1,022 research outputs found

    Effectively Open Real Functions

    Get PDF
    A function f is continuous iff the PRE-image f^{-1}[V] of any open set V is open again. Dual to this topological property, f is called OPEN iff the IMAGE f[U] of any open set U is open again. Several classical Open Mapping Theorems in Analysis provide a variety of sufficient conditions for openness. By the Main Theorem of Recursive Analysis, computable real functions are necessarily continuous. In fact they admit a well-known characterization in terms of the mapping V+->f^{-1}[V] being EFFECTIVE: Given a list of open rational balls exhausting V, a Turing Machine can generate a corresponding list for f^{-1}[V]. Analogously, EFFECTIVE OPENNESS requires the mapping U+->f[U] on open real subsets to be effective. By effectivizing classical Open Mapping Theorems as well as from application of Tarski's Quantifier Elimination, the present work reveals several rich classes of functions to be effectively open.Comment: added section on semi-algebraic functions; to appear in Proc. http://cca-net.de/cca200

    Compact manifolds with computable boundaries

    Full text link
    We investigate conditions under which a co-computably enumerable closed set in a computable metric space is computable and prove that in each locally computable computable metric space each co-computably enumerable compact manifold with computable boundary is computable. In fact, we examine the notion of a semi-computable compact set and we prove a more general result: in any computable metric space each semi-computable compact manifold with computable boundary is computable. In particular, each semi-computable compact (boundaryless) manifold is computable

    On the topological aspects of the theory of represented spaces

    Get PDF
    Represented spaces form the general setting for the study of computability derived from Turing machines. As such, they are the basic entities for endeavors such as computable analysis or computable measure theory. The theory of represented spaces is well-known to exhibit a strong topological flavour. We present an abstract and very succinct introduction to the field; drawing heavily on prior work by Escard\'o, Schr\"oder, and others. Central aspects of the theory are function spaces and various spaces of subsets derived from other represented spaces, and -- closely linked to these -- properties of represented spaces such as compactness, overtness and separation principles. Both the derived spaces and the properties are introduced by demanding the computability of certain mappings, and it is demonstrated that typically various interesting mappings induce the same property.Comment: Earlier versions were titled "Compactness and separation for represented spaces" and "A new introduction to the theory of represented spaces

    Finding subsets of positive measure

    Full text link
    An important theorem of geometric measure theory (first proved by Besicovitch and Davies for Euclidean space) says that every analytic set of non-zero ss-dimensional Hausdorff measure Hs\mathcal H^s contains a closed subset of non-zero (and indeed finite) Hs\mathcal H^s-measure. We investigate the question how hard it is to find such a set, in terms of the index set complexity, and in terms of the complexity of the parameter needed to define such a closed set. Among other results, we show that given a (lightface) Σ11\Sigma^1_1 set of reals in Cantor space, there is always a Π10(O)\Pi^0_1(\mathcal{O}) subset on non-zero Hs\mathcal H^s-measure definable from Kleene's O\mathcal O. On the other hand, there are Π20\Pi^0_2 sets of reals where no hyperarithmetic real can define a closed subset of non-zero measure.Comment: This is an extended journal version of the conference paper "The Strength of the Besicovitch--Davies Theorem". The final publication of that paper is available at Springer via http://dx.doi.org/10.1007/978-3-642-13962-8_2

    First Order Theories of Some Lattices of Open Sets

    Full text link
    We show that the first order theory of the lattice of open sets in some natural topological spaces is mm-equivalent to second order arithmetic. We also show that for many natural computable metric spaces and computable domains the first order theory of the lattice of effectively open sets is undecidable. Moreover, for several important spaces (e.g., Rn\mathbb{R}^n, n1n\geq1, and the domain PωP\omega) this theory is mm-equivalent to first order arithmetic
    corecore