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Abstract

A function f is continuous iff the pre-image f −1[V ] of any open setV is open again. Dual to this topological
property, f is called open iff the image f [U ] of any open set U is open again. Several classical open mapping
theorems in analysis provide a variety of sufficient conditions for openness.

By the main theorem of recursive analysis, computable real functions are necessarily continuous. In fact
they admit a well-known characterization in terms of the mapping V �→ f −1[V ] being effective: given a
list of open rational balls exhausting V, a Turing Machine can generate a corresponding list for f −1[V ].
Analogously, effective openness requires the mapping U �→ f [U ] on open real subsets to be effective.

The present work combines real analysis with algebraic topology and Tarski’s quantifier elimination
to effectivize classical open mapping theorems and to establish several rich classes of real functions as
effectively open.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Computability theory over the reals started by investigating single numbers [Tur36]. When
real functions were later considered it turned out that continuity was a necessary condition for
computability. A function f : X → Y between topological spaces is continuous iff, for any open
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set V ⊂ Y , its pre-image f −1[V ] ⊆ X is open again. In the case of open X ⊆ Rn and Y = Rm

this means that, for any countable union of m-dimensional open rational Euclidean balls

V =
⋃
j

B(yj , rj ), yj ∈ Qm, rj ∈ Q>0, B(y, r) := {u ∈ Rm : |y − u| < r},

U := f −1[V ] ⊆ Rn is also a countable union of n-dimensional open rational Euclidean balls
B(x�, s�). Moreover, f is computable in the sense of [Grz57,PER89,Ko91] iff the mapping V �→
f −1[V ] on hyperspaces of open subsets is effective in that, given a list of (centers xk and radii rk of)
open rational Euclidean balls B(xk, rk) ⊆ Rm exhausting V , one can compute a corresponding
list of open rational Euclidean balls B(y�, s�) ⊆ Rn exhausting f −1[V ]; cf. Lemma 6.1.7 in
[Wei00].

So to speak ‘dual’ to continuity is openness: the function f is open if, rather than its pre-image,
its image f [U ] ⊆ Y is open for any open set U ⊆ X. While for example any constant f lacks the
latter property, conditions sufficient for its presence are given by a variety of well-known Open
Mapping Theorems for instance in Functional Analysis, Complex Calculus, Real Analysis, or
Algebraic Topology.

The classical duality of continuity and openness raises the question whether and to what extent
it carries over to the computable setting. For the first two aforementioned theorems, effectivized
versions (in the sense of Recursive Analysis) have been established respectively in [Bra01,Her99];
see Theorem 2. It is indeed natural to consider, similarly to continuity and computability, also
effective openness in the following sense:

Definition 1. Let X ⊆ Rn be r.e. open, that is a union of certain open rational balls B(zj , tj )

whose centers zj and radii tj form computable rational sequences; cf. [Wei00, Definition 5.1.15.3].
Call an open function f : X → Rm effectively open if, from any two lists (xj )j∈N

in Qn and
(rj )j∈N

in Q>0, a Turing Machine can compute two similar lists (y�)�
in Qm and (s�)�

in Q>0

such that f
[⋃

j B(xj , rj )
]

=⋃� B(y�, s�).

In the convenient language of Type-2 Theory of Effectivity [Wei00], this amounts to the mapping
U �→ f [U ] on open Euclidean subsets being (�n

< → �m
< )-computable. 2 Here, �d

< denotes a
canonical representation for the hyperspace Od of open subsets of Rd ; cf. Definition 5.1.15
in [Wei00].

Apart from its natural duality to continuity and computability, openness and effective open-
ness arise in the foundation of CAD/CAE [EL02] in connection with regular sets—i.e., roughly
speaking, full-dimensional but not necessarily convex [KS95] ones—as essential prerequisites
for computations thereon; cf. Proposition 1.1(d)–(f) and Section 3.1 in [Zie04].

The present work proves several rich and important classes of functions to be effectively open
and thus applicable to such problems. Our claims proceed in analogy to those of classical Open
Mapping Theorems. An example due to Hertling illustrates the idea:

Theorem 2. (a) Let f : C → C be complex differentiable and non-constant. Then f is open.
(b) Let f furthermore be computable. Then it is effectively open.

2 The ‘official’ syntax due to [Wei00] reads as “(�n
<, �m

<)”-computability, that is, with a comma; however we favor the
suggestive arrow.
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(c) Claim (b) holds even uniformly in f, that is, the mapping (f, U) �→ f [U ] with domain

{(f, U) | f : C → C complex differentiable non-constant, U ⊆ C open}
is
(
[�2 →�2] × �2

< → �2
<

)
-computable.

Proof. (a) is well-known in Complex Analysis; see, e.g., [Rud74, pp. 231–233]. For (b) and (c),
cf. Corollary 4.4 and Theorem 4.3 in [Her99], respectively. �

Here, �2 denotes the Cauchy representation for the set C of complex numbers, identified with
R2; and [�n → �m] is a natural representation for continuous functions from Rn to Rm; see
Definitions 4.1.17 and 6.1.1 in [Wei00].

1.1. Overview

In the spirit of the above result, we present in Section 2 several classical Open Mapping
Theorems from Real Analysis and Algebraic Topology; and in Sections 3 and 4 according effec-
tivizations. More precisely, proof-mining reveals several classes of computable open functions
on Euclidean space to be effectively open. We focus on claims similar to Theorem 2(b), that is,
for fixed f but uniformly in U.

Section 5 takes a different approach in devising ‘from scratch’ proofs that computable open
semi-algebraic functions are effectively open. Here, arguments are based on Algebra and exploit
Tarski’s Quantifier Elimination—quite surprisingly regarding that the latter usually pertains to
algebraic models of real computation [BCSS98] due to its reliance on equality as decidable a
primitive!

Section 6 finally investigates the general relation between computability and effective openness.
We conclude in Section 7 with a strengthening of [Zie04, Theorem 3.9] based on the results from
Section 4.

A mathematical publication usually cannot be read simply once from the start to the end. This
is due to a proof generally resembling, rather than a straight line, a tree (more precisely: a directed
acyclic graph) with prerequisites and axioms in the leafs and arrows (implications) directed to the
final claim in the root, intermediate results and lemmas located in between. Applying a lemma
only after it has been proven, a logic purist’s presentation thus would start with the leafs of that
tree and proceed bottom-up; whereas a top-down presentation would first formulate and motivate
the claims, beginning with the most central ones, and postpone proofs. In the present work I have
tried to compromise between both approaches.

2. Classical open mapping theorems

We start with a characterization of open functions resembling that of continuous ones. Through-
out this work, all balls are considered in the Euclidean sense, that is, not implicitly restricted to X.

Lemma 3. Let X ⊆ Rn be open, and denote B(x, s) := {v ∈ Rn : |v − x|�s}.
(a i) A function f : X → Rm is continuous iff the mapping

Mocf : X × N → R, (x, k) �→ sup
{
s � 0 : f

[
B(x, s)∩X

] ⊆B
(
f (x), 2−k

)}
(1)

is strictly positive;
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(a ii) equivalently: to any (x, k) ∈ X × N, there exists an � ∈ N such that

f
[
B(x, 2−�) ∩ X

]
⊆ B

(
f (x), 2−k

)
. (2)

(b i) A function f : X → Rm is open iff the mapping

Moof : X × N → R, (x, k) �→ sup
{
s�0 : B (f (x), s) ⊆ f

[
B(x, 2−k) ∩ X

]}
(3)

is strictly positive;
(b ii) equivalently: to any (x, k) ∈ X × N, there exists an � ∈ N such that

B
(
f (x), 2−�

)
⊆ f

[
B(x, 2−k) ∩ X

]
. (4)

Both the function Mocf according to Eq. (1) as well as any mapping moc : X × N → N

satisfying Eq. (2) for � = moc(x, k) are known as the or a, respectively, (local) modulus of
continuity of f; cf., e.g., [Haz00] or [Wei00, Definition 6.2.6]. The apparent similarity suggests
the following:

Definition 4. Moof according to Eq. (3) is the modulus of openness of f; call some mapping
moo : X × N → N a modulus of openness of f if Eq. (4) holds for � = moo(x, k).

In contrast to a modulus of continuity, one of openness does suffice to be positive or defined
on a dense subset only:

Example 5. f : R 	 x �→ |x − �| lacks openness but Moof : Q × N → R is strictly positive.

Proof of Lemma 3. Observe that f [A] ⊆ B ⇔ A ⊆ f −1[B].
(a i) Let Mocf be strictly positive and V ⊆ Rm open. To show that f −1[V ] is open again, let

x ∈ f −1[V ] be arbitrary. As y := f (x) ∈ V and V is open, B(y, 2−k) ⊆ V for some k ∈ N.
Then for s := Mocf (x, k)/2, the open set U := B(x, s) ∩ X satisfies

x ∈ U ⊆ f −1 [f [U ]] (1)⊆ f −1
[
B
(

y, 2−k
)]

⊆ f −1[V ]
that is, an entire open ball around x lying within f −1[V ].
Conversely let f be continuous, x ∈ X and k ∈ N. Therefore, the pre-image U := f −1[V ]
of V := B

(
f (x), 2−k

)
is open and contains x. In particular B(x, s) ⊆ U for some s > 0

and Mocf (x, k)�s is strictly positive.
(a ii) If Mocf (x, k) > 0, then � := �log2(1/s)� for any 0 < s < Mocf (x, k) with s < 1.

Conversely, (2) yields s := 2−�−1 as a positive lower bound to Mocf (x, k).
(b i) If f is open, then its image f [U ] of the open set U := B(x, 2−k)∩X = ∅ is open again and

thus contains, around the point f (x) ∈ f [U ], some non-empty ball B (f (x), s) entirely;
hence Moof (x, k)�s > 0.
Conversely let U denote an open subset of X. To any y ∈ f [U ], consider x ∈ U with
y = f (x) and k ∈ N such that B(x, 2−k) ⊆ U . Then s := Moof (x, k)/2 satisfies

B(y, s)
(3)⊆ f [B(x, 2−k) ∩ X] ⊆ f [U ].

Therefore f [U ] is open.
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(b ii) Follows as in (a ii). In particular it holds f [U ] = ⋃
x∈U

B
(
f (x), 2−moo(x,kx)

)
for open U ⊆ X

whenever kx ∈ N satisfies B(x, 2−kx) ⊆ U . �

Many famous classical theorems give sufficient conditions for a real function to be open. Several
such claims are collected in the following:

Fact 6. Let X ⊆ Rn be open.

(a) Suppose continuous f : X → R has no local extrema (i.e., to any open U ⊆ X and x ∈ U ,
there exist x−, x+ ∈ U such that f (x−) < f (x) < f (x+)); then f is open.

(b) Any affinely linear mapping Rn 	 x �→ A · x + b ∈ Rm is open iff it is surjective.
(c) Any continuously differentiable (‘C1’) f : X → Rm is open, provided its Jacobian f ′(x) =(

(�ifj )ij
)
(x) has rank m for all x ∈ X.

(d) Whenever continuous f : X → Rn satisfies local injectivity (i.e., to each x ∈ X there exists
ε > 0 such that the restriction f |B(x,ε) is injective), then it is open.

Claim (d) generalizes Domain Invariance from Algebraic Topology where often injectivity
is presumed globally. Regarding a converse of Claim (c) for n�m, if f ′ has rank < m on a
non-empty open set U, then f [U ] cannot be open by virtue of

Fact 7 (Morse–Sard theorem). Let U ⊆ Rn be open and f : U → Rm C1. If n�m, then the set
of critical values {f (x) : x ∈ U ∧ rankf ′(x) < m} ⊆ Rn has Lebesgue measure zero.

Proof. See e.g. [Mil97]. The requirement n�m is essential [Whi35]! �

Proof of Fact 6.

(a) Exploit the one-dimensional range and apply the Intermediate Value Theorem: an open
ball B := B(x, 2−k) ⊆ Rn is connected; hence if B ⊆ X, then f [B] ⊆ R is connected as well
and thus a real interval. As furthermore f has by prerequisite no local extrema, any y ∈ f [B] is
accompanied by y−, y+ ∈ f [B] such that y− < y < y+. This implies (y−, y+) ⊆ f [B] and
reveals that f [B] is an open set. Open U ⊆ X being a union of balls Bi , f [U ] = ⋃i f [Bi]
is open, too.

(b) Follows from (c), as the Jacobian of f (x) = A · x + b is A ∈ Rm×n (independent of x) and
rank(A) = m is equivalent to f being surjective.

(d) See for example [Dei85, Theorem 4.3] where (for r = ε) the proof proceeds by showing that
the topological degree d(�, f, y) of f with respect to domain � := B(x, r) is non-zero for all
y in some s-ball around f (x). This guarantees that f |� attains any such value y ∈ B (f (x), s),
that is, f [�] contains B (f (x), s). For ε < 2−k , this implies Moof (x, k)�s/2 > 0 and by
Lemma 3(b) yields openness of f. �

Regarding (c), f has no chance of being locally injective whenever n > m so that (d) is not
applicable in that case. Instead, exploiting differentiability, recall the Inverse Function Theorem
from Real Analysis:

Fact 8. Let U ⊆ Rn be open, f : U → Rm continuously differentiable, and x0 ∈ U such that
rankf ′(x0) = m. Then there exists a continuously differentiable local right inverse to f at x0,
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that is, � > 0 and a C1 function

g : B (f (x0), �) ⊆ Rm → U such that

g (f (x0)) = x0, f (g(y)) = y ∀y ∈ B (f (x0), �)
(5)

If n = m, then g is unique and locally left inverse to f, i.e., g (f (x)) = x on B(x0, ε) for some
ε > 0.

In particular, f [U ] covers the open ball B (f (x0), �) ⊆ Rm. By taking U := B(x0, 2−k) ⊆ X,
we obtain Moof (x, k)��/2 > 0 and Fact 6(c) finally follows with Lemma 3(b).

3. Effective continuity, effective openness

The present section is about an effectivization of Lemma 3. While positivity of Mocf /Moof is
trivially equivalent to the existence of an according moc/moo, respectively, similar equivalences
are by no means obvious with respect to computability. In fact for this purpose, both moc and
moo have to be allowed to become multi-valued in the sense [Wei00, Definition 3.1.3.4] that the
integer � returned by a Type-2 Machine computing moc(x, k) or moo(x, k) may depend, rather
than on the value of the argument x itself, also on the particular choice of rational approximations
for x. Such effects are well known in Recursive Analysis, see for instance [Wei00, Example 4.1.10
or Theorem 6.3.7].

Also recall, e.g. from [Wei00], that �
<

is a representation for R connected to lower (also
called left) computability in that it encodes rational approximations to the real number under
consideration from below. Furthermore, � denotes the standard notation of N.

Theorem 9. Let X ⊆ Rn be r.e. open. Parallel to (the numbering in) Lemma 3, we have:

(a ii) Fix some effective (i.e., (� → �n)-computable) enumeration (xj )j of a dense subset of X
(like for instance X ∩ Q).
A function f : X → Rm is computable iff the real sequence

(
f (xj )

)
j

is computable and
f admits a (�n × � ⇒ �)-computable multi-valued function moc : X × N ⇒ N such that
Eq. (2) holds for all � ∈ moc(x, k), x ∈ X, k ∈ N.

(b i) A computable f : X → Rm is effectively open iff Moof : X × N → R is strictly positive
and (�n × � → �

<
)-computable;

(b ii) equivalently: f admits a (�n ×� ⇒ �)-computable multi-valued function moo : X×N ⇒ N

such that Eq. (4) holds for all � ∈ moo(x, k), x ∈ X, k ∈ N.

Claim (a ii) is closely related to Theorem 6 in [Grz57]. Extending Definition 4, multi-valued
functions moc/moo in the sense of Claims (a ii) and (b ii) will in the sequel also be called moduli
of continuity/openness, respectively. An effective counterpart to Claim (a i) fails; cf. Remark 12
below. Before turning to the Proof of Theorem 9 in Section 3.1, we provide in Lemma 11 some
tools on multi-valued computability which turn out to be useful.

By the main theorem of computable analysis, any computable real function f on a compact
domain is continuous and thus bounded. However, the present work also considers multi-valued
functions like moduli of continuity; and such functions can in general be unbounded even on
compact domains.
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Example 10. For a rational sequence (xj )j with |xj − x| < 2−j for all j ∈ N, let

F
(
(xj )j

) :=
⌊

1
x0+1

⌋
.

Then, F is a computable realization of a multi-valued, unbounded function f : [0, 1]⇒ N.

Item (b) below basically says that such unpleasant cases can always be avoided by passing
to another computable multi-valued function. To this end, we call f̃ : X ⇒ Y a sub-function of
f : X ⇒ Y if f̃ (x) ⊆ f (x) for all x ∈ X and remark that, according to [Wei00, Definition 3.1.3.4],
if f̃ is computable then so are all its super-functions f.

Lemma 11. Let X ⊆ Rn be r.e. open and let �sd denote the signed digit representation.

(a) The partial function G :⊆ On×Rn → R, (U, x) �→ sup{s�0 : B(x, s) ⊆ U}, is (�n
<×�n →

�
<
)-computable; the multi-valued partial mapping g :⊆ On × Rn ⇒ N with Graph(g) :=

{(U, x, k) : B(x, 2−k) ⊆ U} is (�n
< × �n ⇒ �)-computable.

(b) To every (�n ⇒ �m)-computable multi-valued f : X ⇒ Rm, there exists a multi-valued
(�n ⇒ �m)-computable sub-function f̃ for which the image f̃ [K] := ⋃

x∈K

f̃ (x) ⊆ Rm of

any compact subset K of X is bounded.
(c) For m = 1 and the function f̃ from (b), an upper bound N ∈ N on f̃ [K] ⊆ R can be

found effectively; formally: the multi-valued mapping K �→ N with f̃ [K] ⊆ [−N,+N ] is
(�n

> ⇒ �)-computable.

Claims (b) and (c) also hold uniformly in p for parametrized computable functions p �→ f (p, · ) :
X ⇒ Rm.

Proof of Lemma 11.

(a) By [Zie04, Lemma 4.1(b)], the property “B(x, s) ⊆ U” is (�n
<, �n, �)-r.e. open

(‘semi-decidable’) in (U, x, s). So whenever x ∈ U , dove-tailed search w.r.t. s gives lower
approximations to G(U, x); and restricting s to values 2−k yields an admissible value
k ∈ g(U, x).

(b) Let F :⊆ �� → �� denote some computable (single-valued) realization of f. Exploiting
� ≡ �sd according to [Wei00, Theorem 7.2.5.1], we pre-compose F with a computable func-
tion H converting �n

sd-names to �n-names. F ◦H therefore realizes a (�n
sd ⇒ �m)-computable

sub-function f̃ of f, defined by f̃ (x) = {
�m (F ◦ H(	̄)) : �n

sd(	̄) = x
}
. By [Wei00, Exer-

cise 7.2.9], the collection K̃ ⊆ (��)n of all �n
sd-names 	̄ of all x ∈ K is in particular

compact. Being Cantor-continuous, F ◦ H maps K̃ to a compact set (F ◦ H)[K̃] whose
image under �m, namely the set f̃ [K], is again compact by admissibility of �m.

(c) Rather than carefully adapting the proof of, e.g., [Wei00, Theorems 7.1.5], we slightly modify
the Type-2 Machine M computing F ◦H in (b) to operate as follows: upon input of a �n

sd-name
for x ∈ X and while calculating rational approximations yj to y = f̃ (x) with |yj −y| < 2−j ,
idly loop �|y0| + 1� times before actually outputting the first symbol of that �-name for y and
then proceeding like M.

This new machine M̃ will thus satisfy dom(M) = dom(M̃) and Time
M̃

(	̄)(1)� f̃ (x) for

any �n
sd-name 	̄ of x ∈ X. In particular, TimeK̃

M̃
(1) ∈ N is an upper bound on f̃ [K] where

K̃ ⊆ �� denotes the collection of all �n
sd-names f̃ for all x ∈ K .
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According to [Wei00, Exercise 7.2.9], K �→ K̃ is (�n
> → �Y

>)-computable; and [Wei00,
Exercise 7.1.4(a)] implies that, from a �Y

>-name of K̃ , one can effectively obtain an upper

bound N on TimeK̃

M̃
(1). �

Remark 12. An effective counterpart to Lemma 3(a i) unfortunately fails:

(a) Mocf is in general not (�n × � → �
>
)-computable:

Take X = R and let r > 1 left but not right computable. Define closed co-r.e.
[Wei00, Example 5.1.17.2(a)] A := R \ B(0, r) not containing 1. Consider a computable
function f : R → [0, 1] with f (1) = 1, f |A ≡ 0, and 0 < f (x) < 1 for all x /∈ A � {1}—
such f can be obtained for instance from the Effective Urysohn Lemma [Wei00, Theo-
rem 6.2.10.2]. Then, for x := 1, f −1 [B (f (x), 1)] = f −1[(0, 2)] = R \ A = B(0, r) and
so the value Mocf (1, 0) = sup{s : B(1, s) ⊆ B(0, r)} = r − 1 lacks �

>
-computability.

(b) Mocf need not be (�n × � → �
<
)-computable either:

Take X = (0, 2) and f = id. Then, for all 0 < x < 1, B(x, s)∩X ⊆ B(x, 1) iff s < 1; hence
Mocf (x, 0) = 1 in this case. Whereas for x = 1, all s satisfy B(x, s) ∩ X ⊆ X = B(x, 1);
so Mocf (1, 0) = ∞. This reveals Mocf to lack the lower semi-continuity in x necessary for
(�n × � → �

<
)-computability.

With the “sup” in its definition (1), upper computability of Mocf should not be expected
anyway; whereas the lack of lower computability—specifically the annoying influence of X on its
values in (b)—has caused the author to ponder using, instead of Mocf and Moof , the functions

M̃ocf : (x, k) �→ sup
{
s�0 : f

[
B(x, s)

] ⊆ B
(
f (x), 2−k

)
∧ B(x, s) ⊆ X

}
M̃oof : (x, k) �→ sup

{
s�0 : B (f (x), s) ⊆ f

[
B(x, 2−k)

]}
,

dom
(
M̃ocf

) = X × N, dom
(
M̃oof

) =
{
(x, k) : B(x, 2−k) ⊆ X

}
but he finally dismissed them because of the asymmetry between the continuous and the open
case.

3.1. Proof of Theorem 9

This section collects the proofs of the several claims made in Theorem 9.

Claim 13. Let X ⊆ Rn be r.e. open, (xj )j a computable sequence dense in X, and f : X → Rm

computable. Then the sequence
(
f (xj )

)
is computable, and f admits a computable multi-valued

modulus of continuity.

Proof. The first sub-claim is immediate. For the second one, let x ∈ X and k ∈ N be given.
From these, �d

<-compute U := f −1
[
B
(
f (x), 2−k

)] ∩ X by virtue of [Wei00, Theorem 6.2.4.1
and Corollary 5.1.18.1]. Then invoke Lemma 11(a) to obtain some � ∈ G(U, x). This satisfies
Eq. (2) because f [V ] ⊆ U is equivalent to V ⊆ f −1[U ]. �

Claim 14. Let X ⊆ Rn be r.e. open, (zj )j a computable sequence dense in X, f : X → Rm

such that
(
f (zj )

)
is computable, and moc : X × N ⇒ N a computable multi-valued modulus of

continuity. Then, f is computable.
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Proof. First note that f is continuous by Lemma 3(a). We show that it furthermore admits effective
evaluation: given a sequence x� ∈ X of rational vectors with |x − x�| < 2−� for some x ∈ X, one
can computably obtain a sequence yk such that |f (x) − yk| < 2−k .

Indeed, calculate by prerequisite � ∈ moc(x, k); then search (dove-tailing) for some j with
zj ∈ X and |zj − x�+1| < 2−�−1; finally let yk := f (zj ). It follows |zj − x| < 2−� and thus, by
Eq. (2), |f (x) − yk| < 2−k . �

Claim 15. Let X ⊆ Rn be r.e. open, f : X → Rm computable and effectively open. Then,
Moof : X × N → R is (�n × � → �

<
)-computable.

Proof. The mapping (x, k) �→ B(x, 2−k) ∩ X =: U is (�n × � → �n
<)-computable since X

is r.e. open [Wei00, Corollary 5.1.18.1]. By assumption on effective openness of f, one can
therefore obtain a �m

< -name for the open set V := f [U ] 	 y := f (x). Then searching all rational
s�0 satisfying B (f (x), s) ⊆ V is possible due to [Zie04, Lemma 4.1(b)] and yields lower
approximations to (i.e., a �

<
-name for) the value Moof (x, k). �

Claim 16. Let Moof : X × N → R be strictly positive and (�n × � → �
<
)-computable; then

there is a computable multi-valued moo.

Proof. From a �
<

-name of s := Moof (x, k) > 0, obtain some � ∈ N with 2−� < s; compare
[Wei00, Example 4.1.10]. �

For the converse claims in Theorem 9(b), the prerequisite of a computable f can actually be
relaxed to continuity with computable values on a computable dense subset. This resembles
conditions (9a) and (9b) in [Grz57] and is, without (9c) therein, more general than requiring
computability of f.

Claim 17. Let X ⊆ Rn be r.e. open, (xj )j a dense computable sequence in X, f : X → Rm

continuous, the sequence
(
f (xj )

)
j

computable, and moo a computable multi-valued modulus of
openness. Then f is effectively open.

Proof. From Lemma 3(b) we already know that f is open. The goal is thus to �m
< -compute f [U ],

given a �n
<-name of some open U ⊆ X. The proof of Lemma 3(b ii) has revealed that

f [U ]
√
=
⋃
x∈U

B
(
f (x), 2−�x

)
⊇

⋃
j :xj∈U

B
(
f (xj ), 2−�xj

)
=: V (6)

for arbitrary �x ∈ moo (x, G(U, x)) with G from Lemma 11(a). V is indeed contained in f [U ] as
the union to the right ranges only over certain x ∈ U compared to all in the left one. Being only a
countable union,V can be�m

< -computed according to Example 5.1.19.1 in [Wei00]. More precisely,
the �n

<-name of U permits enumeration of all j such that xj ∈ U by virtue of Lemma 11(a); the
multi-valued mapping h : (U, x) �→ moo (x, G(U, x)) is (�n

< × �n ⇒ �)-computable; and the
multi-valued mapping j �→ B

(
f (xj ), 2−h(U,xj )

)
is (� ⇒ �m

< )-computable since j �→ xj , j �→
f (xj ) both are by assumption.

To complete the proof of Claim 17, we shall show that in fact the reverse inclusion “f [U ] ⊆ V ”
holds as well for any �xj

∈ h̃(U, xj ) with h̃ denoting the computable sub-function according to
Lemma 11(b). So take arbitrary y ∈ f [U ], y = f (x) with x ∈ U . If x = xj for some j, then y ∈ V
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by definition anyway. If x does not occur within the sequence (xj )j , consider some compact ball
B := B(x, r) sufficiently small to be contained in U. By the parametrized version of Lemma 11(b),
there exists 3 an upper bound L ∈ N for h̃(U, ·) on B. Exploiting continuity, |f (x)−f (z)| < 2−L

for all z sufficiently close to x. In particular for an appropriate z = xj and any � ∈ h̃(U, xj )�L

by choice of L, it holds that f (x) ∈ B
(
f (xj ), 2−L

) ⊆ B
(
f (xj ), 2−�

)
. The latter term occurs in

the right-hand side union of (6); we have thus proven an arbitrary y=f (x)∈f [U ] to lie in V. �

4. Effectivized open mapping theorems

Here come the already announced effectivizations of the classical claims from Fact 6.

Theorem 18. Let X ⊆ Rn be r.e. open.

(a) Every computable open f : X → R (i.e., with one-dimensional range) is effectively open.
More generally whenever a computable open f : X → Rm maps open balls B ⊆ X to convex
sets f [B] ⊆ Rm, then it is effectively open.

(b) Any surjective computable affinely linear mapping is effectively open.
(c) If computable f : X → Rm is C1, f ′ is computable and has rank m everywhere, then f is

effectively open.
(d) Let both f : X → Rn and h : X ⇒ N be computable such that, for any x ∈ X and � ∈ h(x),

the restriction f |B(x,2−�)∩X is injective. Then f is effectively open.
(e) Suppose X is bounded, f : X → Rn computable and locally injective; then f |X is effectively

open. The same holds for unbounded X if f : X → Rn is computable and globally injective.

Proof. Claims (a) and (d) will be proven in Sections 4.1 and 4.2, respectively. Claim (b) is included
in (c) just like in the classical case; and (c) in turn, once again similarly to the classical case, is a
consequence of the effectivized Inverse Function Theorem 19; see the comment following it.

Claim (d) implies the second part of (e) as, h(x) :≡ 0 will do. For the first part 4 of (e),
consider the “modulus of local injectivity” 
 : X → R>0 from Fact 6(d) and observe that, f
being locally injective on a compact domain, finitely many out of the balls B (x, ε(x)), x ∈ X,
suffice to cover X—say those with centers x1, . . . , xN ∈ X. Therefore, f |B(xi ,ε0)∩X is injective
for all i = 1, . . . , N where 0 < ε0 � min

i �N
ε(xi ). By the Lebesgue Number Lemma—see e.g.

[Haz00]—there exists some ε1 > 0 such that every ball B(x, ε1), x ∈ X, is contained in some
ball B(xi , ε0), 1� i�N ; w.l.o.g. ε1 = 2−�1 , �1 ∈ N. Therefore, f |B(x,2−�1 )∩X is injective for all

x ∈ X. Now h(x) :≡ �0 defines a computable function, so Item (d) applies. �

The following is a computable counterpart to Fact 8:

Theorem 19 (Effectivized inverse function theorem). Let U ⊆ Rn be r.e. open, f : U → Rm

computable with computable derivative, and x0 ∈ U computable such that rankf ′(x0) = m. Then
there exists a computable local right inverse to f, that is, a computable function g with computable
derivative satisfying (5) and dom(g) = B (f (x0), �) ⊆ Rm for some rational � > 0.

3 Here we do not need to find this bound effectively.
4 The author is indebted to an anonymous referee for pointing out a gap in an earlier version of this proof and for

immediately filling that gap by pointing out Lebesgue’s Number Lemma.
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Moreover, such a � = 2−� > 0 is uniformly computable from x0; formally: for r.e. open
X ⊆ Rn and computable, continuously differentiable f : X → Rm with computable derivative
f ′ : X → Rm×n, the multi-valued mapping I : On × X ⇒ N with

Graph(I ) :=
{

(U, x0, �)

∣∣∣ x0 ∈ U ⊆ X, rank
(
f ′(x0)

) = m,

∃g : B
(
f (x0), 2−�

)
→ U satisfying (5)

}
is (�n

< × �n ⇒ �)-computable.

Similarly to the classical case, f [U ] in particular covers the open ball B (f (x0), �) ⊆ Rm.
Setting moo(x, k) := I

(
B(x, 2−k), x

)
therefore proves Theorem 18(c) by virtue of Theorem 9(b).

We emphasize that Theorem 19 can be generalized to hold even uniformly in (f, f ′). Fur-
thermore, the multi-valued computation is extendable to yield not only � but also g and g′. As
the domain of these partial functions varies, an according formalization however requires an ap-
propriate representation such as �1 from Exercise 6.1.11 in [Wei00] and is beyond our present
interest.

Let us also point out that, although the proofs to Theorem 19 (in Section 4.3) as well as the
one to Theorem 18(c+d) proceed by presenting according algorithms, they are not necessarily
constructive in the intuitionistic sense since the correctness of these algorithms relies on Brouwer’s
Fixed-Point Theorem.

4.1. Proof of Theorem 18(a)

Claim 20. Let X ⊆ Rn be r.e. open. If computable open f : X → Rm maps open Euclidean
balls to convex sets, then it is effectively open.

Proof. Recall that a �n
<-name for U ⊆ X is (equivalent to) a list of all closed rational Euclidean

balls Bi = B(zi , ri) contained in U [Wei00, Definition 5.1.15.1 and Exercise 5.1.7].

Since it is easy to obtain a �n
<-name for each such Bi , one can �m

< -compute f [Bi] by virtue of

Theorem 6.2.4.3 in [Wei00]. In fact f [Bi] = f [Bi] = f [Bi] since f is continuous and B compact;
cf. [Zie04, Lemma 4.4(d)]. The prerequisite asserts f [Bi] to be convex, and its closure is thus
convex and even regular by Proposition 1.1(f) in [Zie04]. By virtue of [Zie02, Theorem 4.12(a)],

the �m
< -name for f [Bi] can hence be converted into a matching

◦
�m

< -name, that is, a �m
< -name for

◦
f [Bi] which is a subset of f [U ] as Bi ⊆ U and f [Bi] = f [Bi].

Doing so for all Bi listed in the �n
<-name of U and taking their countable union according to

[Wei00, Exercise 5.1.19], constitutes an algorithm A which produces a �m
< -name for some open

subset V of f [U ]. To see that V in fact coincides with f [U ], consider some y ∈ f [U ], y = f (x)

with x ∈ U . Then some entire ball B(x, s) is contained inside of U. By density, there exist z ∈ Qn

and 0 < r ∈ Q such that x ∈ B(z, r) ⊆ B(z, r) ⊆ B(x, s). This B := B(z, r) will thus occur
in the list fed into A as �n

<-encoding of U; and will in turn cause A’s output list �m
< -encoding V

to contain an entry
◦

f [B] ⊇ f [B] 	 f (x) = y, cf. [Zie04, Lemma 4.2(i)]. As y ∈ f [U ] was
arbitrary, this proves V ⊇ f [U ]. �
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4.2. Proof of Theorem 18(d)

By combination with Theorem 9(b), the claim follows uniformly in f.

Lemma 21. Fix r.e. open X ⊆ Rn. The multi-valued mapping H : C(X, Rn)×X ×N ⇒ N with

Graph(H) :=
{

(f, x, k, �)

∣∣∣ f : X → Rn injective on B(x, 2−k) ⊆ X,

B
(
f (x), 2−�

)
⊆ f [B(x, 2−k)]

}
is ([�n →�n] × �n × � ⇒ �)-computable.

Proof. For f injective on B(x, 2−k), f [B(x, 2−k)] is indeed an open set because of Fact 6(d).
Recall its proof based on Theorem 4.3 in [Dei85] together with Theorem 3.1(d4+d5) therein.
The latter reveal that, for each � := B(x, 2−k−1)—observe � ⊆ X—f [�] covers B (f (x), r)

where r > 0 denotes the distance of f (x) to the set K := f
[
��
]
. The sphere boundary �� being

obviously �n-computable from (x, k), K’s distance function is uniformly computable by virtue of
Theorem 6.2.4.4 in [Wei00]. In particular, one can effectively evaluate this function at f (x) and
thus obtain the aforementioned r. From this it is easy to get some � ∈ N with 2−� < r . �

4.3. Proof of effectivized inverse function theorem

An important part in the proof of Theorem 19 relies on the following result on computability
of unique zeros of real functions. It generalizes Corollary 6.3.5 in [Wei00] from one to higher
dimensions.

Lemma 22. Consider the class of continuous real functions f in n variables on the closed unit
ball B(0, 1) ⊆ Rn attaining the value zero in exactly one point. Hereon, the B-valued function
Zu, defined by

Zu(f ) = x :⇐⇒ x is the (unique) zero of f,

is ([�n →�] → �n)-computable.

Proof. By Theorems 6.2.4.2 and 5.1.13.2 in [Wei00] one can, given a [�n → �]-name of f, �n
>-

compute the set f −1[{0}] ⊆ B. This computation actually yields a �n
>-name of this set which, by

prerequisite, consists of exactly one point. Now apply Exercise 5.2.3 in [Wei00]. �

Recall the second claim from Theorem 19 which shall be proven first:

Claim 23. Let X ⊆ Rn be r.e. open, f : X → Rm computable with computable derivative
f ′ : X → Rm×n. Then the multi-valued mapping I : On × X ⇒ N with

Graph(I ) :=
{
(U, x0, �) | x0 ∈ U ⊆ X, rank

(
f ′(x0)

) = m,

∃g : B
(
f (x0), 2−�

)
→ U satisfying (5)

}
is (�n

< × �n ⇒ �)-computable.
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Proof. Given a �n
<-name of U ⊆ X and x0 ∈ U , determine according to Lemma 11(a) some

k0 ∈ N such that B(x0, 2−k0) ⊆ U . Exploit differentiability of f to write

f (x) = f (x0) + f ′(x0) · (x − x0) + r(x) (7)

with computable and computably differentiable r satisfying r(x)/|x| → 0 as x → x0.

• Since the computable matrix-valued function x �→ f ′(x) was required to have rank m in x0,
certain m of its columns are linearly independent. In fact, one can effectively find a regular
m × m submatrix A = A(x0) of f ′(x0): by dove-tailing w.r.t. all (finitely many) possible
candidates and looking for one with non-zero determinant.
For ease of notation, suppose that f ′(x0) is of the form (A|B) with B ∈ R(n−m)×m. Continuity
of the function x �→ det A(x) with non-zero value at x0 yields that A(x) is regular on a whole
ball around x0; x �→ det A(x) even being computable, a corresponding radius 2−k1 �2−k0 can
in fact be found effectively.

• By (computable) translation, it suffices to prove the claim for the computable function on only
m variables

f̃ : Rm ⊇ B(0, 2−k0) 	 x �→ f (x0 + x) ∈ Rm.

Indeed, any local right inverse g̃ : B
(
f̃ (x0), �̃

)
⊆ Rm → Ũ := B(0, 2−k0) ⊆ Rm for

this restriction can straight-forwardly (and computably) be extended to one for f by letting
g(y) := (g̃(y), 0) + x0 ∈ Rn.

• A = f̃ ′(0) being regular, c := min|x|=1 |A · x| is non-zero and, according to Corollary 6.2.5
in [Wei00], can be effectively calculated from the given data.

• Effective continuity of r ′( · ) together with r ′(0) = (0)ij implies that one can computably find

an integer k2 �k1 satisfying ‖r ′(z)‖�c/2 for all |z|�2−k2 . Here, ‖B‖ :=
√∑

i

∑
j |bij |2 de-

notes the square sum norm on matrices which is known to be submultiplicative:
|B ·x|�‖B‖·|x|. Consequently, by taking the norm on both sides of the Mean Value Theorem

r(y + h) − r(y) =
(∫ 1

0

(
r ′(y + th)

)
dt

)
· h,

it follows with h := x − y that for all x, y ∈ B(0, 2−k2) we have

|r(x) − r(y)| �

⎛⎜⎝∫ 1

0
‖r ′( y + th︸ ︷︷ ︸

∈B(0,2−k2 ) convex

)‖ dt

⎞⎟⎠ · |h| � c
2 · |x − y|. (8)

• This asserts injectivity of f̃ |B(0,2−k2 ). Indeed, f̃ (x) = f̃ (y) implies with Eq. (7) that A · x +
r(x) = A · y + r(y) and thus

c · |x − y| � |A · (y − x)| = |r(x) − r(y)| (8)

� c
2 · |x − y| :

a contradiction for x = y.

We may thus apply Lemma 21 to obtain some � ∈ N such that any y ∈ B
(
f̃ (0), 2−�

)
is the

image of one and exactly one x ∈ B(0, 2−k2) ⊆ Ũ . Finally, setting g̃(y) := x shows that f̃ does
have a local right inverse. �
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The first part of Theorem 19 claims the right inverse we have just constructed to be computable
and differentiable with computable derivative:

Claim 24. Let U ⊆ Rn be r.e. open, f : U → Rm computable with computable derivative, and
x0 ∈ U computable such that rankf ′(x0) = m. Then there exists a computable C1 function g
with computable derivative on some open ball B (f (x0), �) ⊆ Rm satisfying (5).

Proof. Recall from the proof of Claim 23 the reduction from the case n�m to the case n = m

leading to a function f̃ instead of f which turned out to be injective on some 2−k′
-ball around x0. Let

Ũ := B(x0, 2−k′−1) and apply to f̃ the classical Inverse Mapping Theorem, in particular the last
line of Fact 8: it asserts f̃ to have, on some (possibly smaller) open ball B(x0, ε̃) ⊆ B(x0, 2−k′−1)

around x0, a unique and continuously differentiable local inverse g̃. For any y from its domain

B
(
f̃ (x0), �̃

)
, the value g̃(y) is according to Eq. (5) the unique x ∈ B(x0, ε̃) with f̃ (x) = y.

Since f̃ is injective on B(x0, 2−k′
) ⊇ Ũ ⊇ B(x0, ε̃), g̃(y) is the unique zero of x �→ f (x)− y on

Ũ . Computing y �→ g̃(y) can thus be performed by finding this zero by virtue of Lemma 22; to

actually apply it, straight-forward scaling and translation effectively reduces Ũ = B(x0, 2−k′−1)

to B(0, 1).
Differentiability of g̃ is asserted already classically. Moreover, the Chain Rule of Differ-

entiation yields the formula g̃′(y) = f̃ ′ (g̃(y))−1 which (Cramer’s Rule and computability of
determinants) reveals that g′ is computable as well. �

5. Computable open semi-algebraic functions are effectively open

Open mapping theorems give conditions for continuous functions to be open. However being
only sufficient, they miss many continuous open functions.

Example 25. Let f : R3 → R2, (x, y, z) �→ (x3 + z2, y3 + z2). Then f is open although no
item from Fact 6 is applicable: (a) fails due to the 2D range, (b) fails due to nonlinearity, (c) fails
because f ′(0) = 0, and (d) fails as f lacks injectivity everywhere.

Section 4 of the present work provided effectivizations of those classical results where the
prerequisites were strengthened from continuity to computability in order to assert, in addition to
openness, effective openness. They therefore cannot be applied to cases such as Example 25 where
the classical theorems fail already. The main result of this section is of a different kind in that
it requires openness in order to conclude effective openness. It is concerned with semi-algebraic
functions in the sense of, e.g., [BPR03, Section 2.4.2].

Definition 26. Let F ⊆ R denote a field. A set S ⊆ Rn is basic semi-algebraic over F if

S = {
x ∈ Rn : p1(x)�0 ∧ · · · ∧ pk(x)�0 ∧ q1(x) > 0 ∧ · · · ∧ q�(x) > 0

}
for certain k, � ∈ N, p1, . . . , q� ∈ F [X1, . . . , Xn], that is, if S is the set of solutions to some
finite system of polynomial inequalities both strict and non-strict with coefficients from F. S
is semi-algebraic over F if it is a finite boolean combination (intersection and union) of basic
semi-algebraic sets over F. A partial function f :⊆ Rn → Rm is semi-algebraic over F if
Graph(f ) = {(x, y) : x ∈ dom(f ) ∧ y = f (x)} ⊆ Rn+m is semi-algebraic over F. In the case
F = R, the indication “over F” may be omitted.
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The class of semi-algebraic functions is very rich:

Example 27. (a) Any rational function f ∈ R(X1, . . . , Xn) is semi-algebraic.
(b) The roots of a univariate polynomial p = ∑n−1

i=0 pi · xi ∈ R[X], considered as a partial
function of its coefficients (p0, . . . , pn−1), are semi-algebraic.

(c) For semi-algebraic f and g, both composition g ◦ f and juxtaposition (f, g) are again semi-
algebraic. Projection Rn+m → Rn, (x, y) �→ x is also semi-algebraic.

Proof. (a) Let f = p/q with co-prime p, q ∈ R[X1, . . . , Xn]. Observe that

(x, y) ∈ Graph(f ) ⇔ q(x) = 0 ∧ p(x) = y · q(x)

which is a boolean combination of polynomial inequalities. For (b) and (c) as well as for further
examples of semi-algebraic functions, refer to [BPR03, Section 2.4.2]. �

The main result of the present section thus covers many more in addition to Example 25.

Theorem 28. Let f :⊆ Rn → Rm be computable, open, and semi-algebraic over Rc with open
dom(f ) =: X. Then X is r.e. and f is effectively open.

The proof requires some tools and is therefore deferred to Section 5.2.

5.1. Applications of quantifier elimination to recursive analysis

Quantifier elimination is an important tool in the algebraic framework of computability and
complexity [BCSS98,BPR03]. Its reliance on (in)equality as a decidable primitive seemingly
renders it useless for the framework of Recursive Analysis. It does however have interesting
consequences to non-uniform computability as revealed in this section. Specifically, it is employed
in (the proofs of) Lemma 29(b), Proposition 30(c), and Theorem 28.

The following lemma will be applied to E := R and F := Rc the set of computable real
numbers, a real closed field [Wei00, Corollary 6.3.10], but might be of independent interest and
is therefore formulated a bit more generally.

Lemma 29. (a) Let F denote a real closed field with field extension E and f ∈ F [X1, . . . , Xn].
If g ∈ E[X1, . . . , Xn] divides f considered as polynomial over E, then �g ∈ F [X1, . . . , Xn]
for some non-zero � ∈ E.

(b) Let F denote a field with extension E. If f, g ∈ F [X1, . . . , Xn] and h ∈ E[X1, . . . , Xn] is a
gcd of f and g considered as polynomials over E, then �h ∈ F [X1, . . . , Xn] for some non-zero
� ∈ E.

(c) Let ∅ = X ⊆ Rn be r.e. open. Suppose p, q ∈ R[X1, . . . , Xn] are coprime with q(x) = 0
for all x ∈ X and such that p/q : X → R is computable. Then �p, �q ∈ Rc[X1, . . . , Xn]
for some non-zero � ∈ R; that is, the coefficients of the rational function p/q may w.l.o.g. be
presumed computable.

Proof. We start with the easier arguments.

(b) In the uni-variate case n = 1, this follows from the Euclidean Algorithm since its cal-
culation of the gcd uses only arithmetic operations +,−,×,÷ and thus remains within the
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coefficient field of the input polynomials f and g. In the multi-variate case, the gcd is still well-
defined (up to multiples � ∈ E) based on unique factorization in E[X1, . . . , Xn] [CLOS97,
Exercise 4.§2.9]. Moreover, it can be calculated via Gröbner Bases [CLOS97, Proposi-
tions 4.§3.13+14], again using only arithmetic operations and thus remaining within the
field F.

(a) By prerequisite, the formula

∃ĝ, ĥ ∈ E[X1, . . . , Xn] : ĝ = 0 ∧ f = ĝ · ĥ (9)

admits a solution (namely g and f/g). This equation of n-variate polynomials over E translates
to a finite bilinear system of equalities for the O(dn) sought coefficients (ĝi , ĥi , say) of ĝ

and ĥ, given those (fi) of f where d := deg(g). The absolute terms for instance must satisfy
g0 · h0 = f0 and the leading term of g must be non-zero. Observe that, although the solution
(gi, hi) may live in E, the system is posed using only numbers fi , that is, in the smaller field
F. This is our ticket to the Tarski-Seidenberg Transfer Principle [BPR03, Theorem 2.78]
asserting that, in addition to the solution g ∈ E[X1, . . . , Xn], (9) will also admit a solution
g̃ ∈ F [X1, . . . , Xn]. Due to the aforementioned condition on the leading term, we have
deg(g) = deg(g̃); and, by uniqueness of factorization as in (b) above, it follows that g̃ = �g

for some non-zero � ∈ E.
(c) Let d > deg(p)+deg(q) and consider a (d ×d ×· · ·×d)-grid of computable vectors x ∈ X,

that is, n sets X1, . . . , Xn ⊆ Rc of cardinality |Xi | = d such that X1×X2×· · ·×Xn ⊆ X; such
exist because Rc is dense and X is non-empty and open. By prerequisite, yj := p(xj )/q(xj ) ∈
Rc for each xj ∈∏i Xi , j = 1, . . . , dn. Expanding the equations p(xj ) − yj · q(xj ) = 0 in
the multinomial standard basis yields a homogeneous system of linear equations with respect
to the coefficients of both p and q to be solved for.

On the other hand the system itself is composed from (products of components of) com-
putable reals xj and yj . It follows from [ZB04, Corollary 15] that this system also admits
a computable non-zero solution p̃, q̃ ∈ Rc[X1, . . . , Xn]. In particular, p̃/q̃ is defined and
coincides with p/q almost everywhere on X.

For h := gcd(p̃, q̃), p̂ := p̃/h and q̂ := q̃/h are coprime and, based on Items (a) and (b),
still belong to Rc[X1, . . . , Xn]. Moreover, induction on n reveals an n-variate polynomial of
maximum degree < d to be uniquely specified by its values on an (d × · · · × d)-grid like
X1 × · · · × Xn; in particular, p̂ · q = q̂ · p. As q divides p̂ · q = q̂ · p, coprimality with
p requires it to divide q̂. Similarly q̂ divides q. Thus q̂ = �q for some non-zero � ∈ E and
consequently p̂ = �p. �

It is well-known in Recursive Analysis that equality of reals lacks even semi-decidability.
Surprisingly it does become decidable for rational arguments to real polynomial equations:

Proposition 30. (a) Let p ∈ R[X1, . . . , Xn] denote an n-variate polynomial. 5 Then {x ∈ Qn :
p(x) = 0} is decidable in the classical (i.e., Type-1) sense.

(b) Let �(X1, . . . , Xn) denote a finite Boolean combination of polynomial equalities and in-
equalities in variables X1, . . . , Xn with computable real coefficients. Then {x ∈ Qn : �(x)}
is (classically) semi-decidable.

(c) Let X ⊆ Rn be open and semi-algebraic over Rc. Then X is r.e, that is, �n
<-computable.

5 Its coefficients do not even need to be computable!
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Proof. Again, we first take care of the easy parts:

(b) Without loss of generality, � consists—apart from equalities—of strict inequalities only;
otherwise replace any “p(x)�0” with “p(x) < 0 ∨ p(x) = 0”. Since p ∈ Rc[X1, . . . , Xn]
is computable by assumption, strict inequalities are obviously semi-decidable. This yields a
reduction from Claim (b) to Claim (a) proven next.

(a) Let

p(x) =
d1∑

k1=0

. . .

dn∑
kn=0

a(k1,...,kn) · xk1
1 · · · xkn

n

with a(k1,...,kn) ∈ R. Have among these ak a basis {b0 = 1, b1, . . . , bm} chosen 6 for the
finite-dimensional Q-vector space V := {q0 + qkak + · · · + q(d1,...,dn)a(d1,...,dn) : qk ∈ Q}.
Consequently, each coefficient of p is of the form ak = ∑m

i=0 Ai,kbi with fixed Ai,k ∈ Q.
Now for given x ∈ Qn,

0 = p(x) =
m∑

i=0

bi ·
d1∑

k1=0

. . .

dn∑
kn=0

Ai,k · xk1
1 · · · xkn

n︸ ︷︷ ︸
=:Ri(x)∈Q

holds if and only if Ri(x) = 0 for all i = 0, . . . , m because the bi are linearly independent
over Q. The equalities Ri(x) = 0 in turn are of course decidable by means of exact rational
arithmetic.

(c) Let x ∈ Qn and 0 < r ∈ Q. Then “B(x, r) ⊆ X” is equivalent to

∀y ∈ Rn :
(

n∑
i=1

(yi − xi)
2 < r2 ⇒ y ∈ X

)

a first-order formula �(x, r) in the language of ordered fields with coefficients by assumption
from the real closed field Rc. By Tarski’s Quantifier Elimination, 7 there exists an equiva-
lent quantifier-free formula �(x, r) over Rc [BPR03, Theorem 2.74]; but for rational (x, r),
�(x, r) is semi-decidable according to (b) andX=⋃{B(x, r) : x∈Qn, 0 < r∈Q, B(x, r)⊆X

}
is therefore �n

<-computable. �

5.2. Proof of Theorem 28 and consequences

Proof of Theorem 28. The domain of f is semi-algebraic over Rc according to [BPR03,
Proposition 2.81] and thus r.e. due to Proposition 30(c). Similarly to the proof there,

6 Observe the strong non-uniformity inherent in this step; for example a still open problem of number theory asks
whether e · � or e + � is rational [EHH*91, p. 153].

7 This proof bears some similarity to [BV99]; there however the sets under consideration are BSS-semi-decidable (i.e.,
roughly speaking, countable unions of semi-algebraic ones) and therefore �<-computable (recursively enumerable) only
relative to the Halting problem.
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we observe:

B (f (x), s) ⊆ f
[
B(x, 2−k) ∩ X] ⇐⇒

∃ v ∈ Rm ∀y ∈ Rm ∃u ∈ Rn : (x, v) ∈ Graph(f ) ∧ (u, y) ∈ Graph(f ) ∧⎛⎝ m∑
j=1

(yj − vj )
2 �s2 ⇒

n∑
i=1

(xi − ui)
2 < 2−2k

⎞⎠
Since the latter is a first-order formula �(x, s), by assumption with coefficients from Rc, there
exists by [BPR03, Theorem 2.74] an equivalent quantifier-free formula �(x, s) again over Rc.
This in turn is semi-decidable for rational (x, s) by virtue of Proposition 30(b) so that Moof can
be approximated from below on Qn. Now apply the lemma below (which we could have included
into this proof but found it might be of independent interest). �

Example 5 illustrated that in Lemma 3(b) as well as in Theorem 9(b), it does not suffice to
consider Moof only on a dense subset of X. On the other hand if f is already asserted as open,
then computability of Moof on rationals already does guarantee effective openness:

Lemma 31. Let X ⊆ Rn be r.e. open; furthermore let f : X → Rm be computable and open. If
Moof : (X ∩ Qn) × N → R is (�n

Q × � → �
<
)-computable, then f is effectively open.

Here, �Q denotes a canonical encoding of rational numbers as in [Wei00, Definition 3.1.2.4].

Proof. The goal is to �m
< -compute f [U ], given a �n

<-name of some open U ⊆ X. To this end
observe that, similarly to the proof of Claim 17,

f [U ]
√
=
⋃
x∈U

B
(
f (x), Moof (x, G(U, x)) /2

)
⊇

⋃
x′∈U∩Qn

B
(
f (x′), Moof

(
x′, G(U, x′)

)
/2
) =: V

with G from Lemma 11(a). And, again, the countable union V can be �m
< -computed because

Qn × R 	 (z, r) �→ B (f (z), r) is (�n × �
<

→ �m
< )-computable and the multi-valued mapping

h : Qn 	 z �→ Moof (z, G(U, z)) /2 is (�n ⇒ �
<
)-computable by assumption. It remains to show

that, again, the reverse inclusion “f [U ] ⊆ V ” holds as well for a suitable computable subfunction.
More precisely w.l.o.g. replace G from Lemma 11(a) by G̃ according to Lemma 11(b) such that
G(U, ·) is bounded on compact subsets of Rn. Now consider some x ∈ U \ Qn. We show that
then f (x) ∈ V :

Let some compact ball B := B(x, r) be contained in U and take an upper bound L ∈ N

for G̃(U, ·) on B. By assumption, � := Moof (x, L + 1) is strictly positive. The computable
f is continuous so that, for some 0 < r ′� min{r, 2−L−1}, f (x′) ∈ B (f (x), �/2) whenever
x′ ∈ B

′ := B(x, r ′). Qn being dense in U, there exists some rational x′ ∈ B
′
. Now observe that

(i) B(x, 2−(L+1)) ⊆ B(x′, 2−L) by choice of x′, thus f
[
B(x, 2−(L+1))

] ⊆ f
[
B(x′, 2−L)

]
;

(ii) from continuity of f it follows B
(
f (x′), s − �

2

)
⊆ B (f (x), s) for any s� �

2 .

(iii) Combining (i) and (ii) yields Moof (x′, L) + �
2 �Moof (x, L + 1) = � because, by Eq. (3),

Moof (x′, L) is the supremum of feasible radii s.



M. Ziegler / Journal of Complexity 22 (2006) 827–849 845

(iv) Any �′ ∈ G̃(U, x′) has �′�L by choice of L; therefore
(v) Moof (x′, �′)�Moof (x′, L) as Moof (x′, ·) is monotonic according to Eq. (3).

We conclude that �′ := Moof (x′, �′)� �
2 and f (x) ∈ B

(
f (x′), �′) ⊆ V . �

Corollary 32. If the rational functions fi ∈ R(X1, . . . , Xn) are computable for i = 1, . . . , m

and the function (f1, . . . , fm) :⊆ Rn → Rm is open, then it is effectively open.

Proof. According to Example 27(a), fi as well as its domain is semi-algebraic; in fact semi-
algebraic over Rc by virtue of Lemma 29(c). Now apply Theorem 28. �

In Theorem 28, f was explicitly required to be semi-algebraic over Rc; yet it seems reasonable,
similarly to Lemma 29(c), to

Conjecture 33. Let F ⊆ R be a real closed subfield. Furthermore let f :⊆ Rn → R be
continuous and semi-algebraic (over R!) with dom(f ) semi-algebraic over F and such that
f (x) ∈ F whenever x ∈ Fn ∩ dom(f ). Then f is semi-algebraic already over F.

6. Effective openness and computability

The preceding sections presented sufficient conditions for a computable function f to be ef-
fectively open. The present one aims more generally at the logical relation between openness,
continuity, effective openness, and computability of real functions.

The two classical properties for instance are well-known mutually independent: continuity does
not imply openness; nor does openness require continuity. (Counter-)Examples (c) and (d) below
reveal that the same still holds under effectivized prerequisites.

Example 34.
(a) There exists a function h : R → R such that h[(a, b)] = (0, 1) for any a < b.
(b) There exists an open but not effectively open real function.
(c) There exists a computable but not open real function; e.g. f : R → R, x �→ 0.
(d) There exists an effectively open but uncomputable real function.
(e) There exist open functions f1, f2 : R → R such that f1 = f2 but f1[U ] = f2[U ] for any

open U ⊆ R.

Proof.
(a) Cf., e.g., item no.100 in the Guide at the beginning of [GO90].
(b) Let u be right-uncomputable and v > u be left-uncomputable. Let g : R → R, g(x) =

u+ (v −u)x. Then, with h from (a), g ◦h : R → R has image (u, v) for any non-empty open
U and is thus open; but under �<-computable U := (0, 1), this image lacking �<-computability
[Wei00, Example 5.1.17.2(a)] reveals that g ◦ h is not effectively open.

(d) The function h from (a) is open but maps the compact interval [0, 1] ⊆ R to the non-compact
interval (0, 1)

(0, 1) = h
[(

1
3 , 2

3

)]
⊆ h [[0, 1]] ⊆ h [(−1, 2)] = (0, 1)

and thus cannot be continuous nor computable. For (�< → �<)-computing U �→ h[U ],
it suffices to output a �<-name of (0, 1) [Wei00, Example 5.1.17.2(c)] independent of the
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input U = ∅. The test “U = ∅” is obviously semi-decidable, formally: O \ {∅} is �<-r.e.
[Wei00, Definition 3.1.3.2].

(e) Let f1 := h from (a) and f2 := g ◦ h with g : R → R, g(y) = y3, open as composition of
two open functions. As h[(0, 1)] = (0, 1), there is some x ∈ (0, 1) such that h(x) = y := 1

2 .
Then f2(x) = 1

8 reveals that f1 = f2. �

Attempts to strengthen Examples 34(c) and (d) immediately raise the following

Question 35. (a) Is there a computable, open but not effectively open real function?
(b) Is there a continuous, effectively open but uncomputable real function?

Regarding Theorem 18(a), a putative example for Question 35(a) must have domain and range
both of dimension at least two, that is, a graph living in Rd for some d �4. Moreover, it cannot
be semi-algebraic because of Theorem 28. Concerning candidates to 35(b), the following result
allows to restrict research to functions with one-dimensional range on domains of dimension at
least two.

Theorem 36. (a) On r.e. open X ⊆ R, any continuous and effectively open f : X → R is also
computable.

(b) Let X ⊆ Rn be r.e. open, f = (f1, . . . , fm) : X → Rm continuous and effectively open
but not computable. Then some fi : X → R, too, is continuous and effectively open, but not
computable.

Proof. As usual, the easy part is taken care of first.

(b) Recall that the projections pri : Rn → R, (x1, . . . , xn) �→ xi are computable (hence con-
tinuous) and open; even effectively open: Theorem 18(a) or (b). By closure under composi-
tion, the component functions fi = pri ◦ f : X → R are therefore continuous and effec-
tively open themselves. Regarding that a vector-valued f is computable iff its components are
[Wei00, Lemma 4.1.19.5], it follows that at least some fi cannot be computable.

(a) To evaluate f at a given x ∈ X, we are given two monotonic sequences (uj )j and (vj )j of
rational numbers converging to x from below and above, respectively. As x ∈ X is open,
the entire interval [uJ , vJ ] belongs to X for some J ∈ N; and, since (uj ) and (vj ) are,
respectively, increasing and decreasing to x, also x ∈ [uj , vj ] ⊆ X for all j �J . In fact, such
J can be found effectively because the property “[uJ , vJ ] ⊆ X” is semi-decidable by virtue
of [Zie04, Lemma 4.1(b)].
Now, for each j �J , �<-compute the open intervals Uj := (uj , uj+1) and Vj := (vj+1, vj )

as well as (by prerequisite) their images f [Uj ] and f [Vj ] and choose rational numbers
aj ∈ f [Uj ] and bj ∈ f [Vj ]. According to Lemma 37 below, both sequences (aj ) and (bj )

converge to f (x) monotonically from different sides; and comparing aJ to bJ immediately
reveals which one constitutes the lower and which one the upper approximations. �

The following lemma can be regarded as a one-dimensional converse to Fact 6(d) because it
implies that, for arbitrary open X ⊆ R, a continuous open function f : X → R is injective on
any connected component of X.

Lemma 37. Let X ⊆ R be open and connected, f : X → R continuous and open. Then f is
either strictly increasing or strictly decreasing.
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Proof. Let a, b, c ∈ X, a < b < c. W.l.o.g. presuming f (a) < f (c)—otherwise consider −f

instead of f—we show f (a) < f (b) < f (c). Now suppose for instance that f (b) > f (c).
As f is continuous on [a, c], it attains its maximum therein at some x ∈ [a, c] with a value
f (x)�f (b) > max{f (a), f (c)}; in particular, x ∈ (a, c). Therefore, the interval f [(a, c)] is
closed on its upper end contradicting that f is open. By considering the minimum of f on [a, c],
the case f (b) < f (a) similarly raises a contradiction. �

7. Application

Section 1 has already mentioned that effectively open functions arise in computations on regular
sets such as in solid modeling. For instance when encoding bounded regular R ⊆ Rd as a
list of open rational balls with union dense in R (representation �d

<), this will render not only
union and intersection computable but also pre-image and image R �→ g[R] under computable
effectively open functions g [Zie04, Theorem 3.9]. According to Theorem 18(c), that requirement
on g is satisfied by any computably differentiable function with regular derivative everywhere.
However, some g might be computably differentiable and open with g′(x) occasionally singular.
The following result based on the Morse–Sard Theorem establishes that even then, R �→ g[R]
is �d

<-computable:

Theorem 38. Let g : Rd → Rd be computable, open, and C1 with computable derivative g′.
Then its image mapping on bounded regular sets R �→ g[R] is (�d

< → �d
<)-computable.

Proof. Let U0 :=
{

x ∈ Rd : rank
(
g′(x)

) = d
}

denote the set of regular points of g.

Consider the function G := rank ◦ g′ : Rd → N, x �→ rank
(
g′(x)

)
. Because of its dis-

crete range, the pre-image G−1
[
(d − 1

2 ,∞)
]

obviously coincides with U0. Moreover, being the

composition of the lower semi-computable rank-function—see [ZB00, Proposition 6] or [ZB04,
Theorem 7(i)]—with computable g′, G is in particular lower semi-continuous and U0 ⊆ Rd

therefore open [Rud74, Definition 2.8]; in fact r.e. open, see Lemma 39 below.
By Theorem 18(c), at least the restriction g|U0 is thus effectively open. So given as �d

<-name
for R ⊆ Rd a �d

<-name for open U ⊆ Rd with U = R, �d
<-compute U ∩ U0 according to

[Wei00, Corollary 5.1.18.1]; then exploit effective openness of g|U0 to �d
<-compute V := g[U ∩

U0].
We claim that this yields a valid �d

<-name for the regular set g[R], i.e., it holds that V = g[R].
To this end, observe that U0 = Rd ; for if A0 := Rd \ U0 had non-empty interior, then the set

V0 := g

[ ◦
A0

]
of critical values would be open (since g is open by prerequisite) and non-empty

rather than having measure zero according to Fact 7. U0 thus being dense, [Zie04, Lemma 4.3(c)
and Lemma 4.4(d)] imply U ∩ U0 = R and V = g[R]. �

Lemma 39. Let h : Rd → R be lower semi-computable. Then the mapping R 	  �→
h−1 [(,∞)] ⊆ Rd is (�

>
→ �d

<)-computable.

Proof. Recall that lower semi-computability of h means that evaluation of h at some x ∈ Rd ,
given open rational balls Bj 	 x of radius rj → 0, yields rational numbers �j tending from below
to h(x).
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So feed into this h-oracle all open rational balls Bj ⊆ Rd and, whenever the answer �j is strictly
greater than  (semi-decidable, given a �

>
-name for ), report this Bj . The resulting sequence

obviously covers exactly h−1 [(,∞)] and consequently is a �d
<-name for this set. �

7.1. Conclusion

The present work investigated conditions for an open function f : Rn → Rm to be effectively
open in the sense that the image mapping U �→ f [U ] is (�n

< → �m
< )-computable. This property

is so as to speak dual to function computability because the latter holds for f : Rn → Rm iff the
pre-image mapping V �→ f −1[V ] is (�m

< → �n
<)-computable.

Remark 40. This characterization of computable real functions gave in Definition 6.1.6 of
[Wei00] rise to a natural representation—equivalent to many other ones [Wei00, Lemmas 6.1.7
and 6.1.10]—for the space C(X, Rm) of all (not necessarily computable) continuous functions
f : X → Rm, namely by �n

<-encoding, for each open rational ball B ⊆ Rm, the open set
f −1[B].

Analogy might suggest to represent the family of all (not necessarily computable) open func-
tions f : X → Rm by �m

< -encoding, for each open rational ball B ⊆ Rn, the open set f [B].
However Example 34(e) reveals that such a representation would not be well-defined.
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