560 research outputs found

    Undecidable First-Order Theories of Affine Geometries

    Get PDF
    Tarski initiated a logic-based approach to formal geometry that studies first-order structures with a ternary betweenness relation (\beta) and a quaternary equidistance relation (\equiv). Tarski established, inter alia, that the first-order (FO) theory of (R^2,\beta,\equiv) is decidable. Aiello and van Benthem (2002) conjectured that the FO-theory of expansions of (R^2,\beta) with unary predicates is decidable. We refute this conjecture by showing that for all n>1, the FO-theory of monadic expansions of (R^2,\beta) is \Pi^1_1-hard and therefore not even arithmetical. We also define a natural and comprehensive class C of geometric structures (T,\beta), where T is a subset of R^2, and show that for each structure (T,\beta) in C, the FO-theory of the class of monadic expansions of (T,\beta) is undecidable. We then consider classes of expansions of structures (T,\beta) with restricted unary predicates, for example finite predicates, and establish a variety of related undecidability results. In addition to decidability questions, we briefly study the expressivity of universal MSO and weak universal MSO over expansions of (R^n,\beta). While the logics are incomparable in general, over expansions of (R^n,\beta), formulae of weak universal MSO translate into equivalent formulae of universal MSO. This is an extended version of a publication in the proceedings of the 21st EACSL Annual Conferences on Computer Science Logic (CSL 2012).Comment: 21 pages, 3 figure

    06341 Abstracts Collection -- Computational Structures for Modelling Space, Time and Causality

    Get PDF
    From 20.08.06 to 25.08.06, the Dagstuhl Seminar 06341 ``Computational Structures for Modelling Space, Time and Causality\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Stepping Beyond the Newtonian Paradigm in Biology. Towards an Integrable Model of Life: Accelerating Discovery in the Biological Foundations of Science

    Get PDF
    The INBIOSA project brings together a group of experts across many disciplines who believe that science requires a revolutionary transformative step in order to address many of the vexing challenges presented by the world. It is INBIOSA’s purpose to enable the focused collaboration of an interdisciplinary community of original thinkers. This paper sets out the case for support for this effort. The focus of the transformative research program proposal is biology-centric. We admit that biology to date has been more fact-oriented and less theoretical than physics. However, the key leverageable idea is that careful extension of the science of living systems can be more effectively applied to some of our most vexing modern problems than the prevailing scheme, derived from abstractions in physics. While these have some universal application and demonstrate computational advantages, they are not theoretically mandated for the living. A new set of mathematical abstractions derived from biology can now be similarly extended. This is made possible by leveraging new formal tools to understand abstraction and enable computability. [The latter has a much expanded meaning in our context from the one known and used in computer science and biology today, that is "by rote algorithmic means", since it is not known if a living system is computable in this sense (Mossio et al., 2009).] Two major challenges constitute the effort. The first challenge is to design an original general system of abstractions within the biological domain. The initial issue is descriptive leading to the explanatory. There has not yet been a serious formal examination of the abstractions of the biological domain. What is used today is an amalgam; much is inherited from physics (via the bridging abstractions of chemistry) and there are many new abstractions from advances in mathematics (incentivized by the need for more capable computational analyses). Interspersed are abstractions, concepts and underlying assumptions “native” to biology and distinct from the mechanical language of physics and computation as we know them. A pressing agenda should be to single out the most concrete and at the same time the most fundamental process-units in biology and to recruit them into the descriptive domain. Therefore, the first challenge is to build a coherent formal system of abstractions and operations that is truly native to living systems. Nothing will be thrown away, but many common methods will be philosophically recast, just as in physics relativity subsumed and reinterpreted Newtonian mechanics. This step is required because we need a comprehensible, formal system to apply in many domains. Emphasis should be placed on the distinction between multi-perspective analysis and synthesis and on what could be the basic terms or tools needed. The second challenge is relatively simple: the actual application of this set of biology-centric ways and means to cross-disciplinary problems. In its early stages, this will seem to be a “new science”. This White Paper sets out the case of continuing support of Information and Communication Technology (ICT) for transformative research in biology and information processing centered on paradigm changes in the epistemological, ontological, mathematical and computational bases of the science of living systems. Today, curiously, living systems cannot be said to be anything more than dissipative structures organized internally by genetic information. There is not anything substantially different from abiotic systems other than the empirical nature of their robustness. We believe that there are other new and unique properties and patterns comprehensible at this bio-logical level. The report lays out a fundamental set of approaches to articulate these properties and patterns, and is composed as follows. Sections 1 through 4 (preamble, introduction, motivation and major biomathematical problems) are incipient. Section 5 describes the issues affecting Integral Biomathics and Section 6 -- the aspects of the Grand Challenge we face with this project. Section 7 contemplates the effort to formalize a General Theory of Living Systems (GTLS) from what we have today. The goal is to have a formal system, equivalent to that which exists in the physics community. Here we define how to perceive the role of time in biology. Section 8 describes the initial efforts to apply this general theory of living systems in many domains, with special emphasis on crossdisciplinary problems and multiple domains spanning both “hard” and “soft” sciences. The expected result is a coherent collection of integrated mathematical techniques. Section 9 discusses the first two test cases, project proposals, of our approach. They are designed to demonstrate the ability of our approach to address “wicked problems” which span across physics, chemistry, biology, societies and societal dynamics. The solutions require integrated measurable results at multiple levels known as “grand challenges” to existing methods. Finally, Section 10 adheres to an appeal for action, advocating the necessity for further long-term support of the INBIOSA program. The report is concluded with preliminary non-exclusive list of challenging research themes to address, as well as required administrative actions. The efforts described in the ten sections of this White Paper will proceed concurrently. Collectively, they describe a program that can be managed and measured as it progresses

    Mathematics, quantifiers, connectives, multiple models

    Get PDF
    Quantic numbers variate as multiples of a fundamental quantity as the spin, that is always an entire multiple of 1/2

    Synthetic Philosophy of Mathematics and Natural Sciences Conceptual analyses from a Grothendieckian Perspective

    Get PDF
    ISBN-13: 978-0692593974. Giuseppe Longo. Synthetic Philosophy of Mathematics and Natural Sciences, Conceptual analyses from a Grothendieckian Perspective, Reflections on “Synthetic Philosophy of Contemporary Mathematics” by F. Zalamea, Urbanomic (UK) and Sequence Press (USA), 2012. Invited Paper, in Speculations: Journal of Speculative Realism, Published: 12/12/2015, followed by an answer by F. Zalamea.International audienceZalamea’s book is as original as it is belated. It is indeed surprising, if we give it a moment’s thought, just how greatly behind schedule philosophical reflection on contemporary mathematics lags, especially considering the momentous changes that took place in the second half of the twentieth century. Zalamea compares this situation with that of the philosophy of physics: he mentions D’Espagnat’s work on quantum mechanics, but we could add several others who, in the last few decades, have elaborated an extremely timely philosophy of contemporary physics (see for example Bitbol 2000; Bitbol et al. 2009). As was the case in biology, philosophy – since Kant’s crucial observations in the Critique of Judgment, at least – has often “run ahead” of life sciences, exploring and opening up a space for reflections that are not derived from or integrated with its contemporary scientific practice. Some of these reflections are still very much auspicious today. And indeed, some philosophers today are saying something truly new about biology..

    Knowability as continuity: a topological account of informational dependence

    Full text link
    We study knowable informational dependence between empirical questions, modeled as continuous functional dependence between variables in a topological setting. We also investigate epistemic independence in topological terms and show that it is compatible with functional (but non-continuous) dependence. We then proceed to study a stronger notion of knowability based on uniformly continuous dependence. On the technical logical side, we determine the complete logics of languages that combine general functional dependence, continuous dependence, and uniformly continuous dependence.Comment: 65 page
    • 

    corecore