12 research outputs found

    Computability of Homology for Compact Absolute Neighbourhood Retracts

    Get PDF
    In this note we discuss the information needed to compute the homology groups of a topological space. We argue that the natural class of spaces to consider are the compact absolute neighbourhood retracts, since for these spaces the homology groups are finite. We show that we need to specify both a function which defines a retraction from a neighbourhood of the space in the Hilbert cube to the space itself, and a sufficiently fine over-approximation of the set. However, neither the retraction itself, nor a description of an approximation of the set in the Hausdorff metric, is sufficient to compute the homology groups. We express the conditions in the language of computable analysis, which is a powerful framework for studying computability in topology and geometry, and use cubical homology to perform the computations

    Strong computable type

    Get PDF
    A compact set has computable type if any homeomorphic copy of the set which is semicomputable is actually computable. Miller proved that finite-dimensional spheres have computable type, Iljazović and other authors established the property for many other sets, such as manifolds. In this article we propose a theoretical study of the notion of computable type, in order to improve our general understanding of this notion and to provide tools to prove or disprove this property. We first show that the definitions of computable type that were distinguished in the literature, involving metric spaces and Hausdorff spaces respectively, are actually equivalent. We argue that the stronger, relativized version of computable type, is better behaved and prone to topological analysis. We obtain characterizations of strong computable type, related to the descriptive complexity of topological invariants, as well as purely topological criteria. We study two families of topological invariants of low descriptive complexity, expressing the extensibility and the nullhomotopy of continuous functions. We apply the theory to revisit previous results and obtain new ones

    Computability of finite simplicial complexes

    Get PDF
    International audienceThe topological properties of a set have a strong impact on its computability properties. A striking illustration of this idea is given by spheres and closed manifolds: if a set X is homeomorphic to a sphere or a closed manifold, then any algorithm that semicomputes X in some sense can be converted into an algorithm that fully computes X. In other words, the topological properties of X enable one to derive full information about X from partial information about X. In that case, we say that X has computable type. Those results have been obtained by Miller, Iljazović, Sušić and others in the recent years. A similar notion of computable type was also defined for pairs (X, A) in order to cover more spaces, such as compact manifolds with boundary and finite graphs with endpoints.We investigate the higher dimensional analog of graphs, namely the pairs (X, A) where X is a finite simplicial complex and A is a subcomplex of X. We give two topological characterizations of the pairs having computable type. The first one uses a global property of the pair, that we call the-surjection property. The second one uses a local property of neighborhoods of vertices, called the surjection property. We give a further characterization for 2-dimensional simplicial complexes, by identifying which local neighborhoods have the surjection property.Using these characterizations, we give non-trivial applications to two famous sets: we prove that the dunce hat does not have computable type whereas Bing's house does. Important concepts from topology, such as absolute neighborhood retracts and topological cones, play a key role in our proofs

    Connected Choice and the Brouwer Fixed Point Theorem

    Get PDF
    We study the computational content of the Brouwer Fixed Point Theorem in the Weihrauch lattice. Connected choice is the operation that finds a point in a non-empty connected closed set given by negative information. One of our main results is that for any fixed dimension the Brouwer Fixed Point Theorem of that dimension is computably equivalent to connected choice of the Euclidean unit cube of the same dimension. Another main result is that connected choice is complete for dimension greater than or equal to two in the sense that it is computably equivalent to Weak K\H{o}nig's Lemma. While we can present two independent proofs for dimension three and upwards that are either based on a simple geometric construction or a combinatorial argument, the proof for dimension two is based on a more involved inverse limit construction. The connected choice operation in dimension one is known to be equivalent to the Intermediate Value Theorem; we prove that this problem is not idempotent in contrast to the case of dimension two and upwards. We also prove that Lipschitz continuity with Lipschitz constants strictly larger than one does not simplify finding fixed points. Finally, we prove that finding a connectedness component of a closed subset of the Euclidean unit cube of any dimension greater or equal to one is equivalent to Weak K\H{o}nig's Lemma. In order to describe these results, we introduce a representation of closed subsets of the unit cube by trees of rational complexes.Comment: 36 page

    IST Austria Thesis

    Get PDF
    The first part of the thesis considers the computational aspects of the homotopy groups πd(X) of a topological space X. It is well known that there is no algorithm to decide whether the fundamental group π1(X) of a given finite simplicial complex X is trivial. On the other hand, there are several algorithms that, given a finite simplicial complex X that is simply connected (i.e., with π1(X) trivial), compute the higher homotopy group πd(X) for any given d ≥ 2. However, these algorithms come with a caveat: They compute the isomorphism type of πd(X), d ≥ 2 as an abstract finitely generated abelian group given by generators and relations, but they work with very implicit representations of the elements of πd(X). We present an algorithm that, given a simply connected space X, computes πd(X) and represents its elements as simplicial maps from suitable triangulations of the d-sphere Sd to X. For fixed d, the algorithm runs in time exponential in size(X), the number of simplices of X. Moreover, we prove that this is optimal: For every fixed d ≥ 2, we construct a family of simply connected spaces X such that for any simplicial map representing a generator of πd(X), the size of the triangulation of S d on which the map is defined, is exponential in size(X). In the second part of the thesis, we prove that the following question is algorithmically undecidable for d < ⌊3(k+1)/2⌋, k ≥ 5 and (k, d) ̸= (5, 7), which covers essentially everything outside the meta-stable range: Given a finite simplicial complex K of dimension k, decide whether there exists a piecewise-linear (i.e., linear on an arbitrarily fine subdivision of K) embedding f : K ↪→ Rd of K into a d-dimensional Euclidean space

    Computability of Homology for Compact Absolute Neighbourhood Retracts

    No full text
    In this note we discuss the information needed to compute the homology groups of a topological space. We argue that the natural class of spaces to consider are the compact absolute neighbourhood retracts, since for these spaces the homology groups are finite. We show that we need to specify both a function which defines a retraction from a neighbourhood of the space in the Hilbert cube to the space itself, and a sufficiently fine over-approximation of the set. However, neither the retraction itself, nor a description of an approximation of the set in the Hausdorff metric, is sufficient to compute the homology groups. We express the conditions in the language of computable analysis, which is a powerful framework for studying computability in topology and geometry, and use cubical homology to perform the computations

    Constructive topology of bishop spaces

    Get PDF
    The theory of Bishop spaces (TBS) is so far the least developed approach to constructive topology with points. Bishop introduced function spaces, here called Bishop spaces, in 1967, without really exploring them, and in 2012 Bridges revived the subject. In this Thesis we develop TBS. Instead of having a common space-structure on a set X and R, where R denotes the set of constructive reals, that determines a posteriori which functions of type X -> R are continuous with respect to it, within TBS we start from a given class of "continuous" functions of type X -> R that determines a posteriori a space-structure on X. A Bishop space is a pair (X, F), where X is an inhabited set and F, a Bishop topology, or simply a topology, is a subset of all functions of type X -> R that includes the constant maps and it is closed under addition, uniform limits and composition with the Bishop continuous functions of type R -> R. The main motivation behind the introduction of Bishop spaces is that function-based concepts are more suitable to constructive study than set-based ones. Although a Bishop topology of functions F on X is a set of functions, the set-theoretic character of TBS is not that central as it seems. The reason for this is Bishop's inductive concept of the least topology generated by a given subbase. The definitional clauses of a Bishop space, seen as inductive rules, induce the corresponding induction principle. Hence, starting with a constructively acceptable subbase the generated topology is a constructively graspable set of functions exactly because of the corresponding principle. The function-theoretic character of TBS is also evident in the characterization of morphisms between Bishop spaces. The development of constructive point-function topology in this Thesis takes two directions. The first is a purely topological one. We introduce and study, among other notions, the quotient, the pointwise exponential, the dual, the Hausdorff, the completely regular, the 2-compact, the pair-compact and the 2-connected Bishop spaces. We prove, among other results, a Stone-Cech theorem, the Embedding lemma, a generalized version of the Tychonoff embedding theorem for completely regular Bishop spaces, the Gelfand-Kolmogoroff theorem for fixed and completely regular Bishop spaces, a Stone-Weierstrass theorem for pseudo-compact Bishop spaces and a Stone-Weierstrass theorem for pair-compact Bishop spaces. Of special importance is the notion of 2-compactness, a constructive function-theoretic notion of compactness for which we show that it generalizes the notion of a compact metric space. In the last chapter we initiate the basic homotopy theory of Bishop spaces. The other direction in the development of TBS is related to the analogy between a Bishop topology F, which is a ring and a lattice, and the ring of real-valued continuous functions C(X) on a topological space X. This analogy permits a direct "communication" between TBS and the theory of rings of continuous functions, although due to the classical set-theoretic character of C(X) this does not mean a direct translation of the latter to the former. We study the zero sets of a Bishop space and we prove the Urysohn lemma for them. We also develop the basic theory of embeddings of Bishop spaces in parallel to the basic classical theory of embeddings of rings of continuous functions and we show constructively the Urysohn extension theorem for Bishop spaces. The constructive development of topology in this Thesis is within Bishop's informal system of constructive mathematics BISH, inductive definitions with rules of countably many premises included

    Computability of Homology for Compact Absolute Neighbourhood Retracts

    No full text
    In this note we discuss the information needed to compute the homology groups of a topological space. We argue that the natural class of spaces to consider are the compact absolute neighbourhood retracts, since for these spaces the homology groups are finite. We show that we need to specify both a function which defines a retraction from a neighbourhood of the space in the Hilbert cube to the space itself, and a sufficiently fine over-approximation of the set. However, neither the retraction itself, nor a description of an approximation of the set in the Hausdorff metric, is sufficient to compute the homology groups. We express the conditions in the language of computable analysis, which is a powerful framework for studying computability in topology and geometry, and use cubical homology to perform the computations
    corecore