the ESP which is expected to affect and increase the residence time of flue gas. The results of this paper indicate that the proposed shapes can influence in collecting more fine particles.am201

    EXPERIMENTAL AND COMPUTATIONAL ANALYSIS OF AN ELECTROHYDRODYNAMIC MESOPUMP FOR SPOT COOLING APPLICATIONS

    Get PDF
    As electronic products become faster, more compact, and incorporate greater functionality, their thermal management becomes increasingly more challenging as well. In fact, shrinking system sizes, along with increasing circuit density, are resulting in rapid growth of volumetric heat generation rate and reduction in surface area for adequate heat dissipation. Moreover, system miniaturization by employing microfabrication technology has had a great influence on thermal and fluid research Smaller systems have many attractive characteristics and can be more conveniently fabricated using batch production technologies. One of the fields showing promising potential in microsystems and electronics cooling is the use of the phenomenon of electrohydrodynamics or EHD defined as a direct interaction between the electric and hydrodynamic fields where the electric field introduces fluid motion. The objectives of the present study were to identify the physics of these phenomena as related to the present study, to simulate it numerically, and to verify the modeling through experiments. More specifically, the goals were to develop a novel numerical methodology to simulate the highly complex interaction between fluid flow and electrical fields. Next, to verify the model a mesoscale ion-injection pump was designed and fabricated, followed by a set of experiments that characterized the pump's performance. The experiments will also demonstrate the application potential of the concept in electronics cooling and particularly for spot cooling applications. Experimental tests were conducted on an EHD ion-injection mesopump to measure the flow rates and generated pressure heads with HFE -7100 as working liquid. It is shown that the results of two different flow rate measurement techniques that were employed, are in agreement. The experimental results also show that maximum flow rate of about 30 ml/min and pressure head of 270 Pa for the electrode gap of 250 m and voltage of 1500 V are achievable. A novel numerical modeling method was developed that incorporates both the injection and dissociation of ions. This modeling method is used to simulate the EHD mesopump. The numerical results show a fairly good agreement with experimental data

    Numerical Analysis of Respiratory Aerosol Deposition: Effects of Exhalation, Airway Constriction and Electrostatic Charge

    Get PDF
    The dynamics of particle laden flows are integral to the analysis of toxic particle deposition and medical respiratory aerosol delivery. Computational fluid-particle dynamics (CFPD) can play a critical role in developing a better understanding of particle laden flows, especially in a number of under-explored areas. The applications considered in this study include both the numerical aspects and the physical phenomena of respiratory aerosol transport. Objective I: Considering the effects of mesh type and grid convergence, four commonly implemented mesh styles were applied to a double bifurcation respiratory geometry and tested for flow patterns and aerosol deposition. Results indicated that the mesh style employed had a significant effect on the transport and deposition of aerosols with hexahedral meshes being most accurate. Objective II: In order to evaluate the effects of bronchoconstriction under exhalation conditions, normal and constricted pediatric airway models were considered. Results include (i) a significant increase in deposition for constricted airways, and (ii) a novel correlation for deposition during exhalation based on the Dean and Stokes numbers. Objective IIIa: Considering evaluation of an aerosol size sampler, an eight-stage Andersen cascade impactor (ACI) was numerically analyzed. The numerical simulations indicated high non-uniformity and recirculation in the flow field. Numerical predictions of retention fraction matched well with existing experiments (0.5 11% error). Objective IIIb: As an extension to this study, numerical predictions of electrostatic charge effects on aerosol transport and deposition in the ACI were presented. Charges consistent with standard pharmaceutical pressurized metered dose inhalers and dry powder inhalers were considered. The numerical predictions indicated that charged aerosols deposit as if they were 5 85% larger due to electrostatic effects. Applications of the studies considered include (i) quantitative guidance in selecting numerical mesh styles and development of standard grid convergence criteria, (ii) the development of more accurate whole-lung deposition models that better evaluate exhalation conditions,(iii) improvements in the design of pharmaceutical assessment and delivery devices, and (vi) correction values to account for electrostatic charge on pharmaceutical aerosols

    NASA Tech Briefs, July 1996

    Get PDF
    Topics covered include: Mechanical Components; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Report

    Electrically Driven Technologies for Radioactive Aerosol Abatement

    Full text link

    EMSP Final Report: Electrically Driven Technologies for Radioactive Aerosol Abatement

    Full text link
    corecore