356 research outputs found

    Digital Image

    Full text link
    This paper considers the ontological significance of invisibility in relation to the question ‘what is a digital image?’ Its argument in a nutshell is that the emphasis on visibility comes at the expense of latency and is symptomatic of the style of thinking that dominated Western philosophy since Plato. This privileging of visible content necessarily binds images to linguistic (semiotic and structuralist) paradigms of interpretation which promote representation, subjectivity, identity and negation over multiplicity, indeterminacy and affect. Photography is the case in point because until recently critical approaches to photography had one thing in common: they all shared in the implicit and incontrovertible understanding that photographs are a medium that must be approached visually; they took it as a given that photographs are there to be looked at and they all agreed that it is only through the practices of spectatorship that the secrets of the image can be unlocked. Whatever subsequent interpretations followed, the priori- ty of vision in relation to the image remained unperturbed. This undisputed belief in the visibility of the image has such a strong grasp on theory that it imperceptibly bonded together otherwise dissimilar and sometimes contradictory methodol- ogies, preventing them from noticing that which is the most unexplained about images: the precedence of looking itself. This self-evident truth of visibility casts a long shadow on im- age theory because it blocks the possibility of inquiring after everything that is invisible, latent and hidden

    East-West Paths to Unconventional Computing

    Get PDF
    Unconventional computing is about breaking boundaries in thinking, acting and computing. Typical topics of this non-typical field include, but are not limited to physics of computation, non-classical logics, new complexity measures, novel hardware, mechanical, chemical and quantum computing. Unconventional computing encourages a new style of thinking while practical applications are obtained from uncovering and exploiting principles and mechanisms of information processing in and functional properties of, physical, chemical and living systems; in particular, efficient algorithms are developed, (almost) optimal architectures are designed and working prototypes of future computing devices are manufactured. This article includes idiosyncratic accounts of ‘unconventional computing’ scientists reflecting on their personal experiences, what attracted them to the field, their inspirations and discoveries.info:eu-repo/semantics/publishedVersio

    Nichtlineare Merkmalsselektion mit der generalisierten Transinformation

    Get PDF
    In the context of information theory, the term Mutual Information has first been formulated by Claude Elwood Shannon. Information theory is the consistent mathematical description of technical communication systems. To this day, it is the basis of numerous applications in modern communications engineering and yet became indispensable in this field. This work is concerned with the development of a concept for nonlinear feature selection from scalar, multivariate data on the basis of the mutual information. From the viewpoint of modelling, the successful construction of a realistic model depends highly on the quality of the employed data. In the ideal case, high quality data simply consists of the relevant features for deriving the model. In this context, it is important to possess a suitable method for measuring the degree of the, mostly nonlinear, dependencies between input- and output variables. By means of such a measure, the relevant features could be specifically selected. During the course of this work, it will become evident that the mutual information is a valuable and feasible measure for this task and hence the method of choice for practical applications. Basically and without the claim of being exhaustive, there are two possible constellations that recommend the application of feature selection. On the one hand, feature selection plays an important role, if the computability of a derived system model cannot be guaranteed, due to a multitude of available features. On the other hand, the existence of very few data points with a significant number of features also recommends the employment of feature selection. The latter constellation is closely related to the so called "Curse of Dimensionality". The actual statement behind this is the necessity to reduce the dimensionality to obtain an adequate coverage of the data space. In other word, it is important to reduce the dimensionality of the data, since the coverage of the data space exponentially decreases, for a constant number of data points, with the dimensionality of the available data. In the context of mapping between input- and output space, this goal is ideally reached by selecting only the relevant features from the available data set. The basic idea for this work has its origin in the rather practical field of automotive engineering. It was motivated by the goals of a complex research project in which the nonlinear, dynamic dependencies among a multitude of sensor signals should be identified. The final goal of such activities was to derive so called virtual sensors from identified dependencies among the installed automotive sensors. This enables the real-time computability of the required variable without the expenses of additional hardware. The prospect of doing without additional computing hardware is a strong motive force in particular in automotive engineering. In this context, the major problem was to find a feasible method to capture the linear- as well as the nonlinear dependencies. As mentioned before, the goal of this work is the development of a flexibly applicable system for nonlinear feature selection. The important point here is to guarantee the practicable computability of the developed method even for high dimensional data spaces, which are rather realistic in technical environments. The employed measure for the feature selection process is based on the sophisticated concept of mutual information. The property of the mutual information, regarding its high sensitivity and specificity to linear- and nonlinear statistical dependencies, makes it the method of choice for the development of a highly flexible, nonlinear feature selection framework. In addition to the mere selection of relevant features, the developed framework is also applicable for the nonlinear analysis of the temporal influences of the selected features. Hence, a subsequent dynamic modelling can be performed more efficiently, since the proposed feature selection algorithm additionally provides information about the temporal dependencies between input- and output variables. In contrast to feature extraction techniques, the developed feature selection algorithm in this work has another considerable advantage. In the case of cost intensive measurements, the variables with the highest information content can be selected in a prior feasibility study. Hence, the developed method can also be employed to avoid redundance in the acquired data and thus prevent for additional costs.Der Begriff der Transinformation wurde erstmals von Claude Elwood Shannon im Kontext der Informationstheorie, einer einheitlichen mathematischen Beschreibung technischer Kommunikationssysteme, geprĂ€gt. Die vorliegenden Arbeit befaßt sich vor diesem Hintergrund mit der Entwicklung einer in der Praxis anwendbaren Methodik zur nichtlinearen Merkmalselektion quantitativer, multivariater Daten auf der Basis des bereits erwĂ€hnten informationstheoretischen Ansatzes der Transinformation. Der Erfolg beim Übergang von realen Meßdaten zu einer geeigneten Modellbeschreibung wird maßgeblich von der QualitĂ€t der verwendeten Datenmengen bestimmt. Eine qualitativ hochwertige Datenmenge besteht im Idealfall ausschließlich aus den fĂŒr eine erfolgreiche Modellformulierung relevanten Daten. In diesem Kontext stellt sich daher sofort die Frage nach der Existenz eines geeigneten Maßes, um den Grad des, im Allgemeinen nichtlinearen, funktionalen Zusammenhangs zwischen Ein- und Ausgaben quantitativ korrekt erfassen zu können. Mit Hilfe einer solchen GrĂ¶ĂŸe können die relevanten Merkmale gezielt ausgewĂ€hlt und somit von den redundanten Merkmalen getrennt werden. Im Verlaufe dieser Arbeit wird deutlich werden, daß die eingangs erwĂ€hnte Transinformation ein hierfĂŒr geeignetes Maß darstellt und im praktischen Einsatz bestens bestehen kann. Die ursprĂŒngliche Motivation zur Erstellung der vorliegenden Arbeit hat ihren durchaus praktischen Hintergrund in der Automobiltechnik. Sie entstand im Rahmen eines komplexen Forschungsprojektes zur Ermittlung von nichtlinearen, dynamischen ZusammenhĂ€ngen zwischen einer Vielzahl von meßtechnisch ermittelten Sensorsignalen. Das Ziel dieser AktivitĂ€ten war, durch die Identifikation von nichtlinearen, dynamischen ZusammenhĂ€ngen zwischen den im Automobil verbauten Sensoren, sog. virtuelle Sensoren abzuleiten. Die konkrete Aufgabenstellung bestand nun darin, die Bestimmung einer zentralen MotorgrĂ¶ĂŸe so effizient zu gestalten, daß diese ohne zusĂ€tzliche Hardware unter harten Echtzeitvorgaben berechenbar ist. Auf den zusĂ€tzlichen Einsatz von Hardware verzichten zu können und mit der bereits vorhandenen Rechenleistung auszukommen, stellt aufgrund des resultierenden, enormen Kostenaufwandes insbesondere in der Automobiltechnik eine unglaublich starke Motivation dar. In diesem Zusammenhang trat immer wieder die große Problematik zutage, eine praktisch berechenbare Methode zu finden, die sowohl lineare- als auch nichtlineare ZusammenhĂ€nge zuverlĂ€ssig quantitativ erfassen kann. Im Verlauf der Arbeit werden nun unterschiedliche Selektionsstrategien mit der Transinformation kombiniert und deren Eigenschaften miteinander verglichen. In diesem Zusammenhang erweist sich die Kombination von Transinformation mit der sogenannten Forward Selection Strategie als besonders interessant. Es wird gezeigt, daß diese Kombination die praktische Berechenbarkeit fĂŒr hochdimensionale DatenrĂ€ume, im Vergleich zu anderen Vorgehensweisen, tatsĂ€chlich erst ermöglicht. Im Anschluß daran wird die Konvergenz dieses neuen Verfahrens zur Merkmalselektion bewiesen. Wir werden weiterhin sehen, daß die erzielten Ergebnisse bemerkenswert nahe an der optimalen Lösung liegen und im Vergleich mit einer alternativen Selektionsstrategie deutlich ĂŒberlegen sind. Parallel zur eigentlichen Selektion der relevanten Merkmale ist es mit der in dieser Arbeit entwickelten Methode nun auch problemlos möglich, eine nichtlineare Analyse der zeitlichen AbhĂ€ngigkeiten von ausgewĂ€hlten Merkmalen durchzufĂŒhren. Eine anschließende dynamische Modellierung kann somit wesentlich effizienter durchgefĂŒhrt werden, da die entwickelte Merkmalselektion zusĂ€tzliche Information hinsichtlich des dynamischen Zusammenhangs von Eingangs- und Ausgangsdaten liefert. Mit der in dieser Arbeit entwickelten Methode ist nun letztendlich gelungen was vorher nicht möglich war. Das quantitative Erfassen der nichtlinearen ZusammenhĂ€nge zwischen dedizierten Sensorsignalen, um diese in eine effiziente Merkmalselektion einfließen zu lassen. Im Gegensatz zur Merkmalsextraktion, hat die in diese Arbeit entwickelte Methode der nichtlinearen Merkmalselektion einen weiteren entscheidenden Vorteil. Insbesondere bei sehr kostenintensiven Messungen können diejenigen Variablen ausgewĂ€hlt werden, die hinsichtlich der Abbildung auf eine AusgangsgrĂ¶ĂŸe den höchsten Informationsgehalt tragen. Neben dem rein technischen Aspekt, die Selektionsentscheidung direkt auf den Informationsgehalt der verfĂŒgbaren Daten zu stĂŒtzen, kann die entwickelte Methode ebenfalls im Vorfeld kostenrelevanter Entscheidungen herangezogen werden, um Redundanz und die damit verbundenen höheren Kosten gezielt zu vermeiden

    Overlapping Multi-hop Clustering for Wireless Sensor Networks

    Full text link
    Clustering is a standard approach for achieving efficient and scalable performance in wireless sensor networks. Traditionally, clustering algorithms aim at generating a number of disjoint clusters that satisfy some criteria. In this paper, we formulate a novel clustering problem that aims at generating overlapping multi-hop clusters. Overlapping clusters are useful in many sensor network applications, including inter-cluster routing, node localization, and time synchronization protocols. We also propose a randomized, distributed multi-hop clustering algorithm (KOCA) for solving the overlapping clustering problem. KOCA aims at generating connected overlapping clusters that cover the entire sensor network with a specific average overlapping degree. Through analysis and simulation experiments we show how to select the different values of the parameters to achieve the clustering process objectives. Moreover, the results show that KOCA produces approximately equal-sized clusters, which allows distributing the load evenly over different clusters. In addition, KOCA is scalable; the clustering formation terminates in a constant time regardless of the network size
    • 

    corecore