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Abstract

The topological properties of a set have a strong impact on its computability properties.
A striking illustration of this idea is given by spheres and closed manifolds: if a set X is
homeomorphic to a sphere or a closed manifold, then any algorithm that semicomputes X
in some sense can be converted into an algorithm that fully computes X. In other words,
the topological properties of X enable one to derive full information about X from partial
information about X. In that case, we say that X has computable type. Those results have
been obtained by Miller, Iljazović, Sušić and others in the recent years. A similar notion of
computable type was also defined for pairs (X,A) in order to cover more spaces, such as compact
manifolds with boundary and finite graphs with endpoints.

We investigate the higher dimensional analog of graphs, namely the pairs (X,A) where X is a
finite simplicial complex and A is a subcomplex of X. We give two topological characterizations
of the pairs having computable type. The first one uses a global property of the pair, that we
call the ε-surjection property. The second one uses a local property of neighborhoods of vertices,
called the surjection property. We give a further characterization for 2-dimensional simplicial
complexes, by identifying which local neighborhoods have the surjection property.

Using these characterizations, we give non-trivial applications to two famous sets: we prove
that the dunce hat does not have computable type whereas Bing’s house does. Important
concepts from topology, such as absolute neighborhood retracts and topological cones, play a
key role in our proofs.

1 Introduction

Computable analysis is a theory formalizing computations on real numbers using finite but arbi-
trary precision, and allowing to investigate the theoretical possibility of solving problems on real
numbers. The computable aspects of topology are an important research topic in computable
analysis. Computability of homology groups was investigated in [Col09], computability of planar
continua in [Kih12], computability of the Brouwer fixed-point theorem was studied in [Neu18] and
[BRMP19], and computability of Polish spaces is addressed in [HMN20].

A particularly rich topic is the computability of subsets of the plane and of Euclidean spaces.
For instance, the computability of Julia sets has thoroughly been studied [BY08], the computability
of the Mandelbrot set is still an open problem [Her05] and the computability of the set of solutions
of a computable equation is generally a non-trivial problem [RP15].

These studies reveal that many natural definitions of sets induce a semi-algorithm, and finding
a proper algorithm computing the set can be challenging. Informally, a compact subset of the
plane is semicomputable if there is an algorithm that for each pixel, semidecides whether the pixel
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is disjoint from the set, i.e. halts exactly in that case. A compact subset of the plane is computable
if there is an algorithm that decides, for each pixel, whether it intersects the set. This idea can be
generalized to higher dimensions, and to subsets of many mathematical spaces.

Although semicomputability of compact sets is strictly weaker than computability in general,
it turns out that they are equivalent for many natural sets, and that this phenomenon comes from
the topological properties of these sets. For instance, it was prove by Miller [Mil02] that semicom-
putability and computability are equivalent for spheres, and for every set that is homeomorphic
to a sphere. This result leads to the following definition: say that a compact space X has com-
putable type if any semicomputable set Y that is homeomorphic to X is actually computable.
This property has been intensively studied by Miller [Mil02] and more recently by Iljazović and
its co-authors [BI14, IS18, ČIV19, Ilj20, ČI21a, ČI21b] in the recent years. A striking aspect of
this property is that it builds a bridge between computability theory and topology. The following
results were obtained:

• The n-dimensional sphere Sn (which is the higher dimensional analog of the circle) has com-
putable type [Mil02],

• Every closed n-manifold (these are compact spaces which are locally homeomorphic to Rn, for
instance the n-dimensional sphere and the n-dimensional torus) has computable type [IS18].

A line segment or a disk fails to have this property: it is not difficult to build a semicomputable disk
which is not computable. However, a similar result can be proved if one requires in addition that
the boundary of the set is semicomputable. It leads to the following generalization from compact
spaces X to pairs (X,A) where X and A ⊆ X are compact: a pair (X,A) has computable type
if for any semicomputable pair (Y,B) that is homeomorphic to (X,A), Y is computable. The
following results have been obtained for pairs:

• The n-dimensional ball (which is the higher dimensional analog of the disk) with its bounding
sphere (Bn,Sn−1) has computable type [Mil02],

• Every compact manifold with boundary (M,∂M) has computable type [IS18],

• Every finite (topological) graph (G,V1), where V1 is the set of vertices of degree 1, has
computable type [Ilj20].

Our goal in this paper is to study the property of having computable type for a broader class
of spaces, to characterize the pairs having computable type and to develop a unifying argument for
the known examples. Our first observation is that graphs and manifolds have the common property
that they are locally topological cones as follows (see Figure 1 for an illustration of this idea):

• A finite graph is locally a cone of a finite set,

• A 2-dimensional manifold is locally a disk, which is the cone of a circle, and more generally
an n-dimensional manifold is locally an n-ball, which is the cone of an (n− 1)-sphere.

In this article, we study the class of finite simplicial complexes which is a large class of spaces
that are also locally topological cones, as illustrated in Figure 1c.

Finite simplicial complexes are the higher dimensional analogs of finite graphs. They are made
of simplices that are attached together along their faces. This class of compact topological spaces is
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(a) A local cone in a
graph

(b) A local cone in a
2-manifold

(c) A local cone in a
simplicial complex

Figure 1: Examples of local cones in 3 types of spaces.

large enough to include many examples (e.g., most common compact manifolds, geometrical models
from computer graphics) and can be easily described using finite combinatorial information, so we
can hope to obtain a full characterization of computable type for them. We do not consider infinite
simplicial complexes because the usual topologies make them non-compact.

Let (X,A) be a pair consisting of a finite simplicial complex X and a subcomplex A. We call
such a pair a simplicial pair. Our main problem is to understand which simplicial pairs (X,A)
have computable type. We give a thorough answer, by giving two topological characterizations of
the simplicial pairs (X,A) having computable type. One of them is global whereas the other one is
local. The local characterization makes it very easy to check whether a simplicial pair (X,A) has
computable type, by inspecting the neighborhoods of each vertex separately. Those neighborhoods
are called local cones, because they are topological cones with the vertex as the tip (precise
definitions will be given in the article). We then use the local characterization to prove or disprove
that specific sets, such as Bing’s house and the dunce hat, have computable type. The previous
techniques developed in the literature were too specific to be applied to these sets. Our techniques
not only make it possible to treat any simplicial complex, but also provide a simple and visual way
to settle the question for many sets.

The proofs are non-trivial but the statements are elegant and easy to apply. For instance it is
very easy to apply our results to show that the dunce hat does not have computable type. However,
the internals of the proofs of the theorems are rather involved and we are not aware of any simpler,
more direct argument. Therefore our results provide significant progress in the understanding of
the computable type property. Moreover, our approach in this article is new in the sense that the
proofs are very different from the arguments developed in the literature on the computable type
property.

It turns out that the computability property we are studying is intimately related to topology,
so we need to use topology in our investigation. However, we only assume familiarity with basic
topology (e.g., continuity and compactness). When we use more advanced topological notions, we
give the necessary background (e.g. cones, simplicial complexes).

The results. Let us summarize the main results of this paper. We will be working with
pairs (X,A) consisting of a compact metric space X and a compact subset A, to be informally
thought as the boundary of X. A typical example is given by the pair (Bn+1, Sn) consisting of
the (n+ 1)-dimensional ball and the n-dimensional sphere:

Bn+1 = {x ∈ Rn+1 : ‖x‖ ≤ 1},
Sn = {x ∈ Rn+1 : ‖x‖ = 1},
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where ‖·‖ is the Euclidean norm or any equivalent norm. We introduce two important properties
of pairs, given in Definition 3.1 and restated here.

Definition. A pair (X,A) has the surjection property if every continuous function f : X → X
satisfying f |A = idA is surjective.

Let ε > 0. A pair (X,A) has the ε-surjection property if every continuous function f : X → X
satisfying f |A = idA and d(f, idX) < ε is surjective.

For instance, a consequence of Brouwer’s fixed-point theorem is that the pair (Bn+1,Sn) has
the surjection property.

The main result of the paper is Theorem 3.1, which relates computable type with these two
properties. We restate it here. We recall that a simplicial pair (X,A) consists of a finite simplicial
complex X and a subcomplex A ⊆ X.

Theorem. Let (X,A) be a simplicial pair such that A has empty interior in X. The following
conditions are equivalent:

1. (X,A) has computable type,

2. There exists ε > 0 such that (X,A) has the ε-surjection property,

3. Every local cone pair of (X,A) has the surjection property.

Condition 2. is the global property mentioned above and condition 3. is the local one. This
theorem reduces a computability-theoretic property to purely topological ones. We develop further
techniques to determine whether a pair has computable type, by applying this theorem or by
analyzing when the topological properties are satisfied. The first one is stability under finite unions
(Theorem 4.1 and Corollary 4.1).

Theorem (Finite union). Let (X,A) be a simplicial pair and (Xi, Ai)i≤n be pairs of subcomplexes
such that X =

⋃
i≤nXi and A =

⋃
i≤nAi. If each (Xi, Ai) has computable type, then (X,A) has

computable type.

The second one is a further characterization of the 2-dimensional simplicial pairs having com-
putable type, by reduction the surjection property for local cone pairs to a simple property of graphs
(Theorem 4.2). We demonstrate the strength of that result by giving non-trivial applications to
two famous sets: the dunce hat (Figure 4a) and Bing’s house (Figure 5).

In order to make the paper understandable to a larger audience, we give informal proofs of the
main results. The detailed proofs are then given in the appendix.

The paper is organized as follows. In Section 2, we give the needed background on computability
of sets, simplicial complexes and cone spaces. In Section 3, we define the surjection property and
the ε-surjection property, state and prove our main result. In Section 4, we present techniques to
prove or disprove the (ε-)surjection property. As an application, we prove that the dunce hat does
not have computable type whereas the Bing’s house does, by studying the local cones of each of
the two sets. In Section 5, we briefly discuss the possible notions of boundary ∂X of a simplicial
complex X that make the pair (X, ∂X) have computably type. We finally formulate open questions
and discuss a generalization of our results in Section 6. As previously mentioned, the reader can
find the detailed proofs of all the results in the appendix.
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2 Preliminaries

We give here some necessary preliminaries in computability theory and topology. We start with
this central definition.

Definition 2.1. A pair (X,A) consists of a compact metrizable space X and a compact sub-
set A ⊆ X. A copy of a pair (X,A) in a topological space Z is a pair (Y,B) such that Y ⊆ Z is
homeomorphic to X and A is sent to B by the homeomorphism.

2.1 Computability of sets

We recall definitions and results about the Hilbert cube and computable type. We will mainly
use the following notion from computability theory: a set A ⊆ N is computably enumerable
(c.e.) if there exists a Turing machine that, on input n ∈ N, halts if and only if n ∈ A. This
notion immediately extends to subsets of countable sets, whose elements can be encoded by natural
numbers.

Computability in the Hilbert cube. We work in the Hilbert cube because it is universal
among the separable metrizable spaces, in particular every compact metrizable space embeds in
the Hilbert cube.

Definition 2.2. The Hilbert cube is the space Q = [0, 1]N endowed with the metric d(x, y) =∑
i 2−i|xi−yi|. We let (Bi)i∈N be a computable enumeration of the open balls B(x, r) where x ∈ Q

has finitely many non-zero rational coordinates and r > 0 is rational; these Bis are called rational
balls.

Notation 2.1. If X ⊆ Q and f, g : X → Q, then let

dX(f, g) = sup
x∈X

d(f(x), g(x)).

We recall definitions of computability of compact subsets of the Hilbert cube. The reader can
find more details about computability of sets in [BP03, IK20].

Definition 2.3 (Computability of sets). A compact set X ⊆ Q is:

• Semicomputable if there exists a c.e. set E ⊆ N such that Q \X =
⋃
i∈E Bi,

• Computable if it is semicomputable and {i ∈ N : X ∩Bi 6= ∅} is c.e.

A pair (X,A) in Q is semicomputable if both X and A are semicomputable.

Intuitively, X is semicomputable if there is an algorithm that takes rational cube as input (a
voxel) and semidecides whether that cube is disjoint from X, i.e. halts exactly in this case. X is
computable if there is an algorithm that decides whether a cube intersects the set.

For instance, the Mandelbrot set is semicomputable because its definition gives an algorithm
that can eventually detect that a point is outside this set; whether it is computable is an open
problem, see [Her05].

Example 2.1. The line segment I = [0, 1] embedded in the simplest way as [0, 1] × Q ⊆ Q is
computable. However, if A ⊆ N is the halting set (a non-computable c.e. set) and xA =

∑
n∈A 2−n,

then [xA, 1]×Q is a copy of I which is semicomputable but not computable.

5



The Hilbert cube itself is a computable subset of itself. A compact set X ⊆ Q is semicomputable
if and only if the set

{(i1, . . . , in) ∈ N∗ : X ⊆ Bi1 ∪ . . . ∪Bin}

is c.e., and it is computable if and only if in addition it contains a dense computable sequence. A
function f : Q→ Q is computable if there exists a c.e. set E ⊆ N2 such that f−1(Bi) =

⋃
(i,j)∈E Bj .

The image of a (semi)computable set under a computable function is a (semi)computable set.
Semicomputable sets have very useful properties: if X ⊆ Q is semicomputable and f, g : X → Q
are computable, then {q ∈ Q : dX(f, g) < q} is c.e.

Computable type. The next definition is the main notion of this article (see [IS18]).

Definition 2.4. A pair (X,A) has computable type if for every semicomputable copy (Y,B) of
the pair in the Hilbert cube, Y is computable.

A compact space X has computable type if the pair (X, ∅) has.

Remark 2.1. In fact, in [IS18] computable type was defined separately for copies in computable
metric spaces and computably Haudorff spaces. In a forthcoming article, we show that taking
the copies in computably Hausdorff spaces, computable metric spaces or the Hilbert cube are all
equivalent using the fact that computable metric spaces embed effectively in the Hilbert cube, as
well as Schröder’s computable metrization theorem [Sch98].

2.2 Topology

We recall some notions which will be used, like simplicial complexes and cone spaces. We will work
with compact metrizable spaces only, and may omit this assumption in the statements.

Definition 2.5. Let (X,A) be a pair. A retraction r : X → A is a continuous function such
that r|A = idA. If a retraction exists, then we say that A is a retract of X.

Simplicial complex. Let V = {0, . . . , n} and P+(V ) be the set of non-empty subsets of V .
An abstract finite simplicial complex is a set S ⊆ P+(V ) such that if σ ∈ S and ∅ 6= σ′ ⊂ σ,
then σ′ ∈ S. Its elements σ ∈ S are called the simplices of S. If σ ∈ S has n+ 1 elements, then σ
is an n-simplex. The vertices of S are the singletons {i} ∈ S. σ ∈ S is free if there exists exactly
one σ′ ∈ S with σ ( σ′. A subcomplex of S is an abstract simplicial complex contained in S.

The support of a vector x = (x0, . . . , xn) ∈ [0, 1]n+1 is supp(x) = {i : xi 6= 0} . The standard
realization of an abstract simplicial complex S is the set

|S| =
{
x = (x0, . . . , xn) ∈ [0, 1]n+1 :

∑
i

xi = 1, supp(x) ∈ S
}
.

Any space homeomorphic to the standard realization of an abstract finite simplicial complex is
called a finite simplicial complex. We often identify an abstract simplicial complex and its
standard realization.

A simplicial pair (X,A) consists of a finite simplicial complex X and a subcomplex A.

Remark 2.2. For technical reasons, we will implicitly assume that A contains all the free vertices
of X (those are the points x having a neighborhood homeomorphic to [0, 1) with a homeomorphism
sending x to 0).
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In a simplicial complex, each vertex has a neighborhood which is usually called a star and is
topologically a cone. Our main result will relate the computable type property with a property of
these local cones. Because we are dealing with pairs, we need to define local cone pairs, as follows.

Definition 2.6. Let (X,A) be the standard realization of a simplicial pair and vi = (0, . . . , 1, . . . , 1)
be a vertex. The local cone pair at vi is (Ki,Mi) defined by:

Ki = {x ∈ X : xi ≥ 1/2},
Mi = {x ∈ X : xi = 1/2} ∪ (Ki ∩A).

Note that the coefficient 1/2 is arbitrary and could be replaced by any number in (0, 1).

Remark 2.3. We call (Ki,Mi) a cone pair because K is a topological cone: let Li = {x ∈ X : xi =
1/2}, Ki is a copy of the cone of Li, obtained from Li × [0, 1] by identifying all the points (l, 0)
together. The point obtained by this identification is the tip of the cone and corresponds to the
vertex vi. If Ni = {x ∈ A : xi = 1/2}, then Mi is the union of Li and of the cone of Ni.

In the language of simplicial complexes, Ki corresponds to the star of vi and Li to the link
of vi. Ki is homeomorphic to the union of simplices containing vi. Each such simplex has a face
that does not contain vi, and Li is the union of these faces.

3 The (ε-)surjection property and computable type for simplicial
pairs

We now present the main result of this paper, that identifies which simplicial pairs have computable
type, using the following topological properties.

Definition 3.1. A pair (X,A) has the surjection property if every continuous function f : X →
X satisfying f |A = idA is surjective.

A pair (X,A) in Q has the ε-surjection property for some ε > 0, if every continuous func-
tion f : X → X satisfying f |A = idA and dX(f, idX) < ε is surjective.

Example 3.1. • For every n ∈ N, the (n+ 1)-dimensional ball and its bounding n-dimensional
sphere form a pair (Bn+1,Sn) that has the surjection property. It is a consequence of an
equivalent formulation of Brouwer’s fixed-point theorem that Sn is not a retract of Bn+1

(Corollary 2.15 in [Hat02]).

• The pair (Sn, ∅) does not have the surjection property (take a constant function f : Sn → Sn),
but has the ε-surjection property if ε is sufficiently small. It can be proved using classical
results in topology, or as a consequence of Theorem 3.1 below.

Although the ε-surjection property depends on the particular copy of a pair (X,A), quantifying
over ε yields a topological invariant, i.e. a property of the pair that is satisfied either by all copies
or by none of them.

Proposition 3.1. Whether there exists ε > 0 such that (X,A) has the ε-surjection property does
not depend on the copy of (X,A) in Q.
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Proof. If (Y,B) is a copy of (X,A), then let φ : X → Y be a homeomorphism such that φ(A) = B.
By compactness of X, φ is uniformly continuous so given ε > 0, there exists δ > 0 such that
if d(x, x′) < δ then d(φ(x), φ(x′)) < ε. If (Y,B) has the ε-surjection property, then we show
that (X,A) has the δ-surjection property. Let f : X → X be continuous, satisfying f |A = idA
and dX(f, idX) < δ. Define g = φ ◦ f ◦ φ−1 : Y → Y : one has g|B = idB and dY (g, idY ) < ε by
choice of δ so g is surjective, hence f is surjective.

We now state the main result of this paper.

Theorem 3.1 (The main theorem). Let (X,A) be a simplicial pair such that A has empty interior
in X. The following statements are equivalent:

1. (X,A) has computable type,

2. (X,A) has the ε-surjection property for some ε > 0,

3. All the local cone pairs (Ki,Mi) have the surjection property.

We separate the proof into several independent parts.

Remark 3.1. A single topological space X has many different simplicial decompositions, i.e. many
abstract simplicial complexes whose realizations are homeomorphic to X. For instance, a triangle
can be decomposed into many smaller triangles. At first sight, the third condition in Theorem 3.1
depends on the choice of the decomposition, because the local cone pairs are taken at the vertices of
the decomposition. However, the theorem implies that the choice of the simplicial decomposition is
irrelevant, because conditions 1. and 2. do not depend on the decomposition: if all the cone pairs in
a simplicial decomposition have the surjection property, then it is still true for all other simplicial
decompositions of the space.

For a simplicial pair that is itself homeomorphic to a cone pair, we obtain a further equivalence,
which is a consequence of Theorem 3.1.

Corollary 3.1. Let (X,A) be a simplicial cone pair such that A has empty interior in X. The
following statements are equivalent:

1. (X,A) has computable type,

2. (X,A) has the ε-surjection property for some ε > 0,

3. (X,A) has the surjection property.

Proof. The surjection property implies the ε-surjection property for any pair. Conversely, if the
pair (X,A) has the ε-surjection property then each local cone pair has the surjection property,
but (X,A) is itself a local cone pair.

The rest of this section is devoted to the proof of this result. We will give several applications
in the next section.
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3.1 The ε-surjection property implies computable type

In this section we give an informal idea of the proof of 2. ⇒ 1. in Theorem 3.1. The details can
be found in the appendix, Section A.2. The idea of the proof is that if A has empty interior
in X and (X,A) has the ε-surjection property, then for an open set U the following conditions are
equivalent:

• U intersects X,

• There exists a continuous non-surjective function g : (X \ U) ∪ A → X such that g|A = idA
and dX(g, idX) < ε.

This equivalence is straightforward. If U intersects X, then let g be the inclusion map. Conversely,
if such a g exists then (X \U)∪A must differ from X by the ε-surjection property for (X,A), so U
intersects X.

The finite simplicial complex X has good topological properties because it is a compact Ab-
solute Neighborhood Retract (ANR), which means that any copy of X in Q is a retract of some
neighborhood of that copy. In the detailed proof (see Sections A.1 and A.2 in the Appendix), we
show how to use these properties to prove that the existence of such a function g can be detected
by an algorithm if (X,A) is semicomputable. The main idea is that one does not need to search
for an arbitrary continuous function g, but for a computable one. Therefore, one can test whether
an open set U intersects X, which makes X computable.

3.2 The ε-surjection property is equivalent to the local surjection property

In this section we give an informal proof of the equivalence 2. ⇔ 3. in Theorem 3.1. The detailed
argument is given in the appendix (Sections A.3 and A.4).

The ε-surjection property implies the local surjection property. It is easy to see that
if a local cone pair does not have the surjection property, then for any ε > 0, the pair (X,A) does
not have the ε-surjection property. It relies on the particular property of a cone that it contains
arbitrarily small copies of itself, obtained by scaling it down: for any λ ∈ (0, 1), the set Ki(λ) = {x ∈
X : xi ≥ λ} is a copy of Ki and it has arbitrarily small diameter as λ approaches 1. Given ε > 0,
consider λ such that Ki(λ) has diameter less than ε. Take a non-surjective function f from Ki(λ)
to itself which is the identity on the corresponding set Mi(λ), and extend it to a non-surjective
function g : X → X by simply defining g(x) = x for x outside Ki(λ). One has d(g, idX) < ε,
showing that (X,A) does not have the ε-surjection property.

The local surjection property implies the ε-surjection property. Now, assume that
for every ε > 0, (X,A) does not have the ε-surjection property. We show that some local cone pair
does not have the surjection property. The idea is to start from a sufficiently small ε > 0, to be
defined later, and a non-surjective function h : X → X such that h|A = idA and d(h, idX) < ε
and consider its restriction h0 to a local cone K which is not contained in the image of h. This
function h0 does not immediately disprove the surjection property for the local cone pair (K,M)
because h0(K) may not be contained in K and h0 may not be the identity on M . However, h0
almost satisfies these properties: h0(K) is at distance ε from K and h0 is ε-close to the identity
on M . Again, using the fact that K is a compact Absolute Neighborhood Retract (ANR) and
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the properties derived from that, if one takes ε sufficiently small, then one can transform h0 into
a continuous function G that sends K to itself, is the identity on M and is still non-surjective.
Therefore, (K,M) does not have the surjection property.

3.3 Computable type implies the ε-surjection property

We prove 1. ⇒ 2. in Theorem 3.1. We show that if a simplicial pair (X,A) does not have the ε-
surjection property for any ε > 0, then it has a semicomputable copy in Q that is not computable.
In order to build that semicomputable copy, we show that the pair fails in a computable way to
have the ε-surjection property, which is expressed by Definition 3.2.

For two non-empty compact sets A,B ⊆ Q, their Hausdorff distance is

dH(A,B) = max(max
a∈A

d(a,B),max
b∈B

d(b, A)).

Definition 3.2. Let ε > 0 and (X,A) ⊆ Q fail to have the ε-surjection property. Say that δ > 0 is
an ε-witness if there exists a continuous function f : X → X such that f |A = idA, dX(f, idX) < ε
and dH(f(X), X) > δ.

Say that (X,A) has computable witnesses if there is a computable function ε 7→ δ(ε) such
that for every ε > 0, δ(ε) is an ε-witness.

For a compact pair (X,A) (not necessarily simplicial), having computable witnesses is sufficient
to build a semicomputable copy which is not computable.

Theorem 3.2. Let (X,A) ⊆ Q be a computable pair having computable witnesses. (X,A) does not
have computable type.

We give some intuition about the proof, and include the detailed argument in the appendix
(Section B).

Informal proof. In order to give some intuition, let us show precisely another but related result: if
we only assume that (X,A) does not have the surjection property, then one can encode the halting
problem for one program p in a copy of (X,A), in the following sense. Given p, one can produce
an algorithm that semicomputes a copy (Xp, Ap) of (X,A); any algorithm computing Xp could be
used to decide whether p halts.

Let (X0, A0) ⊆ Q be a semicomputable copy of (X,A) and δ > 0 be such that there exists a
non-surjective continuous function f : X0 → X0 such that f |A0 = idA0 and dH(X0, f(X0)) > δ.

Given a program p, we define a copy (Xp, Ap). If p does not halt, then (Xp, Ap) = (X0, A0).
If p halts, then (Xp, Ap) is another copy (X1, A1) defined by the following algorithm.

Start enumerating the complements of X0 and A0. If p eventually halts then consider a
copy (X1, A1) of (X0, A0) with the following properties:

• (X1, A1) is compatible with (i.e. disjoint from) the current enumeration of the complements
of X0 and A0,

• dH(X1, X0) > δ.

The existence of f implies the existence of (X1, A1), which can be effectively found. We then
continue enumerating the complements of X1 and A1.
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We have just given an algorithm that semicomputes a copy (Xp, Ap) of (X,A), be it (X0, A0)
or (X1, A1). Any algorithm that computes Xp could be used to know whether p halts: p halts if
and only if dH(Xp, X0) > δ, which can be decided from the computable information about Xp.

Now, assuming that (X,A) does not have the ε-surjection property for any ε, and using the
assumption that a witness δ(ε) can be computed from any ε, we apply this strategy against all the
programs in parallel and at infinitely many scales. The idea is simple but the details are rather
technical and fully described in the appendix.

Note that the standard realization of a simplicial pair is computable. We now show that if it has
witnesses, then it always have computable witnesses, which together with Theorem 3.2 concludes
the proof of 1.⇒ 2. in Theorem 3.1.

Proposition 3.2. If a simplicial pair (X,A) does not have the ε-surjection property for any ε > 0,
then its standard realization has computable witnesses.

Proof. By 3.⇒ 2. in Theorem 3.1, there exists a local cone pair (Ki,Mi) which does not have the
surjection property, so there exists a non-surjective function f0 : Ki → Ki such that f0|Mi = idMi .
One can assume w.l.o.g. that dX(f0, idX) < 1. Let δ0 > 0 be such that dH(f0(X), X) > δ0.
Given ε > 0, the number δ = δ0ε can be computed from ε and is an ε-witness. Indeed, the
function f obtained by applying f0 to a version of Ki scaled by a factor ε and extended as the
identity elsewhere satisfies all the conditions.

4 Techniques for the (ε-)surjection property

Theorem 3.1 enables one to reduce the computable type property to topological properties, namely
the ε-surjection property and the surjection property for local cone pairs. Proving or disproving
these properties may not be straightforward, so we develop a few techniques that help in many
cases.

4.1 Finite union

The first result is a way to prove that a simplicial pair has the ε-surjection property by decomposing
it as a finite union of pairs that all have the ε-surjection property.

Theorem 4.1 (Finite union). Let (X,A) be a finite simplicial pair and let (Xi, Ai)i≤n be pairs of
subcomplexes such that X =

⋃
i≤nXi and A =

⋃
i≤nAi. If every pair (Xi, Ai) has the ε-surjection

property for some ε > 0, then (X,A) has the δ-surjection property for some δ > 0.

We give here the main idea and put the details in the appendix (Section C).

Informal proof. We are using good topological properties of finite simplicial complexes. For each i,
there exists a neighborhood Ui of Xi and a retraction ri : Ui → Xi with a special property: if x
belongs to the topological interior of Xi, then the only preimage of x by ri is x.

Let δ be sufficiently small and assume that (X,A) does not have the δ-surjection property.
Let f : X → X be continuous, non-surjective and satisfy f |A = idA and dX(f, idX) < δ. There
must be i ≤ n and x in the interior of Xi that is not in the image of f . We can then create a
function fi : Xi → Xi as follows: fi is the restriction of ri ◦ f to Xi (it is possible if δ is sufficiently
small, so that f(Xi) ⊆ Ui).
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The special property of ri implies that x is not in the image of fi. Moreover, fi is continuous,
is the identity on Ai and is ε-close to idXi if δ is sufficiently small.

Corollary 4.1. Let (X,A) be a simplicial pair and (Xi, Ai)i≤n be pairs of subcomplexes such
that X =

⋃
i≤nXi and A =

⋃
i≤nAi. If every pair (Xi, Ai) has computable type, then (X,A) has

computable type.

For instance, if a finite simplicial complex X is a finite union of subcomplexes that are homeo-
morphic to spheres, then X has computable type. More generally, if a finite simplicial pair (X,A) is
a finite union of pairs of subcomplexes (Xi, Ai) that are homeomorphic to pairs (Sn, ∅) or (Bn+1,Sn),
then (X,A) has computable type.

4.2 Cone of a graph

In a 2-dimensional simplicial pair, the local cones are cones of graphs. We obtain a characterization
of the surjection property for such cones. In order to state the result, we need to define the cone
pair induced by a pair, already informally discussed in Remark 2.3. Let (L,N) be a pair. We define
the cone pair (K,M) := Cone(L,N) as follows:

• K = Cone(L) is the quotient of L× [0, 1] by the equivalence relation (x, 0) ∼ (y, 0),

• M = L ∪ Cone(N), where L is embedded in K as L× {1}.

The space L is called the base of the cone K = Cone(L), and the equivalence class L×{0} is called
the tip of K.

Example 4.1. Let us illustrate this notion on the usual example of balls and spheres:

• Cone(Sn, ∅) = (Bn+1,Sn) with the tip at the center of Bn+1,

• Cone(Bn,Sn−1) = (Bn+1,Sn) with the tip in Sn.

Here is the main result of this section.

Theorem 4.2. Let (L,N) be a pair such that L is a finite graph and N is a subset of its vertices.
The following statements are equivalent:

1. Cone(L,N) has the surjection property,

2. Every edge is in a cycle or a path starting and ending in N .

We follow the usual convention that in a graph, a path and a cycle do not visit a vertex twice,
i.e. they are topologically a line segment and a circle respectively. In particular, a path connects
two different points.

The proof is given in the appendix (Section D).

Example 4.2 (Star pair). Fix some n ≥ 1 and let X be the star with n branches and A be the n
endpoints of these branches (see Figure 2), with a special case for n = 1: Cone({v}, ∅) = (B1,S0).
The pair (X,A) is precisely Cone(A, ∅). As A has no edge, it satisfies the conditions of Theorem
4.2, therefore (X,A) has the surjection property. One can then obtain Iljazović’s result that every
finite graph has computable type [Ilj20], because the local cones of a finite graph are stars, which
have the surjection property.
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(a) Star with 5 branches (b) Star with 1 branch

Figure 2: The star pairs (X,A) have the surjection property (Example 4.2) (X in yellow, A in
black)

Example 4.3 (n squares). Fix some n ≥ 2 and let X be the union of n squares which all meet in
one common edge and A be the union of all the other edges (see Figure 3). The pair (X,A) has
the surjection property. Indeed, (X,A) = Cone(A, ∅) and A is a graph which is a union of circles
(each circle is the boundary of the union of two squares). Therefore, Cone(A, ∅) has the surjection
property by Theorem 4.2. Finally, (X,A) has computable type by Corollary 3.1.

Figure 3: A union of 5 squares is the cone of a graph; the tip is at the center, the graph is in black
(Example 4.3).

We expect a generalization of Theorem 4.2 to cones of arbitrary simplicial complexes, by using
the notions of n-cycles and relative n-cycles from homology, generalizing cycles and paths respec-
tively [Hat02].

In the next section we apply Theorem 4.2, giving an example of a cone pair of a graph which
does not have the surjection property.

4.3 The dunce hat

The dunce hat D is the space obtained from a solid triangle by gluing its three sides together,
with the orientation of one side reversed (see Figure 4a). It is a classical example, introduced by
Zeeman [Zee63], of a space that is contractible but not intuitively so. It is a 2-dimensional simplicial
complex with no free edge, i.e. no edge that belongs to one triangle only.

Theorem 4.3. The dunce hat does not have computable type.

Proof. It is possible to turn the dunce hat into a simplicial complex. The vertices of the triangle
are identified to a point v, and the local cone pair at that point is Cone(L,N) where L = C1∨I∨C2

is the graph consisting of two circles C1, C2 joined by a line segment I, and N is empty (see Figure
4c).

We apply Theorem 4.2: L is a finite graph containing an edge I which is neither in a cycle nor
in a path from N to N (N is empty), therefore Cone(L,N) does not have the surjection property.
Theorem 3.1 then implies that the dunce hat does not have computable type.
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(a) Dunce hat (b) Local cone
pair

(c) Local cone pair

Figure 4: (a) The dunce hat is obtained by gluing the edges with the indicated orientations; (b)
and (c) a local cone pair (Cone(L), L) = Cone(L, ∅) with tip at v, with L in black.

As far as we know, there is no simple and visual way of building a semicomputable copy of the
dunce hat that is not computable, i.e. the involved construction carried out in the proof of Theorem
3.1 cannot be avoided. The same remark applies to the pair (Cone(L), L) depicted in Figure 4c.

If A is the identified edges of the triangle, then it can be proved, by analyzing its local cone pairs,
that the pair (D,A) has computable type. In particular, the local cone pair at v is Cone(L,N)
where N consists of the two endpoints of the middle interval, so L is the union of two circles and a
line segment between two points of N , hence Cone(L,N) has the surjection property by Theorem
4.2.

Remark 4.1 (Quotient vs pair). It was proved in [ČI21c] that for any compact pair (X,A) where A
has empty interior, if the quotient space X/A has computable type then the pair (X,A) has com-
putable type. It is also proved that the converse implication fails, the counter-example is given
by the circle X and a subset A consisting of a converging sequence together with its limit. The
pair (X,A) has computable type, simply because X itself has computable type. However, X/A is
homeomorphic to the Hawaiian earring which does not have computable type. This quotient is not
a finite simplicial complex.

We give an other counter-example of a quotient space which is a finite simplicial complex.
Let L = C1 ∨ I ∨ C2, X be the cylinder of L and A the two bases of the cylinders. Inspecting the
local cones one can show that (X,A) has computable type but X/A does not.

4.4 Bing’s house, or the house with two rooms

All the known examples of sets having computable type are non-contractible (note that we are not
considering pairs, but single sets), and one might conjecture that no contractible set has computable
type. We give a counter-example, which is a famous space that was defined as a counter-example
for other properties. It was invented by Bing [Bin64] and is now called Bing’s house, or the
house with two rooms. The set is depicted in Figure 5, together with a half-cut to help visualizing
it. It is an example of a space which is contractible but not intuitively so. It can be endowed
with a simplicial complex structure (by triangulating each flat surface). It is then a 2-dimensional
simplicial complex with no free edge, which means that every edge belongs to at least two triangles.

Using our results we easily show that this set has computable type as a single set, i.e. without
adjoining a boundary to it.

Theorem 4.4. Bing’s house has computable type.
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(a) Bing’s house (b) Half-cut

Figure 5: Bing’s house with two rooms and a half-cut of it (the full house is obtained by adding
the symmetric reflection of the half-cut through the front vertical plane). It consists of two rooms,
each of which can be accessed from outside through a tunnel crossing the other room. Each tunnel
is linked by an internal wall to a side wall.

It is worth noticing that thanks to our results, it can be proved by looking at pictures only,
although the argument can be formalized.

Proof. Using Theorem 3.1, it is sufficient to inspect the possible local cones. One easily sees that
there are three types of possible cones, depicted in Figure 6. The basis of each cone is a graph
which is a union of 1, 2 or 3 cycles, so by Theorem 4.2 each cone pair has the surjection property,
therefore Bing’s house has computable type by Theorem 3.1.

a

b

c
c a b c

Figure 6: The local cones in Bing’s house: their bases (in black) are graphs that are unions of
cycles. Each point of Bing’s house is the tip of one of these three cones: two points are tips of the
third cone, all the other points on the dashed lines are tips of the second cone, all the other points
are tips of the first cone.

5 Boundary

Given a simplicial complex X, a natural problem is to understand whether there is a minimal notion
of boundary ∂X such that the pair (X, ∂X) has computable type. We make a few observations
about three possible candidates. Let

• ∂1X be the union of simplices that are contained in exactly one simplex of the next dimension,
i.e. ∂1X is the union of the free simplices of X,
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• ∂+X be the union of simplices that are contained in at least one simplex of the next dimension,

• ∂oddX be the union of simplices that are contained in an odd number of simplices of the next
dimension.

In the proofs of the next results, we say that a simplex M in X is maximal if it is not contained
in a higher-dimensional simplex of X.

Proposition 5.1. Every simplicial pair (X, ∂+X) has computable type.

Proof. Let (Mi)i≤n be an enumeration of the maximal simplices of X. Mi is a ball, let ∂Mi be
its bounding sphere, which is a subcomplex of Mi. One has X =

⋃
i≤nMi and ∂+X =

⋃
i≤n ∂Mi.

Each pair (Mi, ∂Mi) has the surjection property (Example 3.1), so (X, ∂+X) has the ε-surjection
property for some ε by Theorem 4.1. As a result, (X, ∂+X) has computable type by Theorem
3.1.

Proposition 5.2. Let X be a finite simplicial complex and A a subcomplex. If (X,A) has com-
putable type, then A contains ∂1X.

Proof. Assume that some simplex ∆ belongs to ∂1X but not to A. We show that for every ε > 0,
(X,A) does not have the ε-surjection property, implying that (X,A) does not have computable
type by Theorem 3.1. Let ε > 0. Let ∆′ be the unique maximal simplex having ∆ as a face (∆′ has
one more vertex than ∆). There is a non-surjective function f : ∆′ → ∆′ which is ε-close to the
identity and is the identity on the other faces of ∆′: f slightly pushes points of ∆′ away from ∆.
We extend f as the identity on the rest of X, which gives a continuous function because ∆ is free.
As ∆ is not in A, f is the identity on A.

The following observations can be made:

• Although (X, ∂1X) has computable type when X is a 1-dimensional complex (i.e., a graph),
it is no more true for 2-dimensional complexes. For the dunce hat D, one has ∂1D = ∅ but
we saw in Theorem 4.3 that (D, ∅) does not have computable type.

• While (X, ∂+X) always has computable type by Proposition 5.1, ∂+X is far from optimal.
For instance, it is always non-empty (unless X is a single point), but for any sphere Sn, the
pair (Sn, ∅) already has computable type.

• In a subsequent paper we prove that (X, ∂oddX) always has computable type, using homology.
Observe that ∂oddX is in general not optimal, as the example of graphs shows: (X, ∂1X) has
computable type and ∂1X is usually smaller than ∂oddX, which contains all the vertices of
odd degrees.

6 Open questions and generalization

We leave two open questions.

Question 1. Is there a canonical notion of boundary ∂X for a simplicial complexX, such that (X, ∂X)
always has computable type, and ∂X is minimal in some sense?

Question 2. For simplicial pairs (L,N), is it possible to characterize the surjection property
for Cone(L,N) in terms of the homology of (L,N)?
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We finally mention that the proof of the main result actually applies to more general spaces. For
instance one can prove that if (M,∂M) is a compact manifold with boundary, then Cone(M,∂M)
has computable type because it satisfies the surjection property, although it is not always a simplicial
complex. These results will appear in a forthcoming article.
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[BRMP19] Vasco Brattka, Stéphane Le Roux, Joseph S. Miller, and Arno Pauly. Connected choice
and the Brouwer fixed point theorem. J. Math. Log., 19(1):1950004:1–1950004:46, 2019.

[BY08] Mark Braverman and Michael Yampolsky. Computability of Julia Sets. Springer, 2008.
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A Proof of Theorem 3.1

A.1 Absolute Neighborhood Retracts (ANRs)

A first property of finite simplicial complexes is that they are Absolute Neighborhood Retracts
(ANRs). This important notion was introduced by Borsuk [Bor32] and plays an eminent role in
algebraic topology. Moreover, it has very useful computability-theoretic consequences, which will
be used in the proof. We point out that the computability-theoretic aspects of compact ANRs has
been studied by Collins in [Col09], although we do not use these results.

Definition A.1. Let X be a compact space.

1. A ⊆ X is a neighborhood retract (NR) if it is a retract of a neighborhood of A in X,

2. X is an absolute retract (AR) if every copy of X in Q is a retract of Q,

3. X is an absolute neighborhood retract (ANR) if every copy of X in Q is a NR.

We recall bellow some classical facts (see [Han51] and [vM01]).

Fact A.1. We have the following.

a. A finite simplicial complex is an ANR,

b. A cone of an ANR is an AR,

c. A retract of an AR is an AR,

d. An n-dimensional ball is an AR,

e. If Y is an AR and (X,A) is a pair, then every continuous function f : A→ Y has a continuous
extension F : X → Y ,

f. In an ANR, every NR is an ANR.

The following classical result enables one to define a continuous function piece by piece: if the
pieces are consistent, then continuity automatically follows.

Lemma A.1. Let X,Y be topological spaces and A,B be closed subsets of X such that X = A∪B.
If f : A→ Y and g : B → Y are continuous and coincide on A∩B, then their common extension h :
X → Y is continuous.

Proof. Let V ⊆ Y be open. There exist two open sets UA, UB ⊆ X such that f−1(V ) = UA ∩ A
and g−1(V ) = UB ∩B. One has h−1(V ) = (UA \B) ∪ (UB \A) ∪ (UA ∩ UB) which is open.

We will also use the following notation.

Notation A.1. If X is a metric space, A ⊆ X and r > 0, let N (A, r) = {x ∈ X : d(x,A) ≤ r}.
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A.2 Proof of 2.⇒ 1. in Theorem 3.1

We first need a few lemmas.

Lemma A.2. If Y ⊆ Q is a compact ANR and δ > 0, then there exists an open set V ⊇ Y that is
a finite union of rational balls and a retraction r : V → Y such that dV (r, idV ) < δ.

Proof. As Y is an ANR, there exists an open set W containing Y and a retraction r : W → Y . By
compactness of Y and continuity of r, if ε > 0 is sufficiently small then r is ε-close to the identity
on Y ε. Let V be a finite union of open rational balls covering Y and contained in Y ε.

The next lemma is a well-known property of ANR’s that can be found in [vM89]: if two functions
to an ANR are sufficiently close to each other, then one has a continuous extension if and only if
the other has. It has important computability-theoretic consequences, because arbitrary functions
can be replaced by computable functions that are close enough to the original ones.

Lemma A.3 (Exercice 4.1.5 in [vM89]). Let Y be a compact metrizable ANR. For every ε > 0
there exists 0 < α < ε such that for every pair (X,A), if f, g : A → Y are continuous and
such that dA(f, g) < α and f has a continuous extension F : X → Y , then g has a continuous
extension G : X → Y with dX(F,G) < ε.

Lemma A.4. There exists a computable sequence (fj)j∈N of functions fj : Q→ Q which is dense
in the metric dQ.

Proof. Say that an element x ∈ Q is dyadic of order n if it has the form x = (x0, . . . , xn−1, 0, 0, 0, . . .)
where each xi is a multiple of 2−n. For each n ∈ N, the finite set of dyadic elements of order n forms
a regular grid. One can then define a piecewise affine map by assigning a dyadic element to each
dyadic element of order n and interpolating affinely in between. All the possible such assignments
provide a dense computable sequence of functions from Q to itself.

We now prove the announced implication.

Proof of 2.⇒ 1. in Theorem 3.1. Assume that (X,A) is embedded as a semicomputable pair in Q
and has the ε-surjection property for some ε > 0. X can be subdivided so that each simplex has
diameter less than ε/4 (for instance by barycentric subdivision, see [Hat02]). Let (Mi)1≤i≤n be the
maximal simplices of X and ∂Mi the union of the proper faces of Mi. Let Yi = (X \Mi)∪∂Mi. One
has A ⊆ Yi and Yi is an ANR because it is a finite simplicial complex. Let αi > 0 be provided by
Lemma A.3 applied to Yi and ε

4 , and let α = mini(αi). Using Lemma A.2, for every i, let Vi ⊇ Yi be
a finite union of rational balls and ri : Vi → Yi a retraction such that dVi(ri, idVi) < min(ε/4, α/2).
Let (fj)j∈N be a dense computable sequence of functions from Q to itself provided by Lemma A.4.
Now, let U ⊆ Q be an open set and Z = (X \ U) ∪A.

Claim 1. The following are equivalent:

1. U intersects X,

2. There exist i ≤ n and a continuous function g : Z → Yi such that g|A = idA and dZ(g, idZ) <
ε/4,

3. There exist i ≤ n and j such that fj(Z) ⊆ Vi, dA(fj , idA) < α
2 and dZ(fj , idZ) < ε/2.
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Proof of the claim. [Proof of Claim 1] 1 ⇒ 2: Let i ≤ n be such that Mi ∩ U 6= ∅. Take x ∈
U ∩Mi \ ∂Mi and a continuous retraction r : X \ {x} → Yi. Let g be the restriction of r to Z. g
satisfies the conditions because A ⊆ Yi and the diameter of Mi is less than ε/4.

2 ⇒ 3: Note that the conditions that fj should satisfy are satisfied by g and by any function
that is sufficiently close to g. As the sequence (fj)j∈N is dense, one can take fj arbitrarily close
to g, so that fj satisfies the required conditions.

3 ⇒ 1: Suppose that U is disjoint from X, i.e. Z = X. Let F = ri ◦ fj : X → Yi. One
has dA(F, idA) = dA(ri ◦ fj , idA) ≤ dA(ri ◦ fj , fj) + dA(fj , idA) < α/2 + α/2 = α. Therefore using
Lemma A.3 there exists a continuous extension G : X → Yi of idA such that dX(G,F ) < ε/4.
One has dX(G, idX) ≤ dX(G, ri ◦ fj) + dX(ri ◦ fj , fj) + dX(fj , idX) < ε/4 + ε/4 + ε/2 = ε, which
contradicts the ε-surjection property of (X,A).

If U is a rational ball in Q, then 3. is semidecidable. As 3. is equivalent to 1., one can semidecide
which rational balls U intersect X, therefore X is computable.

A.3 Proof of 2.⇒ 3. in Theorem 3.1

Assume that there is a local cone pair (K,M) which does not have the surjection property, i.e. there
exists a non-surjective continuous function f : K → K such that f |M = idM . Let ε > 0 be arbitrary:
we show that (X,A) does not have the ε-surjection property.

For any λ ∈ (0, 1), the pair (Kλ,Mλ) defined by

Kλ = {x ∈ X : xi ≥ λ},
Mλ = (Kλ ∩A) ∪ {x ∈ A : xi = λ}

is a copy of (K,M). If λ is sufficiently close to 1, then the diameter of Kλ is smaller than ε.
The function f : K → K can be translated to a function fλ : Kλ → Kλ (let φλ : K → Kλ be a
homeomorphism sending (K,M) to (Kλ,Mλ) and define fλ = φλ ◦ f ◦ φ−1λ ).

We extend fλ to g : X → X by defining g(x) = x for x outside Kλ. As f is the identity on Mλ

which contains the topological boundary of Kλ, the function g is continuous by Lemma A.1. By
choice of λ, g is ε-close to the identity. As the part of A in Kλ is contained in Mλ, g|A = idA.
Therefore, g shows that (X,A) does not have the ε-surjection property.

A.4 Proof of 3.⇒ 2. in Theorem 3.1

Let (X,A) ⊆ Rn be the standard realization of a finite simplicial pair, endowed with the met-
ric d(x, y) = maxi≤n |xi−yi|. We assume that for every ε > 0, (X,A) does not have the ε-surjection
property, and we prove that some local cone pair (Ki,Mi) does not have the ε-surjection property.

Note again that for λ ∈ (0, 1), the pair (Ki(λ),Mi(λ)) defined by

Ki(λ) = {x ∈ X : xi ≥ λ},
Mi(λ) = {x ∈ A : xi = λ} ∪ (Ki(λ) ∩A)

is a copy of (Ki,Mi). Let λ0 = 1/(n+ 1) and observe that for every x ∈ X, xi ≥ λ0 for some i ≤ n.
Therefore, X is covered by the cones Ki(λ0), i ≤ n.
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Let ε be small so that λ0 − 2ε > 0. Let λ1 = λ0 − ε and λ2 = λ1 − ε > 0. Observe that, using
Notation A.1,

N (Ki(λ0), ε) ⊆ Ki(λ1), (1)

N (Ki(λ1), ε) ⊆ Ki(λ2). (2)

Ki(λ2)

Ki(λ1)

Ki(λ0)

Figure 7: The cones Ki(λ0) ⊆ Ki(λ1) ⊆ Ki(λ2)

Let α < ε be smaller than the values provided by Lemma A.3 applied to the compact ANRsKi(λ2)
(i ≤ n) and ε. By assumption, (X,A) does not have the α-surjection property, i.e. there exists
a non-surjective continuous function h : X → X such that h|A = idA and dX(h, idX) < α < ε.
As X =

⋃
iKi(λ0), there exists i ≤ n such that

Ki(λ0) * h(X). (3)

Let (K,M) = (Ki(λ2),Mi(λ2)).
We now define a non-surjective continuous function G : K → K such that G|M = idM , showing

that (K,M) does not have the surjection property.
First observe that h(Ki(λ1)) is contained inK. Indeed, h is ε-close to the identity so h(Ki(λ1)) ⊆

N (Ki(λ1), ε) ⊆ K by (2).
We define g : Ki(λ1) ∪M → K by

g|Ki(λ1) = h|Ki(λ1) and g|M = idM .

The function g is well-defined and continuous because h and the identity coincide on Ki(λ1)∩M ⊆
A.

We now define a continuous extension G : K → K of g using Lemma A.3. Note that g is α-close
to the inclusion f : Ki(λ1) ∪M → K and f has a continuous extension F := idK : K → K, so
using Lemma A.3, g has a continuous extension G : K → K satisfying dK(G, idK) < ε. As G
extends g, G|M = idM . We show that G is not surjective, implying that (K,M) does not have the
surjection property. Indeed, Ki(λ0) is not contained in G(K):

• G(Ki(λ1)) = h(Ki(λ1)) which does not contain Ki(λ0) by (3),

• G(K \Ki(λ1)) ⊆ N (K \Ki(λ1), ε) which is disjoint from Ki(λ0) by (1).

B Proof of Theorem 3.2

Let us recall the statement of Theorem 3.2.

Theorem. Let (X,A) ⊆ Q be a computable pair having computable witnesses. (X,A) does not have
computable type.
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We first need some background. We define a quasi-metric ρ on the space of non-empty compact
subsets of Q (a quasi-metric is like a metric without the symmetry axiom):

ρ(A,B) = max
b∈B

d(b, A).

Observe that ρ(A,B) = 0 ⇐⇒ B ⊆ A, and ρ(A,B) is small if B is contained in a small
neighborhood of A. B is semicomputable iff for finite sets A and rational numbers r > 0, the
inequality ρ(A,B) < r is semidecidable. Note that dH(A,B) = max(ρ(A,B), ρ(B,A)).

The space of self-homeomorphisms of Q is a computable Polish space, i.e. it can be endowed with
a computable complete metric D (the proof of the classical result that it is a Polish space is easily
effective [vM01]). We can assume that D(f, g) ≥ d(f, g) for functions f, g, replacing D by max(D, d)
if necessary. As D is computable, given a computable homeomorphism f and ε > 0, one can
compute ϕ(f, ε) such that if g is a homeomorphism such that d(f, g) < ϕ(f, ε), then D(f, g) < ε
(strictly speaking, ϕ(f, ε) is not a function of f but of the representation of f , but we abuse the
notation for simplicity).

We assume that (X,A) ⊆ Q is a computable pair having computable witnesses and we build a
homeomorphism f : Q→ Q such that (f(X), f(A)) is semicomputable but f(X) is not computable.
The idea is to encode a non-computable c.e. set in f(X).

The next result is central in our construction: it enables, at any stage of the algorithm, to switch
from the current copy h(X) of X to a copy g1(X) which is almost contained in h(X) but is far
away in the Hausdorff metric. In all the proof, functions from Q to Q are always homeomorphisms.

Lemma B.1. Given g0 : Q → Q and ε > 0, one can compute ε′ > 0 such that for every h ∈
BD(g0, ε

′), there exists g1 satisfying:

• D(g0, g1) < ε/2,

• dH(g0(X), g1(X)) > 2ε′,

• ρ(h(X), g1(X)) is as small as we want.

Proof. Compute α such that for all h : Q→ Q,

If D(h, g0) < α and D(g, 1) < α, then D(h ◦ g, g0) < ε/2. (4)

Compute β, an α-witness for X. Using the modulus of uniform continuity of g−10 , compute ε′ ≤ α
such that for all non-empty compact sets Y,Z ⊆ Q,

If dH(Y,Z) > β, then dH(g0(Y ), g0(Z)) > 3ε′. (5)

Let h ∈ BD(g0, ε
′). As β is an α-witness, there exists g ∈ BD(1, α) such that dH(X, g(X)) > β

and ρ(X, g(X)) is arbitrary small. Let g1 = h◦g. One has D(g1, g0) < ε/2 by choice of α, i.e. using
(4) and ρ(h(X), g1(X)) is arbitrarily small. One has

dH(g0(X), g1(X)) ≥ dH(g0(X), g0 ◦ g(X))− dH(g0 ◦ g(X), h ◦ g(X))

> 3ε′ −D(g0, h) > 2ε′ by (5).

Claim 2. Assume that g0, g1, ε
′ satisfy the conditions in Lemma B.1. For all g : Q→ Q,
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• If g ∈ BD(g0, ε
′), then dH(g0(X), g(X)) < ε′,

• If g ∈ BD(g1, ε
′), then dH(g0(X), g(X)) > ε′.

Proof of the claim. The first item is straightforward:

dH(g0(X), g(X)) ≤ d(g0, g) ≤ D(g0, g).

The second item holds because

dH(g0(X), g(X)) ≥ dH(g0(X), g1(X))− dH(g1(X), g(X))

> 2ε′ −D(g1, g) > ε′.

For g0 : Q→ Q and ε > 0, let ε′(g0, ε) be provided by Lemma B.1 applied to g0 and ε.

Construction. We are going to define a homeomorphism f as follows. We define a sequence
of balls Bn = BD(fn, εn) such that

• εn < 2−n,

• Bn+1 ⊆ Bn.

It implies that (fn)n∈N is a D-Cauchy sequence, f is then defined as the limit of fn. The se-
quence (Bn)n∈N will not be computable (otherwise f and f(X) would be computable), but will be
obtained as a limit.

For each s ∈ N, we define a computable sequence Bn[s] = BD(fn[s], εn[s]) satisfying the same
properties as (Bn)n∈N, i.e.

• εn[s] < 2−n,

• Bn+1[s] ⊆ Bn[s],

and such that for each n, Bn[s] does not change for sufficiently large s. Bn is then defined as the
limit value of Bn[s]. For each s, we define f [s] as the limit of fn[s]. The sequence (f [s])s∈N is
computable and f is the limit of f [s].

In order to define fn[s] and εs[s] for all n, s, we fix a non-computable c.e. set E such as the
halting set, together with a computable enumeration n0, n1, . . . of E without repetition. For each s,
the sequence (Bn[s + 1])n∈N is obtained from the sequence (Bn[s])n∈N by changing it for n > ns
only. It implies that for each n, Bn[s] does not change for sufficiently large s. In order to make f(X)
non-computable, the idea is that f(X) is close to f [s](X) if and only if only large numbers will
appear in E after stage s, so computing f(X) would enable to compute E.

For s = 0, let fn[0] = f [0] = id for all n, ε0[0] = 1 and inductively εn+1[0] ≤ ε′(id, εn[0]).
For the induction, let s ∈ N and assume that all fn[t] and εn[t] have been defined for t ≤ s.

Let n = ns. Using Lemma B.1, we choose a computable function g1 satisfying:

• D(fn[s], g1) < εn[s]/2,

• dH(fn[s](X), g1(X)) > 2εn+1[s],

• ρ(f [s](X), g1(X)) < 2−s,
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which is possible if εn+1[s] ≤ ε′(fn[s], εn[s]) and D(f [s], fn[s]) < εn+1[s]. As the three inequalities
are semidecidable, we can effectively find g1 by exhaustive search in a dense computable sequence
of self-homeomorphisms of Q.

We define the sequence (Bp[s+ 1])p∈N as follows:

• For p ≤ n, fp[s+ 1] = fp[s] and εp[s+ 1] = εp[s],

• For p = n+ 1, fp[s+ 1] = g1 and εp[s+ 1] = εp[s],

• For p ≥ n+ 1, fp+1[s+ 1] = g1 and εp+1[s+ 1] ≤ ε′(g1, εp[s+ 1]).

Note that f [s+ 1] = g1. Now that the construction is complete, let us check that it satisfies the
sought properties.

Verification.

Claim 3. f(X) is semicomputable.

Proof. As the sequence (f [s])s∈N is computable, the set f [s](X) is computable uniformly in s.
Moreover, by construction one has for every s, ρ(f [s](X), f [s+1](X)) < 2−s. Therefore, for a finite
set A and r > 0,

ρ(A, f(X)) < r ⇐⇒ ∃s, ρ(A, f [s](X)) + 2−s+1 < r

which is semidecidable because f [s](X) is computable uniformly in s.

We now prove that f(X) is not computable. Let Es = {ns, ns+1, . . .}. For all n ≤ minEs, one
has εn+1[s] = εn+1.

Claim 4. The following holds:

• If n < minEs, then dH(f(X), fn+1[s](X)) < εn+1,

• If n = minEs, then dH(f(X), fn+1[s](X)) > εn+1.

Proof of the claim. If n < minEs, then Bn+1[t] = Bn+1[s] for all t ≥ s, so f ∈ Bn+1 = Bn+1[s]. In
other words, D(f, fn+1[s]) < εn+1[s], which implies dH(f(X), fn+1[s](X)) < εn+1[s] = εn+1.

If n = minEs, then let t ≥ s be such that nt = n. One has f ∈ Bn+1 = Bn+1[t + 1]
and fn[t] = fn[s] = fn+1[s], εn+1[t + 1] = εn+1[s] so dH(f(X), fn+1[s](X)) > εn+1[s] by Claim 2
applied to g0 = fn[t], g1 = fn+1[t+ 1], g = f and ε′ = εn+1[t+ 1].

As a result, E is computable relative to f(X), because if n ≤ minEs, then one can decide
whether n ∈ Es by comparing dH(f(X), fn+1[s](X)) with εn+1[s] = εn+1.

Lemma B.2. E is computable if given n, s such that n ≤ minEs, one can decide whether n ∈ Es.

Proof. One can compute minEs by starting with n = 0, deciding whether n ∈ Es and incre-
ment n until n ∈ Es. Therefore, given n, compute s such that n < minEs, and test whether n ∈
{n0, . . . , ns}.
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C Proof of Theorem 4.1

For each i, Xi is an ANR so there exists a neighborhood Ui of Xi and a retraction ri : Ui → Xi.
We can choose ri to have a special property.

Claim 5. There exists a retraction ri : Ui → Xi such that if x belongs to the interior of Xi, then
the only preimage of x by ri is x.

Proof of the claim. Write int(Xi) for the interior of Xi in X. The set Xi \ int(Xi), which is the
topological boundary of Xi in X, is a subcomplex of Xi so it is an ANR. Therefore, there exists a
retraction si from a neighborhood Vi of Xi \ int(Xi) to that set. We then define Ui = Vi ∪ Xi =
Vi ∪ int(Xi) and ri as follows:

ri = si on Vi \ int(Xi),

ri = id on Xi.

Ui is a neighborhood of Xi, ri is well-defined because si coincides with the identity on (Vi\int(Xi))∩
Xi ⊆ Xi \ int(Xi). The two sets Vi \ int(Xi) and Xi are closed subspaces of Ui, so ri is continuous
by Lemma A.1.

Let δ < ε/2 be such that for each i ≤ n, N (Xi, δ) ⊆ Ui and ri is ε/2-close to the identity
on N (Xi, δ) (see Notation A.1). Let f : X → X satisfy f |A = idA and d(f, idX) < δ. Assume
that f is not surjective. There exists i and x ∈ int(Xi) which is not in the image of f .

One has f(Xi) ⊆ N (Xi, δ) ⊆ Ui, so fi := ri ◦ f : Xi → Xi is well-defined. Observe that x is not
in the image of fi, because its only preimage by ri is x, which is not in the image of f , so fi is not
surjective.

Both f and ri are the identity on Ai, so fi is also the identity on Ai. Finally, dXi(fi, idXi) ≤
dXi(ri ◦ f, f) + dXi(f, idXi) ≤ ε/2 + ε/2 = ε. Therefore, fi contradicts the ε-surjection property
for (Xi, Ai). It implies that f is surjective. As a result, (X,A) has the δ-surjection property.

D Proof of Theorem 4.2

We start by the next result.
If X,Y are two spaces with distinguished points x0 ∈ X and y0 ∈ Y , their wedge sum X ∨ Y

is the space obtained by attaching X and Y at x0 and y0 and identifying these two points. More
formally X ∨ Y is the quotient of the disjoint union X t Y by the equivalence relation x0 ∼ y0.

Proposition D.1. Let L0 and L1 be two compact ANRs, l0 ∈ L0, l1 ∈ L1 and I = [0, 1] the line
segment. Let (L,N) be a pair such that L = L0 ∨ I ∨ L1 (identifying l0 with 0 and l1 with 1)
and N ⊆ L1. The cone pair Cone(L,N) does not have the surjection property.

Proof. We include Figure 8 to help understanding the proof. Let (K,M) = Cone(L,N), i.e. K =
Cone(L) and M = L ∪ Cone(N). Let H = Cone(L0) ∨ I ∨ Cone(L1). We first show that H is an
AR. Cone(L0) and Cone(L1) can be embedded in Q0 := [0, 1/3] × Q and Q1 := [2/3, 1] × Q so
that l0, l1 are sent to (1/3, 0, 0, . . .) and (2/3, 0, 0, . . .), and I is embedded as [1/3, 2/3]×{(0, 0, . . .)}.
We obtain an embedding of H in H ′ := Q0 ∪ I ∪ Q1. Each Cone(Li) is an AR, so it is a retract
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(a) (L,N)

L0 L1
I

(b) (K,M) = Cone(L,N)

L0 L1
I

(c) (H,M)

L0 L1
I

(d) (G,M)

Figure 8: Illustration of the proof of Proposition D.1. In a pair (X,A), X is yellow and A is black.

of Qi, hence H is a retract of H ′. Finally, it is not hard to see that H ′ is an AR, hence H is an
AR.

One can see M as a subset of L0 ∪ I ∪ Cone(L1) ⊆ H (this is the place where we use the
assumption that N is contained in L1). The function idM : M → H has a continuous extension F :
K → H becauseH is an AR. LetG be the quotient ofH obtained by identifying the tips of Cone(L0)
and Cone(L1). G is a proper subset of K. Hence by composing F with the quotient map, we get a
non-surjective continuous extension of idM to a function from K to itself. Therefore, (K,M) does
not have the surjection property.

Proof of Theorem 4.2. 1.⇒ 2. Suppose that some edge e = (v, w) is not in a cycle or a path from N
to N . Let L′ be the graph obtained by removing e (but still containing its endpoints v, w). As e
is not in a cycle of L, v and w belong to two different connected components of L′. As e is not in
a path from N to N , one of these two components is disjoint from N . Let C be that connected
component and D be the rest of L′. L′ is the disjoint union of C and D. Note that L = C ∨ I ∨D
so we can apply Proposition D.1 to L0 = C, L1 = D and I = e. It implies that Cone(L,N) does
not have the surjection property.

2.⇒ 1. If every edge belongs to a cycle or a path from N to N , then L is a union of circles, line
segments with endpoints in N and isolated points. The cone of each pair (S1, ∅), (B1,S0) and (B0, ∅)
has the surjection property, so Cone(L,N) has the surjection property by Theorem 4.1 (for cone
pairs, the surjection property and the ε-surjection property are equivalent by Corollary 3.1).
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