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Abstract. These essays tackle standard problems in mathematical economics,
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The first two and the fourth and fifth essays were written in an intensive period
of about four or five weeks, this Summer; the last one, conceived last Autumn and
a first draft presented at the Popper Centennial Conference held at NUI Galway in
September 2002, was completed this Spring. A first draft of the third essay was
completed in the late Spring of last year. The revised version was completed in the
past few days. These essays were not written with the intention of collecting them
as one unit, within the same covers. Departmental exigencies and logistical priorities
and rules, have forced me to adopt this format. Perhaps they are better presented
this way, in any case, although this is not the format I would have chosen. I would
have preferred to have them released as individual discussion papers. However, there
is, of course, an underlying theme that unites them. On the other hand, I have not
attempted to revise any of them to eliminate minor duplications or insert coherent
cross-references and other stylisitc devices that mark a well collated and collected set
of essays

The unifying, underlying, theme in them is the recursion theoretic and construc-
tive analytic backdrop. Close, now, to almost forty years ago, I was taught, by example
and patience, by Professor Ryoichiro Kawai, the meaning of proof in a mathematical
setting. It was during special lectures on Linear Algebra, during my undergraduate
days at Kyoto University, in 1966. As an undergraduate in the Faculty of Engineer-
ing, but specialising in Precision Mechanics, I am not sure whether by accident or
predilection, I ended up by choosing most of the applied mathematics options. The
mathematical training from that background was, mostly, about methods of solutions
rather than proof of propositions in an axiomatic framework. However, Professor
Kawai, voluntarily, gave me some special lectures and tuition in the more ‘rigorous’
aspects of pure mathematics and some of the precepts I learned from him must have
remained etched in my memory cells.

After graduation at Kyoto I entered the University of Lund to continue post-
graduate studies in economics and was fortunate to come under the gentle and wise
influence of Professor Björn Thalberg. The kind of macrodynamics he was working
on at that time, stabilisation policies in the Phillips-Goodwin tradition that had even
been popularised in Roy Allen’s textbooks of the time, emphasised the kind of applied
mathematics I had learned at Kyoto. After obtaining my Master’s degree in economics
at Lund, in January 1973, I arrived at Cambridge in October of that year to work
under Richard Goodwin for a Ph.D1. The wise and enlightened way he supervised me
emphasised the same applied mathematics tradition in which I had been trained at
Kyoto and which Thalberg reinforced in Lund.

During my first months in Cambridge I attended some of Frank Hahn’s advanced
lectures and as part of the background tried to read whatever I could of ‘Arrow-Hahn’.

1My ‘official’ supervisor for the Michaelmas and Lent terms of 1973 was Nicky Kaldor, but I
betgan seeing Richard Goodwin almost from the outset. Björn Thalberg, during the year he had
himself spent in Cambridge, at the DAE, had considered himself a pupil of Goodwin and had, in fact,
written his own doctoral dissertation on A Trade Cycle Analysis: Extensions of the Goodwin Model.
Thus my journey and odyssey in Cambridge was destined to be Goodwinian rather that Kaldorian!
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I almost did not get beyond p.ix of the Preface to that book because I encountered
the following phrase which stumped me quite completely: ‘...our methods of proof are
in a number of instances quite different [from those in Debreu’s Theory of Value]’. I
did not have the slightest idea that there were ‘different methods of proof’ and had
never been taught that such things were relevant in economics. In complete innocence
I bought a copy of Gaisi Takeuti’s book on ‘Proof Theory’ to try to educate myself on
such things but, of course, got nowhere, at that time.

In 1974 Axel Leijonhufvud came to Cambridge to give the Marshall Lectures and
opened my Cambridge blinkered eyes to the fascinating world of Herbert Simon’s
behavioural economics. It was not that Leijonhufvud’s Marshall Lecture claimed to
be in the tradition of Simon’s kind of behavioural economics, but the underlying
theme of adaptive economic behaviour and the few allusions to Simon’s work during
the delivered lecture2 was sufficient to send a Goodwin-inspired student in search of
the relevant references. The nonlinear dynamics I was learning at Goodwin’s feet
seemed entirely appropriate for the adaptive behaviour underlying the Marshallian
themes in Leijonhufvud’s Marshall Lecture. The behavioural economics that Simon
had broached and developed, and the problem-solving context in which such economics
was embedded, opened my eyes to a new world of mathematical economics and applied
mathematics.

These new visions were reinforced when, immediately after my student years at
Cambridge, I was fortunate to obtain a research post in the Department of Computing
and Control at Imperial College where I met and worked with Berc Rustem. He
educated me in a different kind of mathematical economics, that which emphasised
computation, computational complexity, control and filtering. Although we were, for
all official purposes, colleagues, in actual fact it was more a teacher-pupil relation
where I was, of course, the pupil.

These were the origins of the journeys that took me, first to the philosophy of
mathematics, then to the foundations of mathematics and metamathematics and,
in between, to constructive, computable and non-standard mathematics and their
relevances in economic theory. Thirty years have elapsed since that encounter with
the phrase in ‘Arrow-Hahn’. I feel, now, finally, I am ready to put down in writing the
ruminations and reflections of three decades of work and, eventually, to try to forge
an alternative Mathematical Economics, one that is more faithful to the classical
quantitative traditions of a subject that began as ‘Political Arithmetic’. But the mind
is not as agile as it was some years ago and the body is even less robust and I am not
sure I have sufficient stamina left to complete the task. Hence the intensive activities
of the past few weeks and months to try to put together some of the ideas in a coherent
and unified format.

These loosely collected essays are a first step in a path which, I hope, will see
some of the final aims realised. The forced format of a loosely collected set of essays

2I did not read the manuscript of that lecture till about a decade and a half later, in 1987, when
entirely due to Leijonhufvud’s efforts I was invited to be a Visiting Professor at UCLA.
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has, on the other hand, forced me to rethink and reflect on my work in the three areas
that are indicated in the somewhat contrived title for this collection. As a result, I
expect, this will be the ‘first edition’ of an attempt, with hindsight, to collect, collate
and present my work in the general areas of computable economics, methodology and
the philosophy of science, in a more organised way, in the near future.
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CHAPTER 1

Analogue Computing — Reviving the Icarus
Tradition in Economic Dynamics

1. Introduction

"The [hydraulic] mechanism just described is the physical analogue
of the ideal economic market. The elements which contribute to the
determination of prices are represented each with its appropriate rôle
and open to the scrutiny of the eye. We are thus enabled not only
to obtain a clear and analytical picture of the interdependence of
the many elements in the causation of prices, but also to employ the
mechanism as an instrument of investigation and by it, study some
complicated variations which could scarcely be successfully followed
without its aid."

([7], p.44, italics in original)
"Economic phenomena may often be found to be representable

by analogous electrical circuits. Electrical analogue computing tech-
niques may therefore have broad applications in the study of economic
problems. This paper .... presents a brief survey of suitable problems
iin theoretical ecoonomics, and discusses electrical representations in
terms of present and imminent developments in analogue computing
techniques."

( [28],p.557, italics added)
Analogue computing techniques in economics had the proverbial still birth. There

was a flurry of activities in the late 40s and early 50s, at the hands of A.W.H.
(Bill) Phillips, Richard .M.Goodwin, Herbert.A. Simon, Robert H.Strotz, Otto Smith,
Arnold Tustin, Roy Allen, Oscar Lange and a few others. Phillips built his famous
Moniac1 hydraulic national income machine at the end of the 40s and it was used at
many Universities - and even at the Central Bank of Guatemala - for teaching purposes
and even as late as the early 70s Richard Goodwin, at Cambridge University, taught
us elementary principles of coupled market dynamics using such a machine. Strotz and

1I have not succeeded in finding out whether this word is an acronym for something or whether
it was chosen to rhyme ENIAC (Electronic Numerical Integrator and Computer), itself a name
linking the embryonic digital computer with the existing functions of analogue computing devices of
the time.

5



his associates, at Northwestern University, built electro-analogue machines to study
inventory dynamics and nonlinear business cycle theories of the Hicks-Goodwin va-
rieties. Otto Smith and R.M. Saunders, at the University of California at Berkeley,
built an electro-analogue machine to study and simulate a Kalecki-type business cy-
cle model. Roy Allen’s successful textbooks on Macroeconomics and Mathematical
Economics of the 50s - extending into the late 60s - contained pedagogical circuit
devices modelling business cycle theories (cf:[1] especially chapter 9; and [2], espe-
cially chapter 18). Arnold Tustin’s highly imaginative, but failed textbook attempt to
familiarise economists with the use of servomechanism theory to model economic dy-
namics ([32]) and Oscar Lange’s attractive,elementary, expository book with a similar
purpose ([16]).

My purpose here is not to try to study the causes and consequences of the brief
flurry of activities on analogue computing metaphors and attempts in economic dy-
namics2. I want to focus on a more restricted but also more diffused question: why
is economic dynamics - particularly growth and cycle theories - modelled as continu-
ous time ODEs3 or as Maps, in short as dynamical systems, often nonlinear? In the
former case, how are discretizations, numerical approximations, computations, simu-
lations etc., exercises made consistent with the original continuous time analysis and
results? To make the questions less diffused, I shall narrow the question to the fol-
lowing: given that economic theorists resort to continuous time modelling of dynamic
issues in economics, particularly in macroeconomics but not exclusively so, how best
can one facilitate the computing underpinnings of such models. At a minimum, such
models, if they are to be implemented in a modern digital computer, need to be dis-
cretized effectively and approximated numerically. In the latter case, taking also into
account the constraints imposed by the digital computer’s own internal precision fac-
tors, both software-based and hardware-based. So far as I am aware, there is hardly
any serious discussion of such issues in formal economic theorising, even where simu-
lations are serious tools of analysis and not just number-crunching adventures. I do
not know of a single study, in the context of economic dynamics, of trying to devise
a theory of simulations. Moreover, I think I am correct in stating, even categorically,
that there is not a single study of any continuous time model of economic dynamics,
at any level, where its numerical investigation has gone pari passu with a study of
the numerical method itself as a dynamical system so that a consistency between the
two dynamics is achieved and spurious solution paths are formally and systematically
studied and avoided4.

2At the hands of the ever imaginative Irving Fisher also economic statics, as far back as the early
1890s. One can, with definitive substantiation, also include Jevons, Walras, Edgeworth and Pareto
among these pioneers of the analogue computing metaphor for and in economics. However, historical
priorities and delineation of a narrative history is not the focus of this paper.

3O rdinary D ifferential Equations.
4I am sure there will be isolated exceptions. As always, there is the notable exception of Paul

Samuelson (cf., [24] in particular, pp. 45-6). Also, the fashions of the times that brought chaos
to the forefront, even in economics, did focus on issues of numerical sensitivity in approximations,

6



Serious discussion of these issues, in formal and theoretical ways, requires a simul-
taneous study of dynamical system theory, numerical analysis and recursion theory.
Economic theorists and economic curricula are too busy and overloaded with so much
else that is of ’burning’ importance, particularly of a short-term nature, that it is
too much to expect any immediate reorientation of interests in incorporating such a
puritanical study of dynamical systems and their solutions, simulations and experi-
mentations consistently, by underpinning them in theories of numerical analysis and
recursion theory, simultaneously5. I do not expect, therefore, much progress in this
direction, at least not in the near future, even given the ubiquity of the digital com-
puter as a tool and a concept in economic theory, applied economics and experimental
economics.

Therefore, I aim to capitulate! I shall ask, and try to answer, in this paper, a more
direct question, taking as given the fact that economic practice relies on continuous
time modelling and theorising and this practice is untempered by numerical analytic
and recursion theoretic foundations. The question, therefore, is the following: what
kind of computers can avoid these issues and, hence, take the economic theorist’s
almost reckless need to solve formally unsolvable systems of nonlinear equations - i.e.,
study by simulations - and experiment with them? Clearly, one needs to avoid the use
of the digital computer - an advice that will not be taken seriously even by the most
good-natured and the well-disposed, to put it mildly. But suppose we can role back
that eternal villain, time, and go back to an age when the digital and the analogue
computers were almost on par, say the late 40s, and wonder, counter-factually, whether
it would have been possible for both alternative paradigms to have evolved parallely
Had they done so, what would have been the minimal necessary conditions for the
anlogue devices to have kept pace with the spectacular developments in the use and
dissemination of the digital computer? Obviously, hardware questions would dominate
the answers: the severe difficulties of precision mechanics involved in the construction
of accurate analogue devies contrasted with the developments in electrical and, more
importantly, electronic engineering which were almost decisive in the evental demise
of analogue computing devices. But this is not a complete story. One could envisage a
possible world where the analogue devices were also based on the burgeoing electronic
basics of the basic architecture.

discretizations, the precision arithmetic underpinning the computer and its software and related issues,
particularly because of a defining characteristic of such nonlinear models: sensitive dependence on
initial conditions.

5Recently I received an ironic note from an old friend of mine, Pierre Malgrange, with the
following remark: "By the way, may I take the liberty to [inform] you about the next conference of the
Society for Computational Economics (a society computing everything even what is uncomputable) in
June, 27-29 2002 in Aix en Provence, France, of which I am in charge together with [another of] our
old friend[s]. This famous ’Malgrangian irony’ masks a profound truth: economic computation has
hardly ever paid serious attention to recursion theory, except in so far as computational complexity
theory has played important roles in optiimization and programming models in economics.
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Another part of the story is, of course, the fact that the practical, engineering,
development of the digital computer was preceded by theoretical developments in its
mathematical foundations. Theories of what is and what is not computable by a
digital computer; theories of the complexity of computations by a digital computer;
theories of the architecture of the digital computer; theories of the language of the
digital computer; and so on, often preceded the actual and spectacular engineering
development of the hardware repositories of these theories. Indeed, the mathematics
of the computer, as recursion theory, came into being as a result of debates on the
foundations and philosophy of mathematics, prior to its development as a physically
realized device, at least in its modern versions. Almost none of this happened in the
case of the analogue computer.

However, there has been a resurgence of interest in the mathematical foundations
of the analogue computer. Part of this resurgence has to do with the problem of com-
putation over the reals - the paradigatic case of continuous time computation involved
in the study of dynamical systems Various theories of real computation have been ap-
pearing, but not all of them related to the analogue computer as such. Some of these
theories are about developing a mathematical theory of computation over the reals, of
one sort or another, but not abandoning the paradigm of the digital computer for their
numerical realisations. Keeping in mind the fact that there is a noble, if shrt-lived and
narrow, tradition of analogue computing in economics (as mentioned and referred to
above), my focus in this paper will be on discussing the mathematical foundations of
analogue computing. In other words, suppose the economist insists, even consciously,
of ignoring the mathematics of the digital computer and the numerical anlysis that
is a handmaiden to it, as she has done forever, and simply wants to use a computer,
for whatever purpose, what are the mathematical limitations and implications of such
an attitude? What exactly is computable by an analogue device? How complex are
computations by analogue devices? Indeed, is there a mathematical theory of the ana-
logue computer paralleling the recursion theory of the digital computer and, if there
is such a thing, why and how much should be known to an economist?

To answer these questions in a very general way, within the limiited scope and
space of this paper, I shall structure the discussion in the following way. In the
next section I shall present a few examples of the problems inherent in ignoring the
interaction between dynamical systems, numerical analysis and recursion theory -
simply as a formal stage from which to justify a by-passing of these issues by the
use of an analogue computing device. Then, in §3, I define, formally, the kind of
analogue computing device for which a mathenatical foundation will be sought. In
defining it I shall keep in mind the tradition of economic dynamics and computation
as well as the Turing tradition of recursion theory. The mathematical underpinnings
of the defined device will be investigated, more or less along the lines of classical
recursion theory: computaibility, Church-Turing thesis, Universal Turing Machines
and Universal computations, fix point theory, etc, but, of course, over the reals rather
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than over the integers, rationals or the natural numbers. Some parallels emerge and,
perhaps, there is a glimpse of an emerging unified theory, but much remains to be
done. Finally, in a concluding §4, I suggest that there can, in fact, be an Ariadne’s
Thread, or the wings of Daedalus, guiding the perplexed through the Labyriinth that
is analogue computing, towards an exit where the reckless economist, rather like the
rash Icarus, can feel reasonably free to continue normal practice.

2. Some Numerical and Computable Conundrums

"More specifically, do computer trajectories ’correspond’ to actual
trajectories of the system under study? The answer is sometimes no.
In other words, there is no guarantee that there exists a true trajectory
that stays near a given computer-generated numerical trajectory. ....

Therefore, the use of an ODE solver on a finite-precision com-
puter to approximate a trajectory of a .... dynamical system leads to
a fundamental paradox. .... Under what conditions will the computed
trajectory be close to a true trajectory of the model?"

[25], p.961.

Consider the widely used Verhulst-Pearl model of logisitc growth, one of the
simplest nonlinear differential equations used in economic and population dynamics,
mathematical biology, ecology, etc:

(2.1) Ṅ = rN

µ
1− N

K

¶
, r > 0,K > 0

For a given initial condition of the population variable, N, at time t = 0, say N0,
the solution for (1) is:

(2.2) N(t) =
N0Kert

[K +N0 (ert − 1)]
, −→ K as t −→∞

In this model, usually, N(t) signifies a population level at time to and, therefore,
N0 its level at some base or initial point of reference. Of course, it is understood that
this variable is defined over integer or natural number values. However, neither the per
capita birth rate, r

¡
1− N

K

¢
, nor K, generally known as the carrying capacity of the

environment, at least in population and ecology models, are thus constrained. Hence,
it is natural that continuous time models have been heavily utilised in these contexts.
On the other hand, a naive analogy might suggest that a discrete time equivalence to
the above model is:

(2.3) Nt=1 = rNt

µ
1− Nt

K

¶
, r > 0,K > 0
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By now, particularly after all the hype about chaos, almost all and sundry know
that there is a fundamental qualitative difference between the dynamical behaviour of
(1) and (3). So, if one is to study, for empirical or theoretical reasons, (1) by means
of a digital computer, then a ’proper’ discretisation must, first, be achieved. What,
however, does ’proper’ mean, in this context? At an intuitive level one would expect
that the asymptotic values of the discretized system should be equal, but also that
the solution points of the discretised system should lie on the solution curves of (1).
Consider, for simplicity, the normalized version of (1):

(2.4) Ṅ = N(1−N) = N −N2

The discretisation that appears, on the surface, to suggest the equivalent nonlinear
difference equation to the nonlinear differential equation (1) is:

(2.5) ∆N = Nt+1 −Nt =
¡
Nt −N2

t

¢
∆ht

But, of course, like the naiveté that suggested an analogy between (1) and (3),
there are immense pitfalls in this analogy, too6. Most crucially, (4) has no closed form
solution. In fact it is known that the following discretisation, which has a closed form
solution, is equivalent in the above suggested intuitive senses to (1):

(2.6) Nt+1 −Nt = (Nt −NtNt+1)
¡
eh − 1

¢
Its closed form solution is:

(2.7) Nt =
£
1−

¡
1−N−10

¢
e−th

¤−1
The discrete solutions of (5), ∀h > 0, lie on the logistic curve and the qualitative

behaviour of its asmptotic dynamics are similar to those of the solutions to (1).

On the other hand, the follwoing discretisation also generates solutions of the
logistic curve ∀h < 1 :

(2.8) Nt =
h
1−

¡
1−N−10

¢
(1− h)t

i−1
6I am reminded of the wise warning suggested by my old master, Richard Goodwin, half a

century ago:

Combining the difficulties of difference equations with those of non-linear theory,
we get an animal of a ferocious character and it is wise not to place too much
confidence in our conclusions as to behaviour.

[9], footnote 6, p.319. To this we can add the further difficulties arising from the constraints
imposed by the finite precision arithmetics of the digital computer, should we decide to study and
analyse these equations with such a device.
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But this discretization generates oscillatory solutions ∀h > 1, which are, of course,
spurious as far as the dynamics of the solution of (1) is concerned.

From the above discussion of the extraordinary simple and well-understood dy-
namics of (1) and its discretization we get a handle on a possible general theory in
terms of local bifurcations with respect to the parameter h. I shall not go into this
fascinating and immensely valuable theory, which has only recently gathered consid-
erable theoretical momentum. I refer the that eternally vigilant mythical ceature, the
interested reader, to the very readable items (cf. [12], [14] and [29]).

Quite apart from allof the above difficulties, arising from the inerplay between the
continuous time dynamics of intuitively simple nonlinear differential equations and
numerical methods used to approximate them, there is also the added consideration
of the finite precision of the digital computer, to which recourse must be had for a
study of almost all interesting such equations.

If such a simple nonlinear dynamical differential equation as that of Verhulst-
Pearl, routinely used not just in elementary academic exercises but also heavily used
in momentous policy deates and contexts can give rise to such complexities of dis-
cretisations, what about the use of higher dimensional nonlinear differential equations
or more complex nonlinearities? Does any economist take the elementary precaution
of checking for an ’equivalent discretisation’, before feeding readily available numbers
to implement a simulation, investigate a solution or test a conjecture? After years
of fruitless efforts devoted to try to make economists take numerical analysis and re-
cursion theory seriously, at a routine and elementary level, in the study and use of
continous time dynamical systems, and having had absolutely no success whatsoever,
I now suggest a differnet strategy to overcome these infelicities: analogue computation.
By employing this device, one circumvents the need to discretize, the conundrums of
the finite precision of the digital computer, the need to constrain the domain and range
of definition of variables to N,Q or Z; the differential equation is fed directly, ’as is’,
into the analogue device for computaion, simulation, experiment or whatever. Let me
illustrate the clarity and conceptual simplicity involved in this suggestion, anticipating
the notation and some of the discussion in the next section.

3. Motivating a Return to the Icarus Tradition

"We have said that the computable numbers are those whose decimals
are calculable by finite means. ....

We may compare a man in the process of computing a real number
to a machine which is only capable of a finite number of conditions
q1, q2, ..., qR which will be called ’m− configurations’. The machine
is supplied with a ’tape’ (the analogue of paper) running through it,
and divided into sections (called ’squares’) each capable of bearing a
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’symbol’. At any moment there is just one square, say the r − th,
bearing the symbol ζ (r) which is ’in the machine’. We may call this
square the ’scanned square’. The symbol on the scanned square may
be called the ’scanned symbol’. The ’scanned symbol’ is the only one
of which the machine is, so to speak, ’directly aware’. However, by
altering its m− configuration the machine can effectively remember
some of the symbols which it has ’seen’ (scanned) previously. The
possible behaviour of the machine at any moment is determined by the
m−configuration qn and the scanned symbol ζ (r) .This pair qn, ζ(r)
will be called the ’configuration’: thus the configuration determines
the possible behaviour of the machine. In some of the configurations
in which the scanned square is blank .... the machine writes down a
new symbol on the scanned square: in other configurations it erases
the scanned symbol. The machine may also change the square which
is being scanned, but only by shifting it one place to right or left. In
addition to any of these operations the m − configuration may be
changed. Some of the symbols written down will form the sequence
of figures which is the decimal of the real number which is being
composed. The others are just rough notes to ’assist the memory’. It
will only be these rough notes which will be liable to erasure.

It is my contention that these operations include all those which
are used in the computation of a number."

[31], pp.117-8; italics added.

Recall that the caveat ’finite means’ is there as a reminder that Turing’s construc-
tion was attempted as a means to answer the last of the three questions Hilbert had
posed to the mathematical community in Bologna, at his famous 1927 address, to re-
solve, once and for all, Brouwer’s challenges to the Formalists and the Logicists. The
questions regarding Completeness and Consistency had been answered in the negative
by Gödel a few years before Turing applied his considerable skills and fertile brain to
tackling the last remaining problem: that of Decidability (by ’finite means’). This
caveat reflects, also, another Hilbert ’problem’, the 10th of his ’23 Problems’, from
his 1900 Lecture to the International Mathematical Congress in Paris. There, the
question was about what came to be known as the problem of ’effective calculability’
or ’calculation’ or ’computation’ by ’finite means’. Thus the Turing Machine was con-
ceived within the context of debates and paradoxes in the foundations of mathematics
and not directly related to issues of technology or feasible engineering construction.

Furthermore, Turing also imposed constraints on the architecture of his Turing
Machine that reflected psychological and neurological considerations in a manner that
was innovative and, even, audacious. I shall not go further into those issues except
recommend that the interested reader at least peruse the original Turing paper, which
is still eminently readable and even enjoyably so. Thus, the assumption of ’finite state’
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was not only motivated by theoretical debates on the foundations of mathematics but
also by considerations of the neurophysiological structure of the perceptive mechanism
of the brain; that the machine could only scan a finite number of symbols reflected
a similar consideration; that the alphabet or the symbols of the language for the
machine to interpret or read was finite and its syntax determined also reflected the
reality of natural language structures and formations, although there was an element
of idealization in this regard; that the domain of definition was constrained to N, Z
or Q, even though the aim was to define ’the process of computing, by finite means, a
real number ’, reflected the standard practice of going from these domains, via Cauchy
Sequences or Dedekind Cuts to the ’construction’ of R. The only real ’concession’ to
idealization was the assumption that the tape or the medium on which the language
or symbols was written could, potentially, extend ’forever’.

None of this ’excess baggage’ need worry the architect of an analogue computer!
Taking, however, a cue from Alan Turing’s characteristically perceptive thought ex-
periment and intuitions in constructing what the Turing Machine, we can ask the
following question: given that we want to solve ODEs, without going through the
circumlocution of discretisations, numerical analysis, finite precision digital machines
and so on, which intuitively acceptable operations exhaust the process of solving an
ODE? If these operations can be identified to an intuitively acceptable degree, then
the natural next step would be to ask: what kind of machine can implement such
operations and processes? Answers to these two, or related, questions will furnish
us with a concept, a thought experiment, of an analogue machine for the solution
of ODEs. Like in the previous section the best way to get a handle on this ques-
tion and potential answers is to consider the simplest example that can illustrate the
mechanisms and principles that may be involved. Consider the linear, second order,
differential equation that once formed the fountainhead of Keynesian, endogenous,
macroeconomic theories of the cycle:

(3.1) aẍ+ bẋ+ kx = F

Solving, as in elementary textbook practice, for the second order term, ẍ :

(3.2) ẍ =
1

a
F − k

a
x− b

a
ẋ

Integrating (10) gives the value for ẋ to be replaced in the third term in the above
equation; in turn, integrating ẋ, gives the value for x, and the system is ’solved’7. It

7This is the reason why analogue computing is sometimes referred to as resorting to ’bootstrap’
methods. Recall Goodwin’s perceptive observation, in this very Journal, more than half a century
ago:

"A servomechanism regulates its behaviour by its own behaviour in the light of its stated object
and therein lies the secret of its extraordinary finesse in performance. .... It is a matter of cnsiderable
interest that Walras’ conception of and term for dynamical adjustment - tâtonner, to grope, to feel
one’s way - is literally the same as that of modern servo theory." (cf.[10] ; italics added)
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is easy to see that just three kinds of mechanical elements have to be put together in
the form of a machine to implement a solution for (9):

• A machine element that would add terms, denoted by a circle: ;
• An element that could multiply constants or variables by constants, denoted
by an equilateral triangle: ;

• An element that could ’integrate’, in the formal mathematical sense, without
resorting to sums and limiting processes, denoted by a ’funnell-like’ symbol:
;

One adder, three multipliers and two integrators, connected in the following way,
can solve8 (9):

Note several distingushing features of this anlogue computing circuit diagram.
First of all, there are no time-sequencing arrows, except as an indicator of the fi-
nal output, the solution, because all the activity the summing, multiplication and

8One must add rules of interconnection such as each input is connected to at most one output,
feasibility of feedback connections, and so on. But I shall leave this part to be understood intuitively
and refer to some of the discussion in [20], pp9-11; observe, in particular, the important remark that
(ibid, p.10, italics in the original):

"[F]eedback, which may be conceived of as a form of continuous recursion, is
permitted."
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integration, goes on simultaneously. Secondly, no approximations, limit processes of
summation, etc are involved in the integrator; it is a natural physical operation, just
like the operations and displays on the odometer in a motor car or the voltage meter
reading in your home electricity supplier’s measuring unit. Of course, there are the
natural physical constraints imposed by the laws of physics and the limits of precision
mechanics and engineering p something that is common to both digital and analogue
computing devices, so long as physical realizations of mathematical formalisms are
required.

In principle, any ODE can be solved using just these three kinds of machine
elements linked appropriately because, using the formular for integrating by parts,
a need for an element for differentiating products can be dispensed with. However,
these machine elements must be supplemented by two other kinds of units to take
into account the usual independent variable, time in most cases, and one more to keep
track of the reals that are used in the adder and the multiplier. This is analogous
to Turing’s ’notes to assist the memory’, but play a more indispensable role. Just as
in Turing’s case, one can, almost safely, conclude that ’these elements, appropriately
connected, including ’bootstrapping’ - i.e., with feedbacks - exhaust the necessary units
for the solving of an ODE’. Accepting this conjecture pro tempore, in the same spirit
in which one works within the Church-Turing Thesis in Classical Recursion Theory, a
first definition of an analogue computer could go as follows:

Definition 1. A General Purpose Analogue Computer (GPAC) is machine made
up of the elemental units: adders, multipliers and integrators, supplemented by auxil-
iary units to keep track of the independent variable and real numbers that are inputs
to the machine process, that are interconnected, with necessary feedbacks between or
within the elemental units to function simultaneously.

Example 1. Consider the Rössler equation system which has occasionally been
used in economic dynamics to model business cycles9:

(3.3)
dx

dt
= − (y + z))

(3.4)
dy

dt
= x+ 0.2y

(3.5)
dz

dt
= 0.2 + z (x− 5.7)

9Particularly by Richard Goodwin (cf. [11]). I could have chosen the more widely utilised van
der Pol equation as an example at this point but a comprehensive ’electro-analog’ investigation of it,
as a business cycle model, was one of the pioneering analogue computing examples and there is no
need for me to repeat that exercise at this level of generality (cf. [18])
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I have chosen this system as an example in the same spirit with which I chose the
Verhulst-Pearl and the simple harmonic motion equations, (1) and (10), respectively.
They are the simplest in their genre; the Rössler equation is the simplest conceivable
third order, nonlinear, differential equation - it has only one nonlinearity, in the third
equation, between the variables z and x - capable of complicated, untamable dynamics.
Its dynamics, using two different numerical algorithms, utilising the ODE Solver in
Matlab, are shown below.

On the other hand, the representation of the Rössler system in an anlogue com-
puting circuit, with three adders, eight multipliers and three integrators, could be as
follows:

In principle, i.e., from a theoretical point of view, this system and its analogue
computing representation can be simulated exactly, continually, instantaneously; and
all computations are performed simultaneously - i.e., in a parallel mode - without

16



the discretisations that requires deft and careful handling of the underpinnings in the
theory of numerical analysis, without the conundrums that the finite precision con-
straints the digital computer imposes upon systems with SDIC - SensitiveDependence
on Initial Conditions - and without any requirement that the domain and range of
definitions of the variables, parameters and constraints should be confined to N, Q or
Z.

Recalling the fertile and mutual interaction between partial recursive functions
and Turing Machines, one would seek a definition, if possible by construction, of the
class of functions that are analog computable by GPACs. These are precisely the
algebraic differential equations ([20], p.7, [22], p.26, [26], pp.340-3).

Definition 2. An algebraic differential polynomial is an expression of the form :

(3.6)
nX
i=1

aix
riyq0i (y0)

q1i ....
³
y(ki)

´qkii
where ai is a real number, ri, q0i, ......, qkii are nonnegative integer s and y is a

function of x.

Definition 3. Algebraic differential equations (ADEs) are ODEs of the form:

(3.7) P
³
x, y, y0, y00, ....., y(n)

´
= 0

where P is an algebraic differential polynomial not identically equal to zero.

Definition 4. Any solution y(x) of an ADE is called differentially algebraic (DA);
otherwise they are called transcendentally-transcendental ([22]) or hypertranscendental
([26]).

Clearly, he definition of ADEs includes all the usual sets of simultaneous systems
of linear and nonlinear differential equations that economists routinely - and non-
routinely - use. So, we are guaranteed that they are solvable by means of GPACs.
Now one can pose some simple questions, partly motivated by the traditions of classical
recursion theory:

• Are the solutions to ADEs, generated by GPACs, coomputable?
• Is there a corresponding concept to universal computation or a universal
computer in the case of analogue coomputation by GPACs?

• Is there a fix point principle in analogue computing by GPACs that is equiv-
alent or corresponds to the classic recursion theoretic fix point theorem?

• Is there a ’Church-Turing Theses’ for analogue computing by GPACs?
17



The reason I ask just these questions is that an economist who indiscriminately
and arbitrarily formulates dynamical hypotheses in terms of ODEs and attempts to
theorise, simulate and experiment with them must be disciplined in some way - in
the same sense in which recursion theory and numerical analysis disciplines a theorist
with warnings on solvability, uncomputability, approximability, etc. It is all very well
that the Bernoulli equation underpins the Solow growth model or the Riccati equation
underpins the use of control theory modelling environments or the Rayleigh, van der
Pol and Lotka-Voltera systems are widely invoked in endogenous business cycle theo-
ries. Their use for simulations calls forth the conundrums mentioned above for digital
computers and they may require other kinds of constraints to be respected in the case
of simulations by GPACs. There will, of course, be engineering constraints: precision
engineering requirements on the constructions of the adders, multipliers and the in-
tegrators can only achieve a certain level of precision, exactly as the thermodynamic
constraints of heat irreversibilities in the integrated circuits of the digital computer. I
do not attempt to deal with these latter issues in this paper.

The answer, broadly speaking, to the first question is in the affirmative ([20],
op.cit, §4, pp.23-27 and [?], Theorems 1 and 1’, p.1012).

The answer to the second question is easier to attempt if the question is posed
in a slightly different way, in tems of the relation between Turing Machines and Dio-
phantine equations (cf. [17]).

Definition 5. A relation of the form

(3.8) D (a1, a2, ....., an, x1, x2, ..., xm) = 0

where D is a polynomial with integer coefficients with respect to all the variables
a1, a2, ....., an, x1, x2, ..., xm separated into parameters a1, a2, ....., an and unknowns
x1, x2, ..., xm, is called a parametric diophantine equation.

A parametric diophantine equation, D, defines a set F of the parameters for which
there are values of the unknowns such that:

(3.9) ha1, a2, ....., ani ∈ F ⇐⇒ ∃x1, x2, ..., xm [D (a1, a2, ....., an, x1, x2, ..., xm) = 0]

One of the celebrated mathematical results of the 20th century was the (negative)
solution to Hilbert’s Tenth Problem ([17]). In the eventual solution of that famous
problem two crucial issues were the characterisation of recursively enumerable sets
iin terms of parametric diophantine equations and the relation between Turing Ma-
chines and parametric Diophantine equations. The former is, for example, elegantly
exemplified by the following result ([15], Lemma 2, p.407):
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Lemma 1. For every recursively enumerable set W , there is a polynomial with in-
teger coefficients given by Q (n, x1, x2, x3, x4), i.e., a parametric diophantine equation,
such that, ∀n ∈ N,

(3.10) n ∈W ⇐⇒ ∃x1,∀x2,∃x3,∀x4 [Q (n, x1, x2, x3, x4) 6= 0]
The idea is to relate the determination of membership in a structured set with

the (un)solvability of a particular kind of equation. If, next, the (un)solvability of this
particular kind of equation can be related to the determined behaviour of a computing
machine, then one obtains a connection between some kind of computability, i.e.,
decidability, and solvability and set membership. This is sealed by the following result:

Proposition 1. Given any parametric Diophantine equation it is possible to con-
struct a Turing Machine M , such that M will eventually halt, beginning with a rep-
resentation of the parametric n − tuple, ha1, a2, ....., ani iff (16) is solvable for the
unknowns x1, x2, ..., xm.

Suppose we think of ODEs as Parametric Diophantine Equations; recursively enu-
merable sets as the domain for continous functions and GPACs as Tuing Machines.
Can we derive a connection between ODEs, continuous functions and GPACs in the
same way as above? The affirmative answer is provied by the following proposition,
which I shall call Rubel’s Theorem:

Theorem 1. (Rubel’s Theorem): There exists a nontrivial fourth-order, universal,
algebraic differential equation of the form:

(3.11) P (y0, y00, y000, y0000) = 0

where P is a homogeneous polynomial in four variables with integer coefficients.

The exact meaning of ’universal ’ is the following:

Definition 6. A universal algebraic differential equation P is such that any con-
tinuous function ϕ(x) can be approximated to any degree of accuracy by a C∞ solution,
y(x), of P.In other words:

(3.12)
If ε(x) is any positive continuous function, ∃y(x) s.t | y (x)−ϕ (x) |< (x) , ∀x ∈ (−∞,∞)

Recent developments (cf. [6],[3])have led to concrete improvements in that it is
now possible to show the existence of Cn, ∀n, (3 < n <∞); for example, the following
is a specific Universal algebraic differential equation:
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(3.13) n2y0000y02 − 3n2y000y0 + 2n (n− 1) y002 = 0
In this sense, then, there is a counterpart to the kind of universality propostions in

classical recursion theory - computation universality, universal computer, etc., -, also
in the emerging theory for analogue computation, particularly, GPACs. Eventually,
by directly linking linking such universal equations to Turing Machines via numerical
analysis there may even be scope for a more unified and encompassing theory.

As for the third question, my answer goes as follows. GPACs can also be considered
generalised fix-point machines! Every solution generated by a GPAC is a fixed-point
of an ADE. This is a reflection of the historical fact ad practice that the origins of
fixed point theory lies in the search for solutions of differential equations, particularly
ODEs10.

Whether there is a Church-Turing Theses for analogue computation is difficult to
answer. The reason is as follows. The concept of computability by finite means was
made formally concrete after the notions of solvability and unsolvability or, rather,
decidability and undecidability, were made precise in terms of recursion theory. As
mentioned in the opening paragraphs of this section, these notions were made precise
within the context of a particular debate on the foundations of mathematics - on the
nature of the logic that underpinned formal reasoning. As Gödel famously observed:

"It seems to me that [the great importance of general recursiveness
(Turing’s computability)] is largely due to the fact that with this con-
cept one has for the first time succeeded in giving an absolute defini-
tion of an interesting epistemological notion, i.e., one not depending
on the formalism chosen. In all other casws treated previously, such
as demonstrability or definability, one has been able to define them
only relative to a given language, and for each individual language
it is clear that the one thus obtained is not the one looked for.For
the concept of computability however, although it is merely a special
kind of demonstrability or decidability11 the situation is different. By

10But also PDEs (partial differential equations), as George Temple pointed out ([30], p.119):

"One of the most frutiful studies in topology has considered the mapping T of a
set of points S into S, and the existence of fixed points x such that

Tx = x

The importance of these studies is largely due to their application to ordinary
and partial differential equations which can often be transformed into a functional
equation Fx = 0 with F = T − I where Ix = x."

11I have always wondered whether this is not a misprint and the word that is meant to be here
is not ’decidability’ but ’definability’ !
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a kind of miracle it is not necessary to distinguis orders, and the di-
agonal procedure does not lead outside the defined notion. This, I
think, shoud encourage one to expect the same thing to be possible
also in other cases (such as demonstrability or definability)."

[8], p.84.
So, to ask and answer an epistemological question such as whether there is a corre-

spondence to the ’Church-Turing Thesis’ in analogue computing by GPACs must mean
that we must, first, characterise the formal structure and mathematical foundations
of ODEs in a more precise way. I think this is an interesting methodological task, but
cannot even be begun to be discussed within the confines of a simple expository paper
such as this. I think, however, there will be an interplay between a logic on which
continuous processes can be underpinned, say by Lukasiewicz’s continuous logic, and
the logic of ODEs12. My intuition is that there will be some kind of ’Church-Turing
Thesis’ in the case of analogue computing by GPACs and awareness of it will greatly
discipline solution, simulation and experimental exercises by the use of GPACs.

4. Economic Dynamics and Computation

"What is not so clear is that continuous processes (with differential
equations) may also be regarded as trial and error methods of solu-
tion to static equations. The reason why it is not so easy to see is
that no human being can make continuous trials infinite in number.
This gap in our grasp of the problem has been closed by the per-
fection of electronic and electro-mechanical computers - sometimes
called zeroing servos - which continuously ’feed back’ their errors as a
basis for new trials until the error has disappeared. Such a machine
is an exact analogue of a continuous dynamic process. Therefore it
seems entirely permissible to regard the motion of an economy as a
process of computing answers to the problems posed to it. One might
reasonably ask why it is that the computing is never finished, why it
is not possible to settle down to a correct answer and keep it, thus
providing a stationary process to which we could apply static theory
with justification. To provide an answer to this question is precisely
one of the key problems of dynamics."

[10], pp.1-2; italics added.

As an elementary application of using a sledge hammer to crack a nut, it is easy
to see that the solution function for the Verhulst-Pearl equation (1), given by (2),
satisfies all the conditions for the application of the Rubel Theorem on the existence

12I suspect that this will be fruitful link to pursue partly because Lukasiewicz, in the development
of his continuous valued logic, abandons both the law of the excluded middle and proof by the method
of reductio ad absurdum - both contentious issues in the debate between Hilbert and Brouwer that
led to the foundational crisis in mathematics from which the work of Gödel and Turing emerged.
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of a Universal Equation whose solution can be made to agree with N(t) at a countable
number of distinct values of t. A similar application of the theorem can be made to
the general Bernoulli equation, a nonlinear, first oder, ODE:

(4.1) ẏ + g (t) = ψ (t) yn

Where: n ∈ R (but n 6= 0, 1).
Although there is an elementary way to transform it into a linear form, the reason

I state it in this general way is the fact that n is allowed to be any real (except 0 or
1) and it is the general case of which the famous Solow growth equation is a special
case. Once again, it is easy to see that the conditions of the Rubel Theorem are
satisfied by the normal hypotheses under which this equation is applied in growth
theory. Therefore, given observations of growth facts, they can be made to lie on the
solution of the Universal Equation which will be withiin (t) of the solution of the
growth equation13. But these are trivial - bordering on the surreal - applications.

The question interesting question is whether it is more fertile to use the digital
or the analogue metaphor for a view of the market and for macrodynamic processes
as computing devices? I have, for long, felt that the digital metaphor was the more
fruitful one; however, partly persuaded by the cogent arguments by my teacher, mentor
and friend, the late Richard Goodwin, I have begun to come around to the view
that the analogue metaphor does less violation to the basic postulates of economic
theory from a dynamical and a computational viewpoint14. Richard Goodwin’s most
persuasive arguments for the analogue metaphor as the more fertile vision for market
dynamics and computation was developed in the pages of this Journal ([10]). So, it is
appropriate that I end with the conjecture that most importantly and crucially, it is
in the processes underlying market mechanisms and macrodynamics, particularly in
general equilibrium theory, growth theory, cycle theory and growth cycle theory that
the benefits of analogue computing will be direct and obvious. I shall consider two
well known examples from - one from general equilibrium theory and another from
cycle theory to illustrate my point. To take the latter first, consider the final, reduced,

13I must confess that I have never seen a proper discretisation of this equation in the growth
literature!

14Surely, this agrees with Pareto’s famous observation:

"[In] order to understand what equilibrium is, we had to investigate how it is
determined. Note, however, that this determination certainly is not for the pur-
pose of arriving at a numerical calculation of prices. .... As a practical matter,
that is beyond the power of algebraic analysis ... .. In that case the roles would
be changed; and it would no longer be mathematics which would come to the
aid of political economy, but political economy which would come to the aid of
mathematics. In other words, if all these equations were actually known, the only
means of solving them would be to observe the actual solution which the market
gives."

[19], p.171, italics added.
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equation of Goodwin’s own celebrated original model of the business cycle ([?], p.12,
equation (5c); all notations as in the original):

(4.2) ẏ(t+ θ) + (1− α) y (t+ θ) = OA (t+ θ) + ϕ [ẏ (t)]

Goodwin reduced this delay-differential equation to a second order, nonlinear,
differential equation of the Rayleigh type ([?], p.13, (7c)):

(4.3) ẍ+ [X (ẋ) /ẋ] ẋ+ x = 0

Equation (23) was ’reduced’ to (24) by ’expanding the leading terms [in (23)] in
a Taylor series and dropping all but the first two terms in each’ ([?], p.12). No justi-
fication for the validity of this exercise, either mathematical or economic, was given.
The paper was instrumental in developing a tradition in endogenous macroeconomic
cycle theory, where planar dynamical systems provided the canvas on which to rely for
grand themes of economic dynamics. A timely caveat, clearly stated ([18], pp.406-7),
fell off like water on a duck’s back in the macrodynamic community:

"Had Goodwin approximated his nonlinear difference-differential equa-
tion by using the first four terms of the Taylor series expansion of [’the
two leading terms’], the resulting approximating equation would have
bee a nonlinear differential equation of the fourth order, which we
believe would have had two limit cycles solutions rather than one,
both dependent on initial conditions. Improving the approximation
by retaining more terms of the Taylor’s expansion would increase the
order of the differential equation and this would increase the num-
ber of solutions provided by the approximation. To the extent that
this is generally true of nonlinear mixed systems, economic theory
encounters a methodological dilemma. .... If mixed systems seem to
be required, this implies that we must in general expect a multiplicity
of solutions. The resulting indeterminacy must then be overcome by
specifying the initial conditions of the model."

Clearly, GPACs and Rubel’s Theorem provide a research methodology that would
have obviated much of the subsequent straitjacket into which endogenous macroeco-
nomic cycle theory seemed to have fallen. The eventual excitement of using ’chaos
theory’ could, perhaps, also have been tempered, not to mention the eventual domi-
nance of this area of macroeconomics by stochastic shock theories of one or the other
variety15.

15I must emphasise one point at this juncture: the GPACs, as defined here, do not include units
for delay and lead dynamics. Nauturally, this is also possible, But I have wanted to concentrate on
ODE representations for the limited purposes of this paper.
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The real finesse in the use of GPACs to generate solutions to ADEs is the fact that
they do not require any compromises with the essential assumptions of continuity, real
number domains of definitions for all relevant economic variables, simultaneity and
instantaneity. And these virtues, at least at the theoretical level, deserve attention
by the computationally minded general equilibrium theorist. The reasons are simple.
The general equilibrium theorist proves existence propostions, particularly economic
equilibrium theorems, using essentially non-constructive16. At a second stage attemtps
are made by so-called computable general equilibrium theorists to constructivise or
devise effective methods to locate the equilibria. Even at this ostensibly constructive
or computabe stage no attempt has even been made to gurarantee that the sought for
entity, in most cases, the economic equilibrium configuration, is either constructively
defined or computably defined. At most, an approximate equilibirum, hopefully near
the supposed equilibrium, is located - but never in any rigorous way, despite many
statements to the contrary.

For these aficionados of computable general equilibrium theory, analogue com-
putation is the ideal vehicle. General economic equilibrium theory of the Walrasian
variety, in its modern Arrow-Debreu versions, is formalized in terms of real analy-
sis. The problems of discretisations, approximations and simultaneity intrinsic to this
theoretical enterprise cannot ever be resolved in any theoretically satisfactory way by
adopting ad-hoc constructive or computabe methods. It would be much more direct
and theoretically consistent to attempt all numerical, experimental and computational
exercises, pertinent to general equilibrium theory with the use of analogue comput-
ing machines. Such machines handle data from R exactly as theory requires it to be
handled: continuously. The intrinsic interdependence of a general equilibrium system
requires simultaneous - i.e., parallel - computations, continuously executed, and in-
stantaneously available - and all on the basis of analysis in R (perhaps, occasionally,
even in C). None of this is even remotely conceivable with a digital computer. Its
mathematical underpinnings are in varieties of constructive and computable mathe-
matics - areas which are totally alien to general equilibrium theory.

For example, even elementary economics textbooks underline the fact that mar-
ket excess demand functions are the basis upon which any kind of tâtonnement rests.
These functions are, in turn, built up from individual excess demand functions which
are assumed to be continuous and homogeneous of degree zero. To these two assump-
tions if we add the almost innocuous assumption of Walras’ Law, then it is easy to
show that the market excess demand function will be normal to the price simplex at
the relevant value of the price vector. Then, in view of the celebrated Debreu-Mantel-
Sonnenschein Theorem (cf. for example, [27])on excess demand functions, the solution
to the standard tâtonnement process lies on the vector field induced by the market
excess demand vector on the price simplex. The fascinating implication of all this is

16Indeed, not just non-constructive but even worse: cannot be constructivised, without changing
the whole mathematical methodology of modelling in standard general equilibrium theory.
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that any arbitrary, sufficiently smooth, curve on the price simplex will be compatible
with some exchange economy. And, conversely, given any arbitrary exchange econ-
omy, defined by a collection of individual excess demand functions and an appropriate
initial price vector, there does not exist enough structure to discipline the dynamics
of any tâtonnement process.

The question first properly broached by Sonnenschein was: given an excess de-
mand function, knowing that it is continuous if for every price vector p the inner
product p.f(p) = 0, where f(p) is the market excess demand function, is there a fi-
nite number of consumers whose individual excess demand functions sum to f (cf.
[5], p.204). Suppose we ask, instead, given f(p), is there a dynamical system whose
solution is an arbitrary close approximation to it and such that any given finite or
countable number of realizations of the solution can be made to lie on f(p). By
Rubel’s Theorem the answer is in the affirmative and, therefore, the GPAC that is
implemented for that particular Universal Equation whose solution approximates f(p)
to any arbitrary degree of accuracy provides a perfectly valid continuous, parallel and
instantaneous tracking of the economy in motion toward a fix point solution. One
kills, once and forever, the artificial separation between a first, nonconstructive, step
in which an uncomputable exchange equilibrium is given a proof of existence and, then,
a second step in which it is alleged that an algortihm has been devised to compute
an uncomputable equilibrium using a nonconstructive step. This second step is the
research program of Computable General Equilibrium theory.

The above two examples are about vector fields. Hence, it may be useful to end
this paper be recalling some pertinent observations by a master investigator of vector
fields, both its analytical and in its numerical aspects ([13]):

"We regard the computer as an ’oracle’ which we ask questions. Ques-
tions are formulated as input data for sets of calculations. There are
two possible outcomes to the computer’s work: either the calcula-
tions rigorously confirm that a phase portrait is correct, or they fail
to confirm it. .... The theory that we present states that if one begins
with a structurally stable vector field, there is input data that will
yield a proof that a numerically computed phase portrait is correct.
However, this fails to be completely conclusive from an algorithmic
point of view, because one has no way of verifying that a vector field is
structurally stable in advance of a positive outcome. Thus, if one runs
a set of trials of increasing precision, the computer will eventually
produce a proof of correctness of a phase portrait for a structurally
stable vector field. Presented with a vector field that is not struc-
turally stable, the computer will not confirm this fact:; it will only
fail in its attempted proof of structural stability. Pragmatically,
we terminate the calculation when the computer produces a definitive
answer or our patience is exhausted. ....
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The situation described in the previous paragraph is analogous
to the question of producing a numerical proof that a continuous
function has a zero. ..... Numerical proofs that a function vanishes
can be expected to succeed only when the function has qualitative
properties that can be verified with finite-precision calculations."

[13], pp.154-5, italics added.

One can, of course, repeat this kind of observation for any well posed formal
problem and the answer will be the same, tempered, resort to ’exhaustion of patience’
or luck. Obviously all the references in the above observations by Guckenheimer are
to the digital computer. Thus, one can either theorise ab initio in the language that
the digital computer can comprehend, or use a different kind of computer that can
understand the formal, mathematical, language in which, for example, the economist
theorises. It so happens, for reasons of inertia, incompetence, hysteresis or whatever,
that the mathematical language of the economic theorist, predominantly if not almost
exclusively, is real analysis. Either this must be given up or a different kind of computer
must be used. I have, after almost a quarter century of ’preaching’ the former strategy
have begun to wilt in my determination in that task. Therefore these thoughts on
adopting a different kind of computer to suit the formal language of the economic
theorist.

The above perceptive observations by Guckenheimer also bring up issues of method-
ology and epistemology, or the domain where the two may meet. Note the liberal
sprinkling of words like ’verify’, ’confirm’ and ’not confirm’. That such issues cannot
be avoided, even in the most abstract speculations about the foundations of math-
ematics has been known to those who have fashioned and developed the issues on
the basis of which theories of computation and the computer were erected. That the
economist continues with princely unconcern for these issues is to be regretted.
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CHAPTER 2

Economic Theory in the Computational and
Constructive Mode

1. A Preamble of Sorts

Our approach is quantitative because economic life is largely con-
cerned with quantities. We use computers because they are the best
means that exist for answering the questions we ask. It is our respon-
sibility to formulate the questions and get together the data which
the computer needs to answer them.

[26], p.viii; italics in original.

Enormous developments in the theoretical and practical technology of the com-
puter has made a tremendous impact on economics in general, but also in economic
theory in particular. However, I do not think I will be misinterpreting the above obser-
vation if I point out that it refers to the digital computer. But, of course, there are also
analog and hybrid computers1 that can be harnessed for service by the economist2 - or
any other analyst, in many other fields - to realise the intentions indicated by Richard
Stone. Indeed, in many ways, the analog computer should be more suitable for the
purposes of the economic analyst simply because, at least as an economic theorist at
the microeconomic level, one tends to theorise in terms of real numbers and the under-
pinning mathematics is, almost without exception, real analysis. The seemingly simple
but, in fact, rather profound observation by Stone that I have quoted above captures
one of a handful of insightful visions that the ubiquity of the computer has conferred
upon the intellectual adventurer in economics. Stone appeals to the raw quantitative
economic analyst to respect the language and architecture of the computer in pursuing
precise numerical investigations in economics.

However, in general, we, as economic theorists, tend to ’formulate the questions’
in the language of a mathematics that the digital computer does not understand - real

1Not to mention quantum, DNA and other physical and natural computers that are beginning
to be realised at the frontiers of theoretical technology.

2Charles Babbage, viewed in one of his many incarnations as an economist, can be considered
the only one to have straddled both the digital and analog traditions. There is a story to be told
here, but this is not the forum for it. I shall reserve the story for another occasion.
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analysis - but ’get together the data’ that it does, because the natural form in which
economic data appears or is constructed is in terms of integer, natural or rational
numbers. The transition between these two domains remains a proverbial black box,
the interior of which is occasionally viewed, using the lenses of numerical analysis,
recursion theory or constructive mathematics. With the possible exception of the core
of economic theory3, i.e., general equilibrium theory, there has been no systematic
attempt to develop any aspect of economics in such a way as to be consistent with the
use of the computer, respecting its mathematical, numerical and, hence, also its epis-
temological constraints. To be sure there have been serious applications of concepts of
recursion theory and numerical analysis in various disparate, uncoordinated, attempts
to many different areas of economics, most particularly game theory and choice theory.
But these attempts have not modified the basic mathematical foundations on which
the theory of games or choice theory or any other field to which recursion theory or
numerical analysis has been applied. The basic mathematical foundations have always
remained real analysis at suitable levels of sophistication.

Suppose, now, we teach our students the rudiments of the mathematics of the
digital computer - i.e., recursion theory and constructive mathematics - simultane-
ously with the mathematics of general equilibrium theory - i.e., real analysis. As a
first, tentative, bridge between these three different kinds of mathematics, let us also
add a small dose of lectures and tutorials on computable analysis, at least as a first
exposure of the students to those results in computable and constructive analysis that
have bearings at least upon computable general equilibrium theory. Such a curriculum
content will show that the claims and , in particular, the policy conclusions emanat-
ing from applicable general equilibrium theory are based on untenable mathematical
foundations. This is true in spite of the systematic and impressive work of Herbert
Scarf, Rolf Mantel and others who have sought to develop some constructive4 and
computable foundations in core areas of general equilibrium theory. In this sense, the
claims of computable general equilibrium theorists are untenable.

3I should hasten to add another exception: the whole edifying, noble, research program of Her-
bert Simon is also a notabe exception. But he stands out and aprt from the orthodox traditions of
economics where, by orthodoxy, I do not mean just neoclassical economics but all the other standard
schools such as the newclassicals, post keynesians, new keynesians, Austrians of all shades, institu-
tionalists and so on; even the behavioural economists, once spanned and spawned by Herbert Simon,
have been absorbed into the folds of orthodoxy.

4I should mention that Douglas Bridges, a mathematician with impeccable constructive creden-
tials, made a couple of valiant attempts to infuse a serious and rigorous dose of constructivism at the
most fundamental level of mathematical economics (cf: [6] and [7], and two other references men-
tioned in the latter paper, neither of which have been available to me. They fell like water on a duck’s
back off the economic theorist’s palate). I should also mention that every single explicit proof in the
text of Sraffa’s classic book is constructive. I have long maintained that there is no need to recast his
economics in the formalism of linear algebra to invoke theorems of non-negative square matrices and
other theorems of a related sort to re-prove his propositions. (cf. [24]). Indeed, I have maintained
for years that one can, in fact, use Sraffa’s economically motivated techniques to constructivise some
of the non-coonstructive methods of proof, for example, for the Perron-Frobenius theorems.
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What is to be done? Either we throw away any search for consistent mathematical
foundations - the cardinal fulcrum on which general equilibrium theory has revolved
for the whole of its development and justification; or we modify general equilibrium
theory in such a way as to be based on a mathematics that is consistent with the
applicability of the theory in a quantitative sense; or, thirdly, give up relying on the
digital computer for quantitative implementations and return to the noble traditions
of the analog computer, which is naturally consistent with any theory based on real
analysis. I find it surprising that this third alternative has not been attempted, at
least not since Irving Fisher.

Complexity theory and the complexity vision in economics is quite another matter.
On the one hand there are the formal theories of complexity: computational complex-
ity theory, algorithmic information theory (or Kolmogorov complexity), stochastic
complexity theory (or Rissanen’s Minimum Description Length principle), Diophan-
tine complexity theory and so on. On the other, there is the so-called ’complexity
vision’ of economics - a vision much promoted by the Santa Fe research program and
its adherents, of varying shades, in economics. Both of these approaches to complexity
- as a theory in its own right and as a vision for an alternative economic analysis - have
had applications in economics, even in systematic ways. Scarf’s work in trying to tame
the intractabilities of increasing returns to scale due to indivisibilities has led to pio-
neering efforts at studying the computational complexity inherent in such problems.
Scattered applications of algorithmic information theory, as a basis for induction and
as a vehicle through which undecidabilities can be generated even in standard game
theoretic contexts, have also had a place in economic theory.

These are all issues that can be subjects for individual research programs and
book-length manuscripts, if one is to survey the literature that has dotted the economic
journals. I shall not attempt any such survey within the limited scope of cautionary
reflections reported in this paper. My aim, instead, is to try to present an overview of
the kinds of mathematics that a computer’s functioning is based on and ask to what
extent the economist has respected this mathematics in posing economic questions
and seeking answers via it - i.e., the computer.

With these limited, circumscribed, aims in mind, the next section is devoted to
an outline of the kinds of mathematics that underpin theories of computation by
the digital computer. The parallel theory for the analog computer is the subject
matter of my main contribution to this volume ([26]). I do this by superimposing
on the standard mathematics of general equilibrium theory some caveats and facts
so as to make transparent the non-numerical underpinnings of orthodox theory. The
concluding section tries to weave the various threads together into a simple fabric of
speculations of a future for economics in the computational mode.

I was motivated to tell a story this way after trying to understand the successes
and failures of non-standard analysis in economics. There was a clear, foundational
and traditional economic theoretic framework, which, if formalised and interpreted
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in terms of non-standard analysis, seemed to offer a rich harvest of implications and
possibilities for the advancement of economic theory, even in quantitative terms. This
latter observation is underpinned by the fact that the practice of non-standard anal-
ysis is eminently conducive to numerical exercises without ad-hoc approximations or
infelicitous conversions of the continuous to the discrete. That most ubiquitous of the
economic theorist’s assumption, price-taking behaviour, cried out for a formalism in
terms of the infinitesimal ; and much else.

But elementary microeconomic textbooks or advanced macrodynamic textbooks
were not rewritten in terms of the formalism of non-standard analysis. Endogenous
business cycle theorists did not make any attempt to understand that traditional non-
linear dynamical systems, long associated with well characterized basins of attraction,
were capable of richer geometric behaviour in the non-standard domain. Intellectual
inertia, entrenched concepts, unfamiliar mathematics and, perhaps, even a lack of a
concerted attempt by the pioneers of what I would like to call non-standard economics
may have all contributed to the lack of success in supplanting traditional mathemati-
cal economics. It seems to me the main source of the inertia is the lack of initiative to
learn new and alternative mathematics and a monumental lack of knowledge about the
mathematical foundations of the computer and computation. Hence, I thought, after
also mulling over the fate of non-standard economics, if a story about computabil-
ity, constructivity and complexity could be told from within the citadel of economic
theory, there may well be a more receptive and less obdurate audience.

2. Cautionary Notes

"Even those who like algorithms have remarkably little appreciation
of the thoroughgoing algorithmic thinking that is required for a con-
structive proof. This is illustrated by the nonconstructive nature of
many proofs in books on numerical analysis, the theoretical study of
practical numerical algorithms. I would guess that most realist math-
ematicians are unable even to recognize when a proof is constructive
in the intuitionist’s sense.

It is a lot harder than one might think to recognize when a theorem
depends on a nonconstructive argument. One reason is that proofs
are rarely self-contained, but depend on other theorems whose proofs
depend on still other theorems. These other theorems have often been
internalized to such an extent that we are not aware whether or not
nonconstructive arguments have been used, or must be used, in their
proofs. Another reason is that the law of excluded middle [LEM]
is so ingrained in our thinking that we do not distinguish between
different formulations of a theorem that are trivially equivalent given
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LEM, although one formulation may have a constructive proof and
the other not."

[19]

Why should an economist bother about constructive and non-constructive proofs
or whether a theorem in economics depends on the use of the law of the excluded
middle (LEM) or whether status of the Hahn-Banach theorem, which lies behind the
mathematical validity of the Second Fundamental Theorem of Welfare Economics, is
dubious in computable analysis or whether the status of the Cauchy-Peano theorem
in proving existence of solutions to ordinary differential equations (ODEs), or whether
it is really necessary to appeal to topological, non-constructive, fix-point theorems in
economic theoretic contexts? My questions are not posed as a methodologist or as
an epistemologist, although such questions, when answered, may well have method-
ological and epistemological implications. I ask these questions as a serious user of
the computer in ordinary economic analysis: in simulating policy environments and
obtaining usable parameter estimates; in testing conjectures by studying alternative
scenarios of analytically intractable non-linear systems of equations; in taming the
numerical monsters that can arise in increasing returns to scale technologies caused
by indivisibilities that are naturally framed as combinatorial optimization problems;
and many other bread-and-butter issues in elementary applied economics that seeks
economic theoretic and mathematical foundations for its numerical implementations.

Why does a mathematician express disquiet over the use or the invoking of the
axiom of choice5 in any mathematical exercise in theorem proving? Kuratowski and
Mostowski, in their massive and encyclopedic treatise on Set Theory gave the standard
reason for the general disquiet in mathematical circles over the use of this axiom in
proof contexts:

"The axiom of choice occupies a rather special place among set the-
oretical axioms. Although it was subconsciously used very early, it
was explicitly formulated as late as 1904 ... and immediately aroused
a controversy. Several mathematicians claimed that proofs involving

5Compare and contrast the following two views on the status of this axiom in mathematics, the
first observation is by two distinguished constructive mathematicians and the second by a an equally
distinguished mathematical economist:

"[The axiom of choice] is unique in its ability to trouble the conscience of the
classical mathematician, but in fact it is not a real source of nonconstructivity in
classical mathematics. ... The axiom of choice is used to extract elements from
equivalence classes where they should never have been put in the first place." ([4],
p.12)

and,

"Although the validity of Zorn’s lemma is not intuitively clear, it is demostra-
bly equivalent to an important axiom of choice that is accepted today by most
mathematicians." ([27], p.15; second set of italics added.)
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the axiom of choice have a different status from proofs not involving
it, because the axiom of choice is a unique set theoretical principle
which states the existence of a set without giving a method of defining
("constructing") it, i.e., is not effective."

[16], p.54; footnote 1.

And they go on, in their text of over 500 pages and hundreds of theorems and
lemmas, from that point on by marking ’theorems which are proved using the axiom
of choice with the superscript o ’ (ibid, p.54). Another classic in the foundations
of mathematics, the Principia Mathematica of Russell and Whitehead, observed the
same kind of principle. Why, then do economists not point out, say with an asterix
(*), those theorems in economic theory that depend on non-constructive reasonings
(or appeals to LEM) and, perhaps, a double asterix (**) where reliance is placed on
uncountable domains of definitions or non-recursive sets of various sorts such that
computability or decidability fails? In particular, where claims are made as to the
quantitative applicability and relevance of the implications of the theorems, derivable
by utilizing the computer. For example, would it not serve the student of Computable
General Equilibrium (CGE) theory to be warned, with such an asterix, whenever
a particular proposition is derived with the help of undecidable disjunctions and a
cautionary note that the claimed constructions is not theoretically sound or reliable?
Or when momentous policy conclusions regarding decentralization and its virtues are
drawn on the basis of the Second Fundamental Theorem of Welfare Economics without
a warning, with the double asterix, that the status of such a theorem in computable
analysis is dubious, to put it mildly and its status in constructive analysis is subject
to severe constraints on the domain of definition of the relevant variables - prices and
quantities in the case of economics.

I do not have any sensible answers to any of these simple questions except that
economists are rather cavalier in their use of mathematics and careless in their re-
liance on the computer. Hence, in these ’cautionary notes’, I wish to try to initiate a
tradition where we may serve the prudent and the thoughtful economic theorist, who
is also acutely conscious that there is a mathematics underlying the activities of the
ubiquitous computer, where the pitfalls may reside and how, in some cases, one may
avoid them by adopting deft strategies. With this in mind, I provide, in this section,
some rather basic results from computable and constructive analysis that have bearing
upon the use (or, rather, the misuse) of well-known classical theorems, with especial
reference to CGE. The reason for placing especial emphasis on CGE is that it is the
only field in the core of economic theory where there has been a systematic and con-
scious effort to incorporate both constructive and computable structures in a seriously
applicable and positive way, and not only as intellectual curiosa with universal nega-
tive results such as undecidabilities, uncomputabilities and unsolvabilities. However,
I touch upon implications to other areas in economics, as well.
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I think it is too much to expect any single textbook in economics, whether ad-
vanced or intermediate, whether exclusively oriented towards mathematical economics
or not, to follow the enlightened policies of a Russell-Whitehead or a Kuratwoski-
Mostowski, and to mark with an asterisk or a double asterix when constructively or
computably dubious assumptions are made. Therefore, I shall list a sample of such
fundamental assumptions and theorems that have bearings upon economics in its com-
putation mode. By this I mean, economics, whether micro or macro, where frequent
recourse to computation, simulation and existence proofs are made. This means, for
example, at the very broadest pedagogical, policy oriented and textbook level, general
equilibrium theory, growth and cycle theory, welfare economics and so on. I shall stick
to these three fields in this essay, simply in view of space considerations.

Debreu, in his classic text that codified the modern version of general equilibrium
theory, Theory of Value, stated in the ’Preface’ that ’the small amount of mathematics
necessary for a full understanding of the text (but not all of the notes) [of the rest of
the book] is given in the first chapter in a virtually self-contained fashion. ([7], p.viii).
Let us suppose Debreu cautioned his readers that he was, in fact, choosing one possible
mathematics from a world of many possible mathematics, without giving reasons as
to why he chose the one he did rather than any other. However, suppose, in the
interests of intellectual honesty he added caveats to some of the definitions, axioms
and theorems, pointing out that they did not hold, were invalid, in other possible,
equally valid mathematics - particularly the mathematics underpinning the computer,
computation and algorithms. What kind of caveats might he have added if the aims
had been to warn the reader who had computations in mind? I give a small, but
fundamental, representative sample.

The four sections dealing with the fundamentals of limit processes in Debreu’s
classic are6 on Real Numbers (§1.5), Limits in Rm(§1.6), Continuous Functions (§1.7)
and Continuous Correspondences (§1.8). To this may be added §1.9, culminating in
formal separating hyperplane theorems and §1.10 on the two fundamental fixed point
theorems of Brouwer and Kakutani. These exhaust, essentially, all the mathematical
fundamentals on which is built the formal equilibrium economic Theory of Value.
Thus, if I single out the axiom of completeness (§1.5.d, p.10), definitions of compact,
given on p.15, §1.6.t, continuity, topologically characterized in §1.7, the maximum-
minimum theorem (§1.7.h, (4’) and named after Weierstrass on p.16 by Debreu) and
the two fixed point theorems (Brouwer and Kakutani) of §1.10 (p.26), in addition
to the theorems of the separating hyperplanes given in §1.9 (esp. pp.24-5), as being
the fundamental mathematical tools on which the whole edifice of general equilibrium
theory stands, I do not think it will be considered a wild exaggeration. If these cannot
be given numerical or computational content, how can they be useful in formalising
economic concepts and entities with a view to application?

6All references are to [7].
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Now. let us imagine an economic fairy, rather patterned after tooth fairies, ap-
pends the following caveats to this chapter, with special reference to the singled-out
concepts, axioms, results and theorems..

Proposition 2. : The Heine-Borel Theorem is Invalid in Computable Analysis.

The standard, i.e., classical mathematical, statement of the Heine-Borel Theorem
is:

A subset S of Rm is compact if and only if it is closed and bounded (cf. [7], p.15,
§1.6.t)

Proof. :See [1], §13.2, pp.131-2. ¤

Proposition 3. :The Bolzano-Weierstrass Theorem is invalid in Constructive Analysis.

A classical version of the Bolzano-Weierstrass theorem is:
Every bounded sequence in Rm has a convergent subsequence.

Proof. :See [12], pp. 14-15. ¤
Axiom 1. Completeness Property (cf. [7], §1.5.d, p.10)
Every non-empty subset X of R which has an upper bound has a least upper bound.

Theorem 2. Specker’s Theorem in Computable Analysis ([23], pp. 145-58)
A sequence exists with an upper bound but without a least upper bound.

Proof. : See [2], pp. 97-8. ¤

Note, also, the following three facts:
(1) There are ’clear intuitive notions of continuity which cannot be [topologically]

defined’. (cf.[13], p.73).
(2) The Hahn-Banach Theorem is not valid in Constructive or Computable Anal-

ysis in the same form as in Classical Analysis. ([17], esp. §5, pp. 328-32)
and [4], p.342.

(3) A consequence of the invalidity of the Bolzano-Weierstrass Theorem in Con-
structive Analysis is that the fixed point theorems in their classical forms do
not hold in (Intuitionistically) Constructive Mathematics. ([8], pp.1-2).

On the basis of just these, almost minimal, set of caveats and three facts, I can
easily state and prove the following two propositions - one, I may call The Grand
Proposition7 and the other, The Non-Constructivity Proposition. Keeping in mind
the insightful and important observations made by Fred Richman with which I began

7I hope the reader is able to infuse an appropriate dose of humour at this point lest the irony is
mistaken for megalomania!
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this section, a ’proof’ of The Grand Proposition will require that I take, in turn, every
single of the economic axioms, definitions, propositions and theorems in The Theory
of Value and show where and how they rely on one or the other of the above caveats
or facts. This, although a tedious task, is easy to do - even to automate. I leave it for
an enthusiastic doctoral dissertation by any imaginative and adventurous student. A
possible way to state this proposition in its full generality would be:

Proposition 4. : The Grand Proposition

The Arrow-Debreu Axiomatic Analysis of Economic Equilibrium Cannot be Com-
putationally Implemented in a Digital Computer.

Proposition 5. : The Non-Constructivity Proposition
Neither of the Fixed Point Theorems given and used by Debreu in The Theory of

Value can be Constructivized.

Proof. A simple consequence of the constructive invalidity of the Bolzano-Weierstrass
Theorem. ¤

What, then, are we to make of grand, quantitative, policy prescriptions emanating
from applications of the two fundamental theorems of welfare economics and, even
more pertinently, of the results and use of Computable General Equilibrium theory
(CGE)? I suggest that a large barrel of salt be kept within reaching distance of anyone
being subject to quantitative homilies, based on computations that rely on these two
classes of models. Let me illustrate this cautionary attitude slightly more formally for
CGE.

Walras, Pareto, Irving Fisher, Hayek, Lange, Marschak and others were concerned
with the computational implications of the solutions of a general economic equilibrium
model and each, in their own idiosyncratic and interesting ways, suggested methods
to solve it. Walras, Pareto, Hayek and the Lange of the 30s, had, obviously, an
interpretation of the market as an analog computing machine. The digital computing
machine, as we know it today, even though conceived by Leibniz and others centuries
earlier, came into being only after the theoretical developments in recursion theory
that resulted from the work of Gödel, Turing, Church, Kleene and Post. However, it
is almost entirely Scarf’s single-handed efforts that have made the issue of computing
the solution of an existence problem in general equilibrium theory meaningful, within
the digital computing metaphor8, in a numerical and economic sense. Scarf took the
Arrow-Debreu version of the general competitive model and, imaginatively exploiting

8The two traditions were demarcated with characteristic clarity by Scarf himself in his essay for
the Irving Fisher birth centennial volume:

"In Mathematical Investigations in the Theory of Value and Prices, published in 1892, Irving
Fisher described a mechanical and hydraulic analogue device intended to calculate equilibrium
prices for a general competitive model. This chapter takes up the same problem and discusses an
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the implications of the equivalence between the Brouwer Fix Point Theorem and the
Walrasian Economic Equilibrium theorem, proved by Uzawa in 1962 ([32]) made the
equilibrium ‘approximately’ constructive.

Scarf’s methods and framework are based on mathematical structures and com-
puting tools and concepts of a kind that are not part of the standard repertoire of an
economics graduate student’s education. Constructive mathematics, recursion theory
and computational complexity theory are the main vehicles that are necessary to anal-
yse computable general equilibrium models for their computability and computational
efficiency properties. By providing enough of the essentials of computability theory and
constructive mathematics to ask interesting and answerable questions about the com-
putable general equilibrium model and its computable and constructive meaning, one
enters the citadel with the Trojan Horse of CGE. The strategy of adding constructive
and computable analytic caveats and facts to an otherwise orthodox textbook presen-
tation of standard real analysis as a supplement or an appendix to a presentation of
general equilibrium theory, the way I have suggested above, is another vantage point.

There are two aspects to the problem of the constructivity and effectivity of CGE
models:

• · The role of the Uzawa equivalence theorem.
• · The non-constructivity of the topological underpinnings of the limit
processes invoked in the proof of the Brouwer fixed point theorem.

For over half-a-century, topological fixed point theorems of varying degrees of gen-
erality have been used in proving the existence of general economic equilibria, most
often in varieties of Walrasian economies as, for example, done in Debreu (op.cit).
Uzawa’s fundamental insight was to ask the important question whether the mathe-
matical tools invoked, say the Brouwer or Kakutani fixed point theorems, were unnec-
essarily general9 . His important and interesting answer to this question was to show
the reverse implication and, thus, to show the mathematical equivalence between an
economic equilibrium existence theorem and a topological fixed-point theorem.

algorithm for a digital computer which approximates equilibrium prices to an arbitrary degree of
accuracy." ([20], p.207; bold italics added.)

9As Debreu noted:

“[The theorem] that [establishes] the existence of a price vector yielding a negative
or zero excess demand [is] a direct consequence of a deep mathematical result, the
fixed-point theorem of Kakutani. And one must ask whether the . . . . Proof
[of the theorem] uses a needlessly powerful tool. This question was answered in
the negative by Uzawa (1962) who showed that [the existence theorem] directly
implies Kakutani’s fixed-point theorem.”

[11], p.719.
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In other words, the Uzawa Equivalence Theorem demonstrates the mathematical
equivalence of (for example) the following two propositions10:

Proposition 6. Brouwer Fix Point Theorem (Debreu, op.cit., §1.10.b (1); p.26)

If S is a non-empty, compact, convex subset of Rm, and if f is a continuous function
from S to S, then fhas a fixed point.

Proposition 7. Walras’ (Equilibrium) Existence Theorem (Uzawa’s Formulation;
cf.[32], pp. 59-60)

Let there be n commodities, labelled 1, ........., n, and let p = (p1, ........, pn) and
x = (x1, ........., xn) be a price vector and a commodity bundle, respectively.

Let P and X be the sets of all price vectors and of all commodity bundles:
P = {p = (p1, ........., pn) : pi > 0, i = 1, ......, n, but p 6= 0}
X = {x = (x1, .........., xn)} (i.e., commodity bundles are arbitrary n− vectors)
Let the excess demand function, x (p) = [xi (p) , ......., xn (p)], map P into X and

satisfy the following conditions:
(A). x(p) is a continuous mapping from P into X.
(B). x(p) is homogeneous of order 0; i.e., x(tp) = x(p), for all t > 0 and p ∈ P .
(C). Walras’ law holds:

nX
i=1

pixi(p) = 0, forallp ∈ P.

Then there exists at least an equilibrium price vector p for x(p);
Where a price vector p is called an equilibrium if:

xi (p) 6 0, (i = 1, ........, n)
with equality unless pi = 0, (i = 1, ........, n) 11.

Now, in Uzawa’s equivalence proof there is a ‘construction’ of a class of excess de-
mand function satisfying conditions (A), (B) and (C), above. A particularly clear and
pedagogically illuminative discussion of this construction is given in [25], pp. 137-
8. This ‘construction’ does not place either computable or constructive constraints
on the class of functions from which they are built. This, compounded by the con-
structive invalidity of the Bolzano-Weierstrass Theorem, makes Uzawa’s Equivalence
Theorem neither constructively nor computably implementable in a digital computer.

10Paradoxically, even after forty years since Uzawa’s seminal result and almost as many years of
Scarf ’s sustained attempts to make general equilibrium theory amenable to computations, I know of
only one textbook presentation of the Uzawa equivalence theorem and its ramifications. This is the
pedagogically superb textbook Ross Starr ([25], esp. chapter 11).

11There is a minor mispriint inthe original Uzawa statement at this point where it is written p1
insead of pi. (Uzawa, op.cit, p.60).
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Hence any claim that Computable General equilibrium theory is either computable or
constructive is vacuous.

What are we, then, to make of the following assertion:

“The major result of postwar mathematical general equilibrium the-
ory has been to demonstrate the existence of such a [Walrasian] equi-
librium by showing the applicability of mathematical fixed point the-
orems to economic models.

. . .
The weakness of such applications is [that] they provide non-

constructive rather than constructive proofs of the existence of equi-
librium; that is, they show that equilibria exist but do not provide
techniques by which equilibria can actually be determined. . . . The
extension of the Brouwer and Kakutani fixed point theorems in [the]
direction [of making them constructive] is what underlies the work of
Scarf on fixed point algorithms . . . ”

[21], pp. 12, 21.

This is where that large barrel of salt to dip into will be quite useful - plus, of
course, knowledge of the caveats and facts, given above. For further discussion, details
and implications of the non-constructivity and uncomputability inherent in the Uzawa
Equivalence Theorem and Scarf’s work on fixed point algorithm I refer the reader to
[30].

An even more dangerous message is the one given in the otherwise admirable
above mentioned text by Ross Star ([25], p.138):

"What are we to make of the Uzawa Equivalence Theorem? It says
that the use of the Brouwer Fixed-Point Theorem is not merely one
way to prove the existence of equilibrium. In a fundamental sense,
it is the only way. Any alternative proof of existence will include,
inter alia, an implicit proof of the Brouwer Theorem. Hence this
mathematical method is essential; one cannot pursue this branch of
economic without the Brouwer Theorem. If Walras failed to provide
an adequate proof of existence of equilibrium himself, it was in part
because the necessary mathematics was not yet available."

Obviously, Ross Starr and others advocating a one-dimensional mathematization
of equilibrium economic theory have paid little attention to even the more obviously
enlightened visions of someone like Smale, who has thought hard and deep about
computation over the reals (cf:,for example, [5] ):
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“We return to the subject of equilibrium theory. The existence theory
of the static approach is deeply rooted to the use of the mathemat-
ics of fixed point theory. Thus one step in the liberation from the
static point of view would be to use a mathematics of different kind.
. . . Also the economic equilibrium problem presents itself most di-
rectly and with the most tradition not as a fixed point problem, but
as an equation, supply equals demand. Mathematical economists have
translated the problem of solving this equation into a fixed point prob-
lem.

I think it is fair to say that for the main existence problems in
the theory of economic equilibria, one can now bypass the fixed point
approach and attack the equations directly to give existence of solu-
tions, with a simpler kid of mathematics and even mathematics with
dynamic and algorithmic overtones.”

[22], p.290, italics added.
So, what are we to do? I do not think the situation as far as computational

underpinnings for economic theory, even for equilibrium economic theory, is as des-
perate as it may seem from the above discussions and observations. After all, that
great pioneering equilibrium theorist, Irving Fisher, untrammelled by the powers of
the digital computer and its mathematics, resorted in a natural way to analogue com-
puting. However, if we, in an age dominated by the digital computer want to preserve
the edifice of orthodox equilibrium theory, and also want to make it computable or
to constructivize it, then there are several alternative routes to take. The obvious
way, the Irving Fisher way, is of no use since our starting point is the dominance of
the digital computer. The alternative ways are to harness one of the theories of real
computation, say the kind being developed by Smale and his several collaborators, or
the approach of Pour-El and Richards and so on. My own suggestion is the following.

In addition to the above caveats and facts, suppose I also introduce the mathe-
matically minded student to the following constructive recursion theoretic fixed point
theorem (cf., for example, [18], pp. 158-9)

Theorem 3. There is a total recursive function f such that, ∀x, if φx is total,
then we have φh(x) = φφx(h(x)).

In other words, given any total function f = φx the fixed point x of f can be
computed through the use of the total recursive function h.

If I, then, work backwards and re-build the economic theoretic formalizations mak-
ing sure, at each step, that the constituent functions, definitions, and elements are all
consistent with the applicability of the recursion theoretic fixed point theorem. Then,
of course, the theorem can be applied to prove the existence of an economic equilib-
rium which will be as much Walrasian as the Arrow-Debreu formalization - indeed,
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more so. After all, Walras’ times were long before compactness, the Brouwer fixed
point theorem, the completeness axiom, the separating hyperplane theorems and so
on. Walras and Pareto were writing at a time when Picard’s iteration and rudimentary
contraction mappings were the metaphors on the basis of which to understand iter-
ation and equilibrium processes. Nothing more complicated than variations on these
concepts are involved in the above recursion theoretic fixed point theorem - not even the
completeness axiom, let alone compactness, continuity and all the other paraphernalia
of the limit processes underpinning real analysis.

It may well be true that ‘Walras failed to provide an adequate proof of existence
of equilibrium himself’. It may even be true that ‘it was in part because the necessary
mathematics was not yet available’. But it certainly does not imply, as noted by Smale
in a different way, that ‘the Brouwer Fixed-Point Theorem .. is the only way .. to
prove the existence of equilibrium’. Nor does it mean that ‘any alternative proof of
existence will include .. an implicit proof of Brouwer’s Theorem’. This kind of danger-
ous claim, even while utilizing the Uzawa Equivalence theorem to build the vast edifice
of a Computable General Equilibrium structure that is computably and constructively
untenable, compounds ignorance of the mathematics of computation, particularly via
the digital computer, and, even more importantly, the world of mathematics itself.
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3. Economic Theory in the Computational Mode

"The term ’computing methods’ is, of course, to be interpreted broadly
as the mathematical specification of algorithms for arriving at a so-
lution (optimal or descriptive), rather than in terms of precise pro-
gramming for specific machines. Nevertheless, we want to stress that
solutions which are not effectively computable are not properly solu-
tions at all. Existence theorems and equations which must be satisfied
by optimal solutions are useful tools toward arriving at effective so-
lutions, but the two must not be confused. Even iterative methods
which lead in principle to a solution cannot be regarded as acceptable
if they involve computations beyond the possibilities of present-day
computing machines

[3] p.1712.

If we are to take these thoughts seriously, and remember Stone’s admonishment,
then I suggest that we reorient our activities as economic theorists in the computational
mode with the following strategies in mind13:

• · The triple {assumption, proof, conclusion} should be understood in
terms of {input data, a lg orithm, output data}.

• · Mathematics is best regarded as a very high level programming lan-
guage.

• · In constructive, computable and (constructive) nonstandard analysis,
every proof is an algorithm.

• · To understand a theorem (in any kind of mathematics) in algorithmic
terms, represent the assumptions as input data and the conclusions as output
data. Then try to convert the proof into an algorithm which will take in the
input and produce the desired output. If you are unable to do this, it is
probably because the proof relies essentially on the law of excluded middle.
This step will identify any inadvertent infusion of non-constructive reasoning.

• · If we take algorithms and data structures to be fundamental, then it is
natural to define and understand functions in these terms. If a function does
not correspond to an algorithm, what can it be? Hence, take the stand that
functions are, by definition, computable or constructive.

• · Given a putative function f , we do not ask “Is it computable?”, or "Is
it constructive?", but rather “What are the data types of the domain and of
the range?” This question will often have more than one natural answer, and
we will need to consider both restricted and expanded domain/range pairs.
Distinguishing between these pairs will require that we reject excluded middle
for undecidable propositions. If you attempt to pair an expanded domain for

12I am indebted to my friend and colleague, Enrico Zaninotto, for bringing this paper
and, in particular, to this important, early, observation by Arrow, et.al, to my attention.

13I have been influenced to formulate a strategy in this way by a reading of [14].
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f with a restricted range, you will come to the conclusion that f is non-
computable or non-constructive.

None of these steps are part of the standard repertoire of textbooks, research
methodologies or traditions of economic education and practice. No one can contem-
plate a seriously mathematical, empirical or experimental study of economics without
following the above strategy, or some variant of it, if computations by a digital com-
puter is to be a vehicle for modelling, testing and inference.

This strategy,I think, will lead to a formulation of the existence problem as a
decision problem in the recursion theoretic sense. In particular, we will be more
precise in choosing the domain of definition of economic variables and not blindly
and arbitrarily let them be the real numbers. I envisage a day when the ‘economic
problem’ will become a decision problem for the solution of diophantine equations.
What kind of theorems could we hope to devise if we follow this strategy? I put it
this way because, of course, I expect us, as mathematical economists, to have left
Cantor’s Paradise — not driven away — voluntarily; I expect, also, that we would have
abandoned Plato in his caves, contemplating ideal existence, inferred from shadows of
the mind. Theorems would be invented, not discovered. When theorems have to come
with a recipe for construction, we will also wonder about the costs of construction,
costs in the widest economic sense. Thus, economists will have to come to terms with
the theory of computational complexity and try to go beyond worst-case analysis.

If we take too seriously statements like the following, where the implicit assump-
tion is that ‘theorems’ are the exclusive prerogative of the Formalists, the Bourbakians
and varieties of Platonists, then we may be entrapped in the belief that mathematical
economics can only be practised in one, unique, way:

“My guess is that the age of theorems may be passing and that of
simulation is approaching. Of course there will always be logical mat-
ters to sort out, and our present expertise will not be totally obsolete.
But the task we set ourselves after the last war, to deduce all that
was required from a number of axioms, has almost been completed,
and while not worthless has only made a small contribution to our
understanding.”

[15], p. 258; italics added.

The age of theorems of a particular kind of mathematics may be passing; after all
nothing has been heard from the Bourbakian stables for quite a number of years (cf.
[9]). But not new kinds of theorems, those based on numerically meaningful assump-
tions and with computationally rich implications. One of the great merits of recursion
theory and constructive mathematics is the explicit awareness and recognition that
mathematical concepts are, often, formalizations of intuitive concepts; that in the for-
malization, which is always pro tempore, blurred borderlines are the order of the day.
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The traditional mathematical economist does not bat an eyelid when accepting the
ε − δ definition of continuity even in economic contexts without wondering whether
it is appropriate. The recursion theorist or the constructive mathematician is not
that cavalier. Two of the great achievements of 20th century mathematics were the
mathematical formalization of the intuitive concepts of effective calculability and ran-
domness. The recursion theorist is happy to work with theses that capture, again pro
tempore, the intuitive contents of such terms, honed by centuries of experience. The
real analyst is less disciplined. What would the Bourbakian mathematical economist
say if I assert that ‘topological space’ does not necessarily capture the full intuitive
content of continuity? What would the computable economist say if I said that the
Church-Turing thesis does not capture the intuitive content of effective calculability?
Or how would the applied recursion theorist react to a counter-example to the thesis
on randomness put forward by Kolmogorov-Chaitin-Solomonoff-Martin-Löf ? I am
sure the latter two - the computable economist and the applied recursion theorist -
will happily adjust their mathematical concepts rather than force the intuitive notions
to conform to the formal ones. I am not sure about the Bourbakian or Formalist
mathematical economist, who must have known, for decades, for example, that the
topological definition of continuity is intuitively inadequate, or that the Heine-Borel
theorem is invalid in Computable Analysis, or that the Bolzano-Weierstrass Theorem
is false in Constructive mathematics, but continues (sic!) to plague economic formal-
ism with definitions that rely on them, as if they were indisputable truths. How can
such a formalism adapt to the age of the digital computer?

The main message of this paper is very similar in spirit to the epistemological and
methodological points made by Tommaso Toffoli many years ago (cf, [28]). Indeed,
reading his paper, substituting ’mathematical economics’ for ’mathematical physics’,
makes my case quite clearly (p.117-8; italics in the original):

"Mathematical physics, both classical and quantum-mechanical is
pervaded by the notion of a ’continuum’, that is, the set R of real
numbers with its natural ordering and topology. .... How do we man-
age to specify some constructive way the behavior of a system beset
by so many uncountable infinities? ....[In] modeling physics with the
traditional approach, we start for historical reasons .. with mathe-
matical machinery that probably has much more than we need, and
we have to spend much effort disabling or reinterpreting these ’ad-
vanced features’ so that we can get our job done in spite of them.
On the other hand, ..., we outline an approach where the theoretical
mathematical apparatus in which we ’write’ our models is essentially
isomorphic with the concrete computational apparatus in which we
’run’ them.’

The difference is that I am not as wedded to the power of cellular automata as
fruitful repositories of economic metaphors as Toffoli is for them as vehicles for mod-
eling physics. This is partly because, paradoxically, I believe economic statics remains
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an important field in its own right and, therefore, getting our formal language more
appropriate for both dynamics and statics entails getting our mathematical theorising
less ad hoc.
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CHAPTER 3

Preplexed in the Tangled Roots of the Busy
Beaver’s Ways

“.. [T]he efforts to construct examples of non-computable functions
reveal the general conviction that over and beyond the class of com-
putable ... functions there is a much wider class, the class of well-
defined functions. The scope of this latter class is vague; in
some quarters, there exists a belief that this class will be
defined some day in precise terms acceptable to all.”

Tibor Rado (1962), p.877; bold emphasis
added.

1. Preamble

“Of course, unless one has a theory, one cannot expect much help
from a computer (unless it has a theory) except for clerical aid in
studying examples; . . . ”

Marvin Minsky (1967), pp. 267-8 (italics in
original).

I have often1 expressed disquiet at the prevailing practice in mathematical eco-
nomic circles of what seemed a tacit acceptance of the belief that the computable
functions were a subset of a larger class of more generally defined and routinely ac-
cepted functions. In the years since this disquiet first manifested itself in my thoughts,
I have been mulling over the reasons for the tacit belief, in orthodox circles, for this
unwarranted belief and, occasionally, lectured on why it is unwarranted and have tried
to suggest an alternative vision. Given this opportunity to be in the company of prac-
titioners of the noble art of experimenting with simulations gave me also the chance
to make a preliminary attempt at making explicit this alternative vision.

1Francesco Luna’s perceptive comments saved me from gross errors and also helped improve
the statement of theorem 2 and the proof of proposition 1A. pedro campesino (who refuses to use
upper case letters and maintains that the tamil alphabet has survived quite admirably without any
distinction between upper case and lower case and is prepared to give other such counter-examples)
is responsible for all remaining errors, omission and infelicities.
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As I understand it2 , agent based-modelling, and its subsequent simulation, is
generally implemented in so-called object oriented programming languages. Agent-
based modelling has, of course, a long and venerable tradition in economic theory. It
is the emphasis on computational aspects that makes modern agent-based modelling
somewhat novel and different from the traditional approaches3. The computational
aspect is realized via the medium of object oriented programming in general and
SWARM and other similar languages, in particular.

Given the chosen medium of modelling, viz., object oriented programming, it is
clear that the agents, their abstract structure — both static and dynamic — and their
interactions will be couched in the categories that characterize this medium: abstrac-
tion, encapsulation, inheritance and polymorphism. More particularly, any algorithm
expressed in an object oriented language is a set of object definitions and rules that
characterize object interactions. Given the quadruple that characterize any object
oriented language, the object definitions and rules are, inevitably, recursively defined.
Hence it is natural that the computational aspects are, without exception, recursive
in the precise sense of recursion theory (or computability theory)4.

Whether the practitioners of agent based modelling via the medium of object
oriented programming state it explicitly or not, are consciously aware of it or not,
the class of functions they implement in all their simulations belong, therefore, to
the mathematics of recursion theory (or, in possible generalizations, some variety of
constructive mathematics5). I shall, therefore, frame my discussion of the tangled
roots of the Busy Beaver’s ways by also keeping in mind the fact that it will have
implications, however indirect and tenuous they may seem at one remove, for the
experimental simulations, in the language of object oriented programming, of agent-
based modelling.

I have, however, a more direct and immediate reason for framing the presentation
of the activities of the members of the Busy Beaver club in the context of the general
research strategy adopted by agent-based modellers. This strategy, if I am even only
reasonably correct, relies on connecting a collection of finite automata with rules of

2An understanding gleaned from a reading of the following two volumes on agent-based modelling
(Luna & Stefansson, 2000, Luna & Perrone, 2002), but with the caveat that I am very much of an
external observer of these admirable attempts to make economics a laboratory subject. My own view
on how economics should be made a laboratory subject is diametrically opposed to the conventional
traditions of experimental economics. But that is another story and for another time.

3Herbert Scarf and the late Herbert Simon will, of course, have some valid objections to such an
assertion.

4But, of course, they can also be recursive in the more general sense of constructive mathematics
of any variety - i.e., Bishop-style constructivism, ‘Russian’ constructivism, traditional ‘Brouwer-
Heyting’ constructivism, etc.

5As mentioned also in the previous footnote. I have, however, in mind the three kinds of
constructive mathematics that will be mentioned in the next sections: Brouwerian intuitionistic
constructivism, Bishop-style constructivism and Russian constructivism, although there are others
(for example Aberth-style constructive mathematics which is a kind of hybrid of computable analysis
and Russian constructivism). For reasons of space I omit mentioning the constructive traditions of
non-standard analysis.
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interaction — possibly also meta-rules for a subclass of rules to allow them to change
during the dynamic interactions — which are initialised to a particular configuration
that is in some sense faithful to an aspect of economic theory. A dynamic is imple-
mented when particular parameters are chosen, from a feasible set, to set in motion
the rules of interaction.

This interpretation of the research strategy — or is it better described either as a
research programme of the Lakatosian variety or, perhaps, even better, as a research
tradition in the Laudan sense — implies two important considerations. The first is
obvious: agent-based modelling is intrinsically dynamic and, hence, one can interpret
them as dynamical systems in the formal sense. Following on from this interpretation
there is, then, a secondary inference, since the caveat computational seems usually to
be added to characterize the practice of agent-based modelling — to refer to it with the
acronym ABCM, i.e., agent-based computational modelling. The secondary inference,
therefore, is that these dynamical systems are, almost without exception6 , discrete
and, hence, can be studied on appropriate lattices as generalized cellular automata.

The second implication is more subtle but also more pertinent to the main subject
matter of this paper. In all of the exercises in agent-based computational modelling
that I have studied7 the aim seems to have been to study the apparent patterns that
emerge from extensive simulations and identify them with the accepted stylised facts
of standard theory. This is an inversion of normal practice, but so much the better
for it. However, the attempts to identify emerging (collective) patterns implies that
the system as a whole is capable, at the minimum, of self-reproduction — to put it
more prosaically, to ‘keep going’. So far as I can see, in practice there seems to be
much more than ‘simple reproduction’8; there is, almost always, a dynamical evolution
into basins of attraction that signal something akin to evolution (or at least expanded
reproduction — i.e., growth).

In other words, starting from a collection of simple (measured in a precise quantita-
tive and qualitative senses) and simply connected finite automata, which can, without
loss of generality, be assumed arranged on a lattice, there is an evolution into a col-
lective automaton that is capable of self-reproduction (and, in general, more9). This
is a tacit assumption, and I believe a justified one. But it is, of course, theoretically
unsatisfactory and adds a whiff of ad hockery to the research enterprise.

The other aspect of this evolution is the claim that it leads to a so-called emergent,
complex, aggregative pattern that mimics real-time data. One of my concerns in this
paper is to make precise a notion of complexity that can be associated with the evolved
collective automaton that is capable, at least, of self-reproduction. To do this I shall

6I do not know of any exceptions.
7And I may not even have scratched the surface of the vast and constantly growing literature

on the topic so that this implication may not be quite as accurate as I wish it to be.
8I have not chosen this Marxian phrase quite as frivolously as it may seem!
9To be consistently, unfashionably and terribly Marxian about it, expanded reproduction, is the

phrase I should use, again not frivolously. I could, of course, simply resort to the language of growth
theory, particularly the von Neumann variants of it (cf. Velupillai, 2003a).
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try to exploit the analogies between
P
(n), the busy beaver function, and Chaitin’s

Ω10 .
My reason for placing the discussion and description of the activities of the mem-

bers of the Busy Beaver club in the context of an ABCM exercise is, therefore, also
to be able to give some theoretical coherence to what may seem, to unsympathetic
adherents to traditional ways of thinking, as atheoretical simulation mania11.

The paper is organised as follows. In the next section I discuss, briefly and in very
general terms, the concept of function as defined and used in alternative mathematical
traditions. This discussion is the backdrop against which I try to understand the
nature and scope of uncomputable functions. In §3,there is a straightforward definition
and description of the activities of members of the busy beaver club and, to the extent
it is formally possible, I also try to characterize them. Can the universe generated by
agent-based simulations contain a busy beaver? If so, how will the evolution of the
dynamics of agent-based modelling simulations be tamed? If not, how can the agent-
based computational model continue its dynamic evolution without dying away? Such
questions, and related ones, should be the kind of questions one can raise on the basis
of the results and exercises of this section. In §4 I indulge in some formal exercises:
proofs and paradoxes inherent in proofs. In the concluding section, §5, I suggest some
strategies, having been humbled by the busy beaver, for humbling it.

2. Functions

“If we take algorithms and data structures to be fundamental, then
it is natural to define and understand functions in these terms. The
phrase ‘non-computable function’ then becomes problematic, and the
understanding which sees almost all functions as non-computable be-
comes mysterious. If a function does not correspond to an algorithm,
what can it be?”

Newcomb Greenleaf (1991), p.224 (italics in
original).

10A fuller discussion of the Complexity Vision in Economics can be found in Velupillai, 2003b.
11There are some adventurous claims and attempts in Corazza and Perrone and Delli Gatti et.al.,

(cf. Luna & Perrone, op.cit, chapters 6 & 7 respectively). There is hardly any connection between
the dynamical model of the theoretical part and the SWARM simulation model used by Delli Gatti
et.al. In fact a serious dissection of the constraints imposed on the basis of theoretical considerations
— economic and mathematical: for example assertions about approximating a continuum assumption
(p.p.168 & note 7, p.184) — in the first part of their paper will show that they cannot be satisfied by
a simulation model of the SWARM type. Bruun’s perceptive observation (Luna & Perrone, op.cit.,
p.29) pre-empts any need for me to elaborate on the lack of any connection between an ABCM
philosophy and the model and modelling strategy adopted in Corazza and Perrone. I do not wish to
have these negative remarks misconstrued. I make them because I am afraid the easy availability of
simulation platforms may lead to careless applications and the tight connection between theoretical
model construction and validation by simulation may be forgotten by overenthusiastic ad-hockeries.
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What is a function? A programmer, not necessarily confined to object oriented
programming, is more than likely to answer this question in the language of conven-
tional discourse by saying that ‘a function is a named, and often enumerated, collec-
tion of statements that performs a specific task’. The emphasis being on ‘performing
a task’. This answer retains fidelity with the ordinary understanding of the meaning
of the word ‘function’.

Historically, at least in mathematics, the meaning of the concept function was
intimately tied to the notion of a rule, a procedure, a set of instructions to perform
a task. In particular, a function f was supposed to enable us to calculate, given a
real number x, another real number f(x) such that whenever x Q y, then f(x) Q f(y).
Following this tradition, in economic theory, particularly in its mathematical modes,
it is often explicitly, and always implicitly, assumed that a function is defined and
characterized in the (Dirichlet-) Kuratowski12 sense:

Definition 7. A function f : A→ B is any subset f ⊆ (A×B) which satisfies:
(∀x ∈ A) (∃y ∈ B) s.t (x, y) ∈ f&(x, y0) ∈ f ⇒ y = y0;(A and B are the domain and
range sets, respectively).

However, this definition makes complete sense only within set theory. The defini-
tion has severed the connection with the meaning attributed to the word in ordinary
discourse: there is little sense in which it can be understood to ‘perform a task’. The
idea of a rule, encapsulated within the definition of the concept of function has dis-
appeared. In a sense, all alternative mathematics can be viewed as an attempt to
resurrect this classical notion of a function as a rule to perform a task.

For example, the following ‘formulas’ for computing the square of two numbers
defined on the reals are equivalent in the ‘function as a graph’ definition implied by
the above (Dirichlet-)Kuratowski characterization:

f (x, y) = (x+ y)
2(2.1)

g (x, y) = x2 + 2xy + y2

However, as tasks to be performed, say on a computer via a simple program, they
result in different sets of instructions (cf. Moschovakis, 1994, p.41). Whether the
notion of a function that is based on ‘performing a task’ can be represented in set
theory in such a way as to capture its full intuitive content remains an open question.

Despite this elementary fact, economists cavalierly move from one domain of defi-
nition of functions to another, with princely unconcern for the logical, computational
and descriptive fallacies that may well be inherent in any such transfer.

12I add the name Dirichlet to the more accepted naming which, justly, credits Kuratowski, for
historical reasons. So far as I know the first ‘rigorous’ definition of a function, acceptable to the
mathematical community, was given by Dirichlet for an open, continuous, interval (cf. Hobson (1927:
p.274): ‘It thus appears that an adequate definition of a function for a continuous interval (a,b) must
take the form first given to it by Dirichlet’. (cf. also J.P.G.L Dirichlet, 1889-1897, Vol.1, p. 135). The
only economist, as far as I know, who has raised explicit doubts about the adequacy of the Dirichlet
definition of functions for economics is Georgescu-Roegen ( 1971).
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There is, however, a way out; indeed several ways out of this seeming dilemma.
Using the kind of type theory developed by Martin-Löf (1972)13 it is possible to rein-
terpret sets as problem descriptions. In this case, then, the interpretation extends to
viewing sets as a specification of a programming problem. In the former case, the
elements of the sets are the possible solutions to the problem. In the latter case, the
elements of the set are the programs that satisfy the specification. These ideas and in-
terpretations go back to Kolmogorov’s masterly interpretation of Intuitionistic Logic
(Kolmogorov, 1932)14.

I do not see any difficulty in reinterpreting any work of formalization implemented
in object-oriented programming languages such that the sets and the elements of sets
in discourse are problem descriptions and possible solutions, respectively. The novelty
lies in understanding that such a reinterpretation carries with it an adherence to some
kind of constructive mathematics, even if not a full basis in intuitionistic logic.

Thus the class of primitive objects, and their data structures, considered as func-
tions in different mathematical traditions, are not, in general, equivalent to each other.
There are no uncomputable functions in any variety of constructive mathematics. The
issue does not even arise in classical mathematics. It is, in fact, only in recursion the-
ory that the distinction between computable and uncomputable functions is explicitly
made. This is the unfortunate reason for the uninitiated and the uninformed to focus
on the apparent fact that the computable functions are only (sic!) a subset of a more
general class of functions. A fortiori, the uncomputable functions are pathological,
but even this only from the particular and idiosyncratic perspective of the recursion
theorist.

In defining and describing the activities of the members of the Busy Beaver Club
in the next section, I shall begin with the jaundiced vision stated at the end of the
above paragraph. However, I shall try to disabuse myself, and those others who share
such a view, with an alternative interpretation of the activities of the members of the
Busy Beaver Club. The rest of the discussion in this section is made with a view
to provide a background to that alternative vision which will, I hope, convince the
jaundiced, the sceptics and all others that there are no pathologies involved in the
perfectly idiosyncratic activities of the Members of the Busy Beaver Club.

Let me return to the initial question: what is a function? How do different
mathematical traditions confront the task of answering this question? All traditions15

13Martin-Löf’s type theory was developed with the principal aim of clarifying constructive
mathematics.

14In my own recent work on formalizing Herbert Simon’s thoughts on problem solving I have had
occasion to use Kolmogorov’s interpretation on Intuitionistic Logic, but I had been groping towards
this usage when struggling to complete the manuscript of my Ryde Lectures (cf. Velupillai, 2002a and
pp.181-2, in Velupillai, 2000). When preparing the Ryde Lectures I conjectured that an algorithmic
logic — i.e., a programming language - could be developed from Kolmogorov’s results. I did not know
at that time of Martin-Löf’s impressive work in this direction (although I was fully conscious of his
work on Kolmogorov Complexity).

15Although it may appear slightly paradoxical, I have no hesitation in including nonstandard
analysis in the constructive tradition. Ever since Leibniz chose a notation that was conducive to
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, with the notable exception of what, for want of a better name, I shall call ‘classical
mathematics’, try, each in their own way, to retain fidelity to the ordinary meaning of
the word ‘function’ in their specialised characterizations within each discipline and to
the classical idea of function as a rule to perform a task.

Thus, in Bishop-style constructive mathematics, all existence proofs are construc-
tive in the precise sense that every proof can be implemented, in principle, as an
algorithm in a computer to demonstrate, by explicit construction, the object in ques-
tion. As a by-product of such a discipline, all functions are required to be uniformly
continuous in each closed interval. In other words, if mathematics is about proving
theorems and if proofs are to be constructive — i.e., performable, at least in principle,
as tasks described by a sequence of explicit instructions — then functions must be
characterized in a certain, precise, way. Thus, Bishop-style constructive mathematics
retains fidelity with the ordinary meaning of the concept of function by endowing it
with certain mathematical properties — i.e., uniformly continuous in each closed in-
terval — such that when they are used in the activities of a mathematician — proving
theorems — they will facilitate the ‘performance of tasks’. This ingenious approach
obviates any need for a rule to determine an arbitrary real number and, in one fell
swoop, also avoids invoking anything like a Church-Turing Thesis.

On the other hand, in that variant of constructive mathematics known as Brouw-
erian Intuitionistic mathematics, the starting point is what is called ‘free choice se-
quences’ — where a rule for determining a real number was a result of free choices by
an autonomous human intelligence, independent of the strictures of the undecidable
disjunctions of classical logic. This assumption implied that in Brouwerian intuition-
istic mathematics all functions from the reals to the reals are continuous. Here, too,
starting from a metatheoretic assumption, construction of mathematical objects by
‘free choice sequences’, based on what Brouwer considered was the domain of activity
of the mathematician — his or her autonomous intelligence — one was led to consider
a characterization of functions that obviated the need to invoke rules. Hence there
was no need to appeal to a class of exogenous rules by way of accepting a ‘thesis’, as
in recursion theory. The functions utilized in Brouwerian intuitionistic mathematics,

computation in his approach to the differential and integral calculus, a notation that has survived even
in the quintessentially non-computational traditions of classical real analysis, non-standard analysis
has been developed with a clear view of applicability from the computational point of view. Indeed,
the first modern model of non-standard analysis by Schmieden and Laugwitz (1958), (i.e., after the
neglected work by Veronese (1891) at the end of the 19th century ), was essentially constructive.
An excellent, readable and pedagogical exposition of these issues is given in Palmgren (1998). As
for why Veronese’s work remained unrecognised, in spite of extensions and genralizations by some
of his eminent pupils (Levi-Civitta, more than anyone else), I have my own explanations. One was
that Veronese’s more famous Italian contemporary, Peano, dismissed the work as lacking in rigour;
the other was Russell’s exaggerated assertion, a few years later, that the triple problems of the
infinitesimal, infinity and the continuum had been ‘solved’ and there was nothing more to be said
about them. Peano’s objection turned out to be temporary; Russell’s invalid. I cannot go into more
details here.
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therefore, retained fidelity to the ordinary meaning of the concept function, but by
coming to it in a roundabout way.

The simplest and the most intuitive way to characterize the Russian constructivist
school is to note that they append something like a Church-Turing Thesis to an oth-
erwise unmodified Bishop-style constructive system. This gives them some freedom to
expand the class of functions that can be used in constructions.

Finally, there is the class of computable functions considered in recursion theory.
The most direct way of describing these functions is to say that they are that subset of
the functions defined in classical mathematics, which can be implemented on a Turing
Machine. Then, invoking the Church-Turing Thesis, one identifies them, depending
on the aims of the analysis, as the class of partial recursive functions or Church’s λ-
definable functions, etc. Then, by way of elementary counting arguments it is shown
that there are ‘only’ a countable infinity of Turing Machines and, hence, also of partial
recursive functions implying thereby that the complement of this set in the class of all
functions considered in classical mathematics contains the uncomputable functions.

It is at this stage that much discontent arises16 because the mischievous adherents
of a classical mathematical approach to economic theory would, in seeming innocence,
ask the heretic: ‘If there are so many uncomputable functions, indeed as many as an
uncountable infinity, could you kindly show me a simple one and, in particular, one
which makes economic sense — i.e., one that is used routinely in economic theory.’ The
stumped heretic gropes around for an intelligent answer, which he or she feels in the
guts must be ‘out there’, but eventually has no alternative than to rehash a diagonal
argument or, sheepishly, start describing the activities of the Members of the Busy
Beaver club. This, of course, plays straight into the hands of the complacent idealist,
residing in the marble halls of the citadel of traditional economic theory.

There is, however, another way to approach the problem of uncomputability. Tak-
ing a cue out of the strategies adopted by Bishop-style constructivists, Brouwerian
Intuitionists and the Russian Constructivists, the computable economist can try to
abandon the starting point of using classical mathematics as a benchmark from which
to define computability. It is this strategy I shall adopt to bring into the fold of com-
putable functions even those exotic activities of the Members of the Busy Beaver Club.
Just as the starting point of the Bishop-style constructivists was a class of functions
all of whose members were uniformly continuous on every closed interval or that of the
Brouwerian Intuitionists was the class of functions such that each member mapped
members of the reals to reals continuously, the computable economist’s starting point
should be that all functions are computable.

But there is another important sense in which the computable economist should
mimic the strategies of the Bishop-style constructivists and the Brouwerian Intuition-
ists. Their choice of a class of functions — rules — was based on a prior philosophy

16My disquiet arose at this point and I was much gratified to know, some time later, that this
was also the origin of a similar uneasiness experienced by my friend, Francesco Luna.
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of the kind of activity that they considered appropriate for the activity of the math-
ematician: proof by construction. Similarly, the computable economist’s focus is on
computation. Hence the impetus given by the exotic behaviour of the Members of
the Busy Beaver Club should encourage the computable economist to re-examine the
elementary building blocks of the discipline: data structures and rules. Now, clearly,
nothing can be done about the rules of recursion theory, at least for the moment:
the Church-Turing Thesis dominates. It will, therefore, not come as a surprise if I
release the plot and announce in advance that the key to bringing into the fold of
the computable those exotica generated by the members of the Busy Beaver Club will
be a re-examination of the kind of domain and range that one must use for the data
structures of the computable economist.

3. The Busy Beaver: Definitions and Discussion

“With the possible exception of bees, beavers are the busiest ani-
mals alive. All day they ply quiet northern waters bringing twigs and
branches to their dam. It was undoubtedly this behaviour that led Ti-
bor Rado of Ohio State University to name a certain Turing-machine
problem the Busy Beaver Game.”

Dewdney (1984), p.10.

So far as I know, all the known discussions, formalizations and results about
members of the Busy Beaver Club have been in framed in terms of Turing Machines
(henceforth, TMs)17 . Moreover, the TMs have been characterized either by their
program card equivalents, as in the pioneering papers by Rado (1962) and Lin and
Rado (1965)18 ; or by the flow-graph definition popularised in the classic textbook of
Boolos and Jeffrey (1989). I shall follow the former tradition.

Consider the following 3-card TM (3-state TM)19:

The meaning of the above table is as follows. Card (I) instructs the TM, when
its tape head reads a blank (#), to overwrite it with a ‘1’, move the tape head one
square to the left and begin reading card (II). If, on the other hand, the tape head is

17A more formal definition of Turing Machines is given below, at the end of this section.
18“. . . [A] Turing machine is not a machine, but rather a program (set of instructions) spelled out

in a fixed format . . . . The instructions are specified on a finite number of ‘cards’; . . . The term ‘card’
seems preferable to the term ‘state’ or ‘internal configuration’, since the idea of a Turing machine is
not dependent upon physical computers.” (Lin & Rado, op.cit, p.196)

19I constructed this 3-card TM simply by transposing the shift instructions in the analogous TM
table in Machlin and Stout (1990), p.87; i.e., by changing the Left shifts to Right shifts and vice versa.
It was only at a later stage that I discovered that this ‘transposed’ 3-card TM is exactly identical to
the one given in Rado’s original paper (op.cit., p.878)! I do not, of course, know whether Machlin and
Stout constructed their 3-card TM by such a ‘symmetric’ transposition of the shift instructions of the
original Rado table! Rado’s original discussion does not give, explicitly, the sequence of instantaneous
configurations. This accidental discovery led to the conjecture that only half the finite number of
Busy Beavers need be discovered for any given n-card TM.
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# 1
(I) 1L (II) 1R (III)
(II) 1R (I) 1L (II)
(III) 1R (II) 1L (∅)
Table 1. 3-card TM-A

InitialConfiguration .......#(I).......
Shift 1 : .......#(II)1.......
Shift 2 : .......11(I).......
Shift 3 : .......11#(III).......
Shift 4 : .......111#(II).......
Shift 5 : .......1111#(I).......
Shift 6 : .......1111(II)1.......
Shift 7 : .......111(II)11.......
Shift 8 : .......11(II)111.......
Shift 9 : .......1(II)1111.......
Shift 10 : .......#(II)11111.......
Shift 11 : .......11(I)1111.......
Shift 12 : .......111(III)111.......
Shift 13 : .......11(∅)1111.......

Table 2. Sequence of Instantaneous Configurations of the activities
of the 3-card TM-A

set against a square on the tape with a ‘1’ on it, then leave it as it is, shift one square
to the right and begin reading card (III). Similar meanings are to be attributed to all
instructions cards for TMs, of which there are three for the above 3-card TM.

Now initialise the above 3-card TM on a blank tape (the blank squares on the
tape, infinite in both directions, are denoted by ‘dots’ in sequence of instantaneous
configurations20 given below) and let it commence its activities. The result is the
following sequence of instantaneous configurations:

The sequence of instantaneous configurations of the activities of the above 3-card
TM is given in the following diagram:

As we can see, this 3-card TM, initialsed with card 1 facing an infinite blank tape,
makes 13 shifts and halts after writing six 1s.

Consider, now, the following 3-card TM:
The sequence of instantaneous configurations of the 3-card TMB is the following:
This 3-card TMB, initialised like the previous one, makes 6 shifts and halts after

writing three 1s.

20In Lin and Rado (op.cit, p.197) this is called an ‘operating record ’.

58



# 1
(I) 1L (II) 1L (∅)
(II) 1R (III) 1L (II)
(III) 1R (I) 1L (III)
Table 3. 3-card TM-B

.......#(I).......

.......#(II)1.......

.......11(III).......

.......1(III)1.......

.......#(III)11.......

.......1(I)11.......

.......#(∅)111.......
Table 4. Sequence of Instantaneous Configurations of the activities
of the 3-card TM-B

# 1
(I) 1L (II) 1L (∅)
(II) 1R (III) 1L (II)
(III) 1R (I) 1R (III)
Table 5. 3-card TM-C

It is easy to verify that the sequence of instantaneous configurations does not
terminate; there is, so far as can be inferred from an inspection of the sequence of
instantaneous configurations to any length that one wishes to examine, a recurrence
of the following pattern:

What are the lessons to be learned and the questions that can be asked from a
consideration of the activities of the above three 3-card TMs?

3.0.1. Queries and Observations.

(1) TMA and TMB halt after writing a certain number of 1s;
(2) For all we know, TMC is a ‘never-stopper’ (Lin and Rado, op.cit., p.204),

repeating the sequence shown in Fig.3;
(3) The total number of 3-card TMs is finite and is given by21 : [4(3 + 1)]2x3 =

16, 777, 216;
(4) What is the maximum number of 1s any halting 3-card TM can write?
(5) Is there a method — i.e., algorithm - to determine this maximum number for

any given n-card TM?

21The formula for determining the total number of n-card, 2-symbol, TMs is [4 (n+ 1)]2n .
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.......#(I).......
..............
..............

·
·

.......1(II)111.......
.......#(II)1111.......
.......1(III)1111.......
.......11(III)111.......
.......111(III)11.......
.......1111(III)1.......
.......11111(III).......
.......11111#(III).......
.......111111#(I).......
.......111111(II)1.......

·
·

.......1(II)111.......
.......#(II)1111.......

Table 6. Sequence of Instantaneous Configurations of the activities
of the 3-card TM-C

(6) How many shifts, S, would a TM that writes such a maximum number make
before halting and is there a method to determine this number for any given
n-card TM?

(7) Does halting and ‘never-stopping’ recurrence exhaust the possible patterns
of a sequence of instantaneous configurations of 3-card TMs? In other words,
are there non-recurring ‘never-stoppers’?

(8) If the answer to the second part of 7 is in the affirmative, do such non-
recurring ‘never-stoppers’ encapsulate within themselves a code for ‘self-
reproduction’?

(9) Is there a method, a rule, an algorithm, to partition the totality of the 3-
card TMs, i.e., the 16,777,216 TMs, into, say, the three classes of recurring
‘never-stoppers’, non-recurring ‘never-stoppers’ and halting machines?

(10) If there is such a method, is it applicable in general — i.e., to partition the se-
quences of instantaneous configurations of any given n-card TM into distinct
classes of recurring and non-recurring ‘never-stoppers’ and halting machines?

(11) Clearly, the answers to 4 and the first part of 6, call the values, pro tem-
pore,

P
(3) and S(3) respectively, are determined numbers.

P
(3) is, after

all, the maximum of a finite set of numbers. Once this is determined, the
corresponding TMs can be implemented on a blank, two-way infinite tape,
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and the number of shifts up to the halting state can simply be counted to
give the value of S(3).

(12) Extrapolating from the reasoning for
P
(3) and S(3), can we say that

P
(n)

and S(n) can also be determined — and, if so, is there a rule, an algorithm, to
calculate them? After all,

P
(n) is the maximum of a finite set of numbers!

The simpler answers are the following.
P
(3) = 6 and S(3) = 13. Thus, TMA is

a member of the Busy Beaver Club (cf. Def 2, below). This was determined and
clearly demonstrated in the classic Lin-Rado paper (Lin and Rado, op.cit.). Clearly,
using Rice’s Theorem and the theorem of the unsolvability of the halting problem
for TMs, it is easy to show that the answers to queries 9 and 10 are negative: i.e.,
there is no general purpose algorithm that can determine, given any n-card TM,
whether it belongs to the halting class or to one or the other of the two ‘non-stopping’
classes. The answers to 5, the second part of 6 and the second part of 12 are all
summarized in the formal ‘Proposition’ to be stated and proved, below: i.e.,

P
(n)

and S(n) are uncomputable. The answer to 7 is also clear: the three classes of halting,
recurring ‘non-stoppers’ and non-recurring ‘non-stoppers’ exhaust possible patterns for
the sequences of instantaneous configurations.

I conjecture that the answer to 8 is in the affirmative. I shall return to this
question in the concluding section. That leaves 11 and a part of 12 with a need for
clarifying comments. Let me backtrack just a little so that the clarifying comments
can be given with some perspective.

Tibor Rado introduced and defined a Busy Beaver in his classic paper: “On Non-
Computable Numbers” (Rado, op.cit). Till about the time Rado’s paper was published,
the standard way of demonstrating the existence of non-computable functions was to
diagonalize out of the collection of enumerable computable functions. Rado explicitly
stated the basic principle he used to construct a non-computable function:

“The examples of non-computable functions to be discussed below
will be well defined in an extremely primitive sense; we shall use only
the principle that a non-empty finite set of non-negative integers has
a largest element. Furthermore, we shall use this principle only for
exceptionally well-defined sets;. . . ”

ibid, p.877; italics added.
What is the connection between this ‘extremely primitive case’, based on a simple

and intuitively acceptable principle and the activities we defined above? It is the
following. Suppose an arbitrary TM is started scanning a square on a blank, infinite,
tape, halts after writing p (not necessarily consecutive) 1s, then the productivity of the
TM is p. However, any TM, initialised similarly, that does not halt — even if it does
‘write’ some 1s as it continues to operate, is defined to be of productivity 0. Thus we
can define the following total number-theoretic function,

P
(n) for the class of n-state

TM s , denoted by TM n :

Definition 8.
P
(n) ≡ Maximum productivity of any member of TMn and is

called the Busy Beaver Function.
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Definition 9. Members of the Busy Beaver Club are those n-card TMs (for any
given n), when initialised on a blank, two-way infinite tape, that write the maximum
number of 1s (not necessarily consecutive) on an otherwise blank tape and halt. The
Busy Beaver function is

P
(n) and the shift function associated with this is given by

S(n).

We know, from the above discussion, that the number of n-card TMs, ∀n, is a
finite integer value. Hence,

P
(n) is, obviously, a total number-theoretic function. It

follows, therefore, that
P
(n) is the largest number in a finite set of natural numbers

and the finite set of natural numbers, in turn, is the set of productivities of n-card TMs.
This, then, is how Rado uses the principle that a non-empty finite set of non-negative
integers has a largest element.

How, from this intuitive principle, does one go on to construct a non-computable
function without using a diagonal argument. For Rado explicitly states that he eschews
any reliance on this old workhorse22:

“It may be of interest to note that we shall not use an enumeration of
computable functions to show that our examples are non-computable
functions. Thus, in this sense, we do not use the diagonal process.”

ibid, p.877; italics added.

In fact the next step taken by Rado, after defining productivity and
P
(n), is

to invoke, implicitly, the implications of the Berry Paradox, in the special context
of computable functions as TMs23 . The Berry Paradox deals with the notion of
finite definability and is semantical in nature. Therefore, it is possible to describe the
construction of non-computable functions using a simple programming language.

Proposition 8.
P
(n) - and a fortiori S (n) - is uncomputable.

I shall give a slightly unconventional proof of this well-known proposition, in the
next section, in such a way that makes it possible to exploit analogies between

P
(n)

and Chaitin’s Ω.
I broached the theme of emergence in the opening pages of this paper. It is appro-

priate, at this point, to return to that topic. At a very general level of discourse, there
seems to be some consensus in stating that emergent behaviour is when ‘interesting’

22However, an eminent scholar of Busy Beaver problems asserts the contrary

“Using essentially a diagonal argument he demonstrated that if f is some com-
putable function then there exists a positive integer n such that

P
(k) > f (k)

for all k > n.” (Brady,1994,p.239;italics added):

Since Rado invokes, albeit implicitly, the Berry Paradox, Brady’s remark cannot be quite correct,
except by some considerable stretch of the imagination.

23Rado, via the Berry Paradox to non-computable functions; Gödel via the Liar and Richard
Paradoxes to incompleteness; Chaitin via the Berry Paradox to algorithmic complexity; Turing via
Cantor’s Procedure to uncomputability; such are the ways in which great mathematical sagas have
been grounded in paradoxes.
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global behaviour results from ‘simple’ local interactions24 . Furthermore, if the ‘sim-
ple’ local interactions are defined computationally, then one refers to the ‘interesting’
global behaviour as an emergent computation. Stephanie Forrest (1990, p.2) has tried
to characterize the elements that may define emergent computation in terms of the
following three constituents:

• A collection of individual algorithmic agents; i.e., agents whose local be-
haviour is stipulated by precise rules given as explicit effective instructions.

• Interactions among the collection of individual agents, stipulated in the above
effective instructions, which may lead to global patterns, called epiphenom-
ena.

• An interpretations of the epiphenomena as computations or as basins of at-
traction of dynamical systems.

The crucial point to observe is that the instructions are implemented at a much
‘lower’ level — essentially at a quantitatively different level altogether — than the level
at which the epiphenomenona occur. Can the activities of n-card TMs be interpreted
as emergent computations? Clearly, the answer is in the affirmative. Why? Consider,
first, each of the n cards. Each of the cards can be considered as an individual agent
with explicit effective instructions stipulated in the cards. Secondly, the individual
cards are connected to each other via various transfer principles. Indeed, the instruc-
tions can be restated as (computable) coupled transition functions in the sense of a
mapping using the standard quadruple definition of a TM:

Q: finite number, say n, of instruction cards;
q0 ∈ Q: a pre-specified initial card;
qT ∈ Q: a pre-specified terminal card or instruction;
Λ: input (and, usually, also output) alphabet (in our examples

it is a two-symbol set: <#,1>);
L: Left shift of the reading head along the two-way infinite

input/output tape;
R: Right shift of the reading head along the two-way infinite

input/output tape;
γ: No shift;

Definition 10. Given the fiexed input alphabet Λ, a Turing Machine is a
quadruple:

(3.1) TM ≡ {Q, δ, q0, qT }

Where the (partial)25 transition function δ:

24I am not sure how ‘interesting’ and ‘simple’ can be given rigorous formal definitions.
25i.e., not necessarily defined over the whole domain
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(3.2) δ : Q× Λ→ Q× Λ× {L,R, γ}

That 3.2 is a mapping in the conventional sense is obvious and the sequence of
values taken by the action of δ is the sequence of instantaneous configurations. Hence,
the sequences of instantaneous configurations, viewed as a whole, can be interpreted as
trajectories of dynamical systems, those defined by the collection of coupled transition
functions. The difficult question is whether these trajectories can be characterised in
terms of their basins of attraction26.

In other words, an appropriately chosen n-card TM can simulate the behaviour of
any ABCM model, on any suitable platform! The level of disaggregation determines
the value of n. The nature and scope of individual explicit effective instructions
determines the degree of coupling. The question is whether the emergent computation
that gives rise to epiphenomena can be tamed? From the complex behaviour even of
simple TMs it does not seem likely that it will be easy to discipline the global dynamics
of even moderately realistic local interactions.

The key lesson for practitioners of ABCM modelling, from a study of the activities
of Busy Beavers, seems to be the following. Since

P
(n) and S(n) are uncomputable,

even though ‘exceptionally well-defined by current standards’ (Rado, op.cit, p. 877)
in the sense of being based on simple, intuitively acceptable, definitions at the level
of individual instructions, and are clearly both a constituent and a cause of the com-
plexity in the epiphenomena, more effort should be devoted to characterising these
latter phenomena in terms of computable properties. I suspect, on the basis of the
emergence of functions like

P
(n) in exceptionally simple situations, that the emer-

gent phenomena in ABCM models contain computably intractable and undecidable
phenomena. I do not think it will be too difficult to demonstrate, by construction,
the validity of this conjecture. The strategy would be to work with, and be on the
look out for, epiphenomena residing in recursively enumerable sets that are not re-
cursive. Put more concretely, the problem to be tackled will be the task of taming
uncomputable trajectories generated by computable initial conditions. It is not an
unsolvable problem.

26The analogy goes, of course, both ways: i.e., one can interpret any dynamical system and
its feasible trajectories as a TM and its collections of instantaneous descriptions. Then halting
configurations correspond to limit points, loops and recurring ‘non-stoppers’ to limit cycles, particular
classes of non-recurring ‘non-stoppers’ to strange attractors. However, the class of nonrecurring ‘non-
stoppers’ encapsulate a broader class of dynamic behaviour than the dynamics of strange attractors.
The activities of a Busy Beaver, for example, cannot be encapsulated in the definition of any known
dynamical system whose basins of attraction can be formally characterised. I have dealt with some
of these issues in Velupillai (1999).

64



4. The Busy Beaver: Proofs and the Paradoxes

“. . . [T]here is the basic fact of the noncomputability of
P
(n), which

implies that no single finite computer program exists that will furnish
the value of

P
(n) for every n.

In the absence (at present) of a formal concept of ‘noncalcu-
lability’ for individual well-defined integers, it is of course not possible
to state in precise form the conjecture that there exist values of n for
which

P
(n) is not effectively calculable.”

Lin and Rado (1965), p.212; italics added.

Is there a formal concept of randomness ‘for individual well-defined integers’?
There is and it is provided by Algorithmic Complexity Theory. If it is possible to define
the randomness of an integer why is it not possible to define, formally, the “concept of
‘noncalculability’ for individual well-defined integers”? My basic conjecture is that the
‘noncalculability’ of Rado’s

P
(n) is exactly analogous to the randomness of Chaitin’s

Ω. To pursue this analogy is not the main aim of this paper (but cf. Chaitin, 1990,
Part II, pp.80-82 and Velupillai, 2003b) although I shall make some tentative compar-
isons in the concluding section. Chaitin constructed his uncomputable and random
Ω, exploiting a form of the Berry Paradox ; I shall, however, exploit it for deriving
the crucial contradiction in proving the uncomputability of

P
(n). The reason for

emphasising this link between Chaitin’s Ω and Rado’s
P
(n) via the Berry Paradox

is, partly, to make a point of the status of proofs by contradiction when impredicative
definitions are involved.

A few unnecessary cobwebs must, first, be cleared away. As I pointed out in
footnote 20, there are those who claim — even eminent ‘Busy Beaver scholars’ - that
a variant of the diagonal method was used to ‘construct’

P
(n), despite an explicit

statement to the contrary by Rado himself (op.cit, p.877). Then, there are equally
eminent textbook writers who assert that Rado’s construction of the Busy Beaver was
based on Richard’s paradox27. Neither of these assertions are quite correct. Rado’s
construction uses, albeit implicitly, the Berry paradox, which being semantical is not
directly related to the more obviously ‘diagonal’ based Cantor and Russell logical
paradoxes.

27Thus, Neil Jones (1997), in an otherwise exceptionally well-written and admirably pedagogical
textbook on ’Computability and Complexity’ states (pp. 16-7; second set of italics added):
"The busy beaver function ..., due to Rado and related to the Richard paradox, is mathematically
well-defined, but based on certain reasonable assumptions about the language used to express
computation"

Two minor caveats may be called for to make this assertion more acceptable. Firstly, it is
not

P
(n) that is ‘related to the Richard paradox but the method of proof; secondly, in a convoluted

way, it is not incorrect to state what Jones has asserted simply because the Richard paradox is
related to the Berry paradox, since they are both semantic in origin (using Ramsey’s distinction
between logical and semantic paradoxes; cf. Ramsey, 1926 and Kleene, 1967, esp. pp. 188-190).
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So far as I know, proof by contradiction has been the only way that the uncom-
putability of

P
(n) has been ‘rigorously’ demonstrated. Even in proofs where there

seems to be an explicit ‘construction’, for example in the well-known and clear demon-
stration in Boolos and Jeffrey (op.cit, especially chapter 4), it is, in reality, by way of
a ‘thought experiment’ to justify the assumption of the contrary to the hypothesis in
the theorem. I am never sure that such proofs convey the real meaning of a theorem,
particularly when the theorem asserts that something cannot be constructed, decided
or computed. Therefore, before I myself give a ‘proof by contradiction’ of the uncom-
putability of

P
(n), it may be useful to discuss the intuitive content of the meaning

of this strange28 result.
The intuitive reasons normally given to explain the uncomputability of

P
(n) is

that it ‘grows’ too fast to be computed by the standard operations on intuitively
acceptable and formally computable elementary functions. A brilliant and graphic
description of this idea is given by Dewdney in his fine expository piece on Busy
Beavers:

“The function
P
(n) has an extraordinary property: it is not com-

putable. It simply grows too fast. From the first four values of
P
(n)

— namely 1,4,6 and 13 — it might seem that the rate of growth is
only moderate. . . . . On the other hand, [there is] a 12-state machine
that generates so many 1’s that the number must be expressed by the
following mind-boggling formula:

6× 409640964096
..
.4096

4

The number 4,096 appears 166 times in the formula, 162 times in
the ‘twilight zone’ represented by the three dots. The formula can be
evaluated from the top down: first raise 4,096 to the fourth power,
then raise 4,096 to the power of the resulting number, then raise 4,096
to the power of that number, and so on. When you reach the bottom,
multiply by 6.

Anyone whose mind does not boggle when confronted by a
string of 1s that long is welcome to construct an even bigger number.
Write down any formula you like in which numbers are multiplied or
raised to a power; you may even replace any of the numbers with
n. No matter what formula you devise, for some value of n that
is large enough the n-state busy beaver will produce more 1’s than
the formula specifies. It follows that

P
(n) cannot be calculated for

arbitrary large values of n. The best one can do is to calculate
P
(n)

for some small, fixed value of n.”
Dewdney (op.cit), pp. 10-11; italics added.

28‘Strange’ only because, as noted by Rado himself,
P
(n) is an ‘exceptionally well-defined

number’, in that its existence follows from a simple well-ordering principle: that a finite set of
numbers has a maximum.
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What is the meaning of ‘growing too fast’? Is it that our physical devices
for processing numbers cannot ‘move’ fast enough? But such a constraint is not
fundamental. For example, in the case of the above number, we can, patiently, raise
4, 096 to the fourth power to get 16, 777, 216 × 16, 777, 216 and raise, again, 4, 096
to the power of this number. We may run out of paper or patience or we might be
motivated to devise new compression devices, notational short-hands etc., to facilitate
this multiplication.

But there seems another catch: “No matter what formula [we] devise, for some
value of n that is large enough the n-state busy beaver will produce more 1’s than
the formula specifies”! Now, in our ‘world’ of discourse, all formulas are computation
rules, programme specifications. Does this mean, whatever computation rule we may
devise, whatever programming language we use, is not powerful enough conceptually,
computationally, syntactically or semantically to tame

P
(n)? How, we may then

ask, was randomness tamed by algorithmic complexity theory? Is there a lesson to be
learned and applied from that experience?

There is, however, an almost exact analogy, in the history of classical recursion
theory, to the role played by Rado’s

P
(n) vis-à-vis TMs, programming semantics

and, via the Church-Turing thesis, the partial recursive functions. It is the place
of the Ackerman function vis-à-vis primitive recursion. The analogies are uncannily
similar and I shall pursue it to elucidate the difficulties one faces with any attempt to
tame

P
(n).

By an enumeration of the primitive recursive functions, coupled to a simple di-
agonalization procedure, the ‘existence’ of a computable function that was total but
not primitive recursive was easily shown. This was similar to the situation with the
demonstration of the ‘existence’ of uncomputable functions via diagonalization out of
an enumeration of the computable function. Rado, as I pointed out above, expressed
dissatisfaction at this ‘nonconstructive’ existence demonstration and endeavoured to
‘construct, explicitly, an intuitively acceptable function that was, nevertheless, shown
to be uncomputable. Similarly, the Ackerman function was accepted as an intuitively
computable function that was not primitive recursive. This led to an enlargement of
the class of intuitively acceptable computable function and a new operation, minimal-
ization, was introduced and the partial recursive functions were defined. Is the lesson
from that important episode in the history of classical recursion theory that we can try
to enlarge the rules of operation or expand the class of initial functions so as to bring
into the fold of the computable also

P
(n)? I do not know. It may, in any case, be

useful to expand on the ‘story’ of the role played by the Ackerman function in classical
recursion theory, which I shall now do in the fashion of being a ‘Whig historian’.

A version of Ackermann’s Function29 is the following number theoretic for-
mula (4) defined on:

29A simple Mathematica code for implementing this function is as follows:
Ackermann[0, n_] := n+ 1 ; \
Ackermann[m_, 0] := Ackermann[m− 1, 1] ; \
Ackermann[m_, n_] := Ackermann[m− 1, Ackermann[m,n− 1]];
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A : ℵ× ℵ → ℵ

(4.1) A (0, n) ≡ n+ 1

(4.2) A (m+ 1, 0) ≡ A (m, 1)

(4.3) A (m+ 1, n+ 1) ≡ A (m,A (m+ 1, n))

Example: How could we compute A (2, 1)

A (2, 1) = A (2, A (2, 0)) by 4.3

Thus, we need:

A (2, 0) = A (1, 1) by 4.2

Now we need:

A (1, 1) = A (0, A (1, 0)) by 4.3

And:

A (1, 0) = A (0, 1) = 2 by 4.2 & 4.1

Now we can work backwards to calculate A(2, 1) =? To get an idea of the rate
of growth of the Ackerman function and also to obtain a comparison with the rate of
growth of Rado’s

P
(n), here are some values for A(, ):

A(0, 1) = 2;A(1, 0) = 2;A(0, 2) = 3;A(2, 0) = A(1, 1) = A(0, A(1, 0)) = A(0, 2) =
3;A(4, 2) = 2256− 3;A(5, 0) = 253;A(5, 1) = A(4, 253); .....

The idea one tries to give is that the Ackerman function grows faster than any
primitive recursive function, or more accurately, the primitive recursive functions do
not grow fast enough — exactly as Rado’s

P
(n) grows faster than any partial recursive

function. Now, why does the Ackerman function grow so fast relative to primitive
recursion? In other words, what is it that the Ackerman function does that primitive
recursion does not or cannot do?

To sutdy this question, recall the following two standard definitions:

Definition 11. Primitive Recursion of Computable Functions

Given the computable functions, ϕ : Nn−1 → N and θ : Nn+1 → N the computable
function ψ : Nn → N is obtained from ϕ and θ by primitive recursion, whenever

But special care will have to be taken in printing the output, even for small values of A(m,n)
because the number of digits becomes, literally, astronomical.
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ψ (0, x2, ....., xn) = ϕ (x2, ..., xn)

and

ψ (x+ 1, x2, ....., xn) = ϕ (x, ψ (x1,x2, ....., xn) , x2, ..., xn)

Definition 12. Primitive Recursive Function

The set P of primitive recursive functions are those that are closed with respect to
(finite applications of) composition and primitive recursion on the Basic Functions.

Now take another look at the Ackermann Function. Is the recursion primitive
recursive? It seems to be so - but it is not. Why not? Too much seems to be
going on! ‘Too much’- of what? Of ‘recursion’? Yes — because inside the Ackermann
recursions there is a definition by induction on two variables. Consider all pairs of
natural numbers arranged as follows:

(0, 0) (0, 1) ... (0, n) (0, n+ 1)
(1, 0) (1, 1) ... (1, n) (1, n+ 1)
· · · ·

· · · ·
(m, 0) (m, 1) ... (m,n) (m,n+ 1)

(m+ 1, 0) (m+ 1, 1) ... (m+ 1, n) (m+ 1, n+ 1)
In ordinary (primitive) recursion, to determine the value of f at (m + 1, n + 1),

that is, f(m+1, n+1), we allow ourselves to look at values of f at places in preceding
rows only, f(x, y) such that x ≤ m. This seems an arbitrary restriction: why shouldn’t
we allow ourselves to look at values of f at places preceding (m + 1, n + 1) on the
same row, that is, f(m+ 1, x) for x ≤ n+ 1? Moreover, nesting causes no problems;
that is, we can apply f to itself, for example, f(m+1, n+1) = f(m,f(m+1, n)), for
we are again only thrown back to previous calculations of f. To calculate any such f
at (m + 1, n + 1) we need only a finite number of values of f at places that precede
(m+1, n+1). When we start at (m+1, n+1) there are only finitely many places to
go on the same row before (m + 1, n+ 1). Then we may go to an arbitrarily distant
place on a preceding row, say (m,n + 400). But then again there are only finitely
many places on that row to which we can be thrown back, ... continuing we must
eventually reach (0, 0) for which a value is given.

Taking all this into account, a ‘new’ operation, minimalization30 , was added to
composition and primitive resursion to bring into the fold of the class of computable

30Minimalization:
Suppose the function f : Nk+1 →N with k ≥ 0 is given. We writeMn[f ] for the function g : Nk → N
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functions also the Ackerman function. The problem, however, with
P
(n) vis-à-vis

TMs, partial recursive functions, etc., is that no one seems to have been able to figure
out a ‘new’ operation that can tame the activities of the Busy Beaver.

Let me now prove Proposition 8. There are any number of proofs, all variations
on a single theme, best explained and presented, in my opinion, in chapter 4 of Boolos
and Jeffrey (op.cit). There is a refreshingly different kind of proof, concentrating on
the programming language used to represent computation in Neil Jones (op.cit), pp.
16-18. I do not wish to rehash these well-known presentations, all without exception
resorting to ‘proof by contradiction’, but none making explicit the connection with
the Berry Paradox. I shall therefore attempt to present an alternative perspective
for which it is necessary to restate Proposition 1 in a slightly different, but formally
equivalent, way.

Before I present this alternative version of Proposition 1, consider the following
standard result in classical recursion theory (Moret, 1998, p.156, theorem 5.5):

Theorem 4. The length of the shortest program that prints n and halts is not
computable.

Compare the form and content of the above theorem with the following (Chaitin,
1995, p.4):

Theorem 5. The first positive integer that can be proved (relative to a given
formal axiomatic system) to have the property that it cannot be specified (relative to
a gien Universal Turing Machine) by a computer program with less than N bits is
uncomputable.

Next, compare both of the above theorems with the following version of Berry’s
Paradox (Russell, 1908, p.222). Consider the least integer not nameable in less than
nineteen syllables. This refers to the particular number 111,777. But the italicised
expression also names an integer and contains eighteen syllables! In other words, the
‘least integer not nameable in less than nineteen syllables’, i.e., 111,777, can be named
in eighteen syllables. This is the kind of contradiction that is exploited in the proof
of the above two theorems.

For example, in theorem 5, the strategy of the proof is to show that there is, in
fact, a computer program of length log2N +constant = N , for sufficiently large N ,
which will specify the same number and hence to display a contradiction. Exactly the
same strategy is employed in proving theorem 4.

Now here is my alternative statement of Proposition 8:

Proposition 9 (A). For any given n, the largest value that can be printed by a
program of length (at most) n, is uncomputable.

defined as:
g(n1, n2, ..., nk) = µm[f(n1, n2, ..., nk,m) = 0 and such that, for all j < m, f(n1, n2, ..., nk, j) is
defined and 6= 0], and µm[f(n1, n2, ..., nk,m) = 0] is to mean the least natural number m such that
f(n,m) is equal to 0, where f(n,m) is any (k + 1)-ary number-theoretic function. The Greek letter
µ followed by a number variable is referred to as the least-number operator.
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Remark 1. Clearly, Proposition 1A is a kind of converse of Theorem 4. Hence,
a proof of the former will only need to mimic the strategy adopted to prove the latter.
The affinity with the form of the Berry Paradox is also eveident. And, with respect
to Theorem 5, if we replace the phrase ‘first positive integer’ with the ‘largest positive
integer’, then the analogy with it is also clear.

Proof. Suppose
P
(n) is computable. Define an auxiliary constant-valued func-

tion f by minimalization such that, for any given m:

f (m) = µj and
X

(j) ≥ m

The minimalized function f returns the natural number j such that no program
of length less than m prints j and halts. Clearly, the length of the program for f ≤
constants + the bits necessary to code m so that f can make sure that

P
(j) ≥ m.

The latter value is at most log2m; denote the constant value as c. Then the length
of the program to implement f is less than |c+ log2m|. If, now, m is chosen large
enough to make sure that it is sufficiently greater than log2m, then for such a choice,
say m0, f computes the least value j such that no program of length less than m0 can
print j. But m0 was chosen to guarantee that the program for computing f was, in
fact, less than m0. This contradiction implies that

P
(n) is uncomputable. ¤

Proving, by contradiction, the uncomputability of
P
(n) exploits the full force and

potentialities of the Berry Paradox. Where lies the paradoxical aspect of the Berry
Paradox? It lies in what was called impredicative definitions by Poincaré, definitions
that involve some aspect of self-reference where, however, the paradox arises from
allowing totalities to be members of themselves. Russell, inspired partly by Poincaré,
was led to develop his theory of types to tackle these paradoxes. This is not the place
to go into the full and fascinating details of these issues but it may be pertinent to
repeat some of Russell’s pertinent observations on at least the Berry Paradox.

Why are we able to resort to proof by contradiction to demonstrate the validity
of any proposition that is related to the Berry Paradox? It is, as Russell pointed out
almost a century ago, because (op.cit., p.223) :

“In the cases of names and definitions [i.e., the Berry and Richard
Paradoxes ], the paradoxes result from considering nonnameability
and indefinability as elements of names and definitions. .... In each
contradiction something is said about all cases of some kind, and from
what is said a new case seems to be generated, which both is and is
not of the same kind as the cases of which all were concerned in what
was said.”

Italics in original.

More particularly, regarding the Berry (and Richard) Paradox :
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“‘The least integer not nameable in fewer than nineteen syllables’ in-
volves the totality of names, for it is ‘the least integer such that all
names either do not apply to it or have more than nineteen sylla-
bles’. Hence we assume, in obtaining the contradiction, that a phrase
containing ‘all names’ is itself a name, though it appears from the con-
tradiction that it cannot be one of the names which were supposed
to be all the names there are. Hence, ‘all names’ is an illegitimate
notion.”

ibid, p.224; italics added.

I do not know of any proof of the uncomputability of
P
(n) that does not invoke

some version of this ‘illegitimate notion’. On the other hand, Chaitin, in constructing
Ω, did circumvent the illegitamacy by restricting the scope of ‘nameability’ or ‘defin-
ability’. He achieved this restriction by specifying ‘nameability’ and definability’ to
satisfy the requirement of being calculated outputs of a suitably defined UTM.

What are to make of this situation? Perhaps there is no need to ‘prove’ thatP
(n) is uncomputable; it may be sufficient to demonstrate that dangerous curses of

dimensionality may lie wrapped in the enigma that is the Busy Beaver. It may well be
that we should resort to a Linnean philosophy of investigation: careful study of small,
selected, well structured examples and diligent classification. This is not unlike the
practice of the dynamical system theorist who wishes to tame the vagaries of nonlinear
systems.

I shall, however, suggest another alternative in the next, concluding, section, in
the face of this humbling of formalism and its methods, inflicted by the Busy Beaver.
This alternative suggestion, entirely based on an extremely interesting ‘attack’ on the
vagaries of

P
(n) by Greenleaf (op.cit), when supplemented with Chaitin’s careful

circumvention of the Berry Paradox, results in a partial humbling of the Busy Beaver!

5. Humbled by the Busy Beaver - Humbling the Busy Beaver

“[S]uppose a vastly superior alien force lands and announces that they
will destroy the planet unless we provide a value for the S function31

, along with a proof of its correctness. If they ask for S(5) we should
put all of our mathematicians, computer scientists, and computers
to the task, but if they ask for S(6) we should immediately attack
because the task is hopeless.”

Rona Machlin and Quentin F.Stout (1990), p.98.

I doubt I shall ever qualify for membership in the Busy Beaver club. However
I am a life member of all sorts of Gandhi Clubs. In this capacity I would rather

31S(k) =max {s(M) :M ∈ H(k)}, H(k): the set of all k-state Turing Machines which eventually
halt when started on a blank tape; s(M): number of steps performed by Turing Machine M before
halting.
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find a more peaceful solution than ‘attack’, no doubt without any hope of success,
‘vastly superior alien forces’. From the previous section, we know that a strategy
mimicking that which was successfully achieved with the Ackermann function and
primitive recursion is unachievable with the problems posed by

P
(n) for TMs and

partial recursive functions. No new operations have been on offer; nor have there been
suggestions on any kind of imaginative expansion of the basic functions. Thus, the
beaten track does not offer much hope for a pacifist.

On the other hand, the strategy carried out by Russell and others (Poincaré, Weyl
etc.) — to banish impredicative definitions from mathematical discourse - may smack
of a mildly defeatist attitude. Paradoxes play the kind of role counter-examples play
in sharpening an understanding of the scope of mathematical theorems. A world of
mathematical semantics without paradoxes may well be poorer even from an episte-
mological viewpoint.

There is a more elegant way out of this dilemma. The idea for this alternative
way was motivated by trying to define the value of

P
(n), for any given n, in such a

way that it will dampen its growth rate. To put it in a more prosaically, I want to
drug the Busy Beaver into slowing down its eagerness! This is my interpretation of the
elegant approach suggested by Greenleaf (op.cit), which is based on a philosophy of
mathematics that is particularly significant in any attempt to tame the behaviour ofP
(n), without losing the rich insights into emergent computations that such behaviour

gives rise to. Let me summarize, first, the mathematical philosophy that underpins
Greeenleaf’s concrete suggestions to manage a meaningful study of

P
(n) — and to

deflect the hostile threats of ‘vastly superior alien forces’.

• The triple {assumption, proof, conclusion} can be understood in terms
of {input data, algorithm, output data}.

• Mathematics is best regarded as a very high level programming language.
• In constructive, computable32 and (constructive) nonstandard analysis, every
proof is an algorithm.

• To understand a theorem (in any kind of mathematics) in algorithmic terms,
represent the assumptions as input data and the conclusions as output data.
Then try to convert the proof into an algorithm which will take in the input
and produce the desired output. If you are unable to do this, it is probably
because the proof relies essentially on the law of excluded middle.

• If we take algorithms and data structures to be fundamental, then it is
natural to define and understand functions in these terms. The phrase
“non-computable function” then becomes problematic, and the understand-
ing which sees almost all functions as non-computable becomes mysterious.
If a function does not correspond to an algorithm, what can it be? There is
no higher court corresponding to the set theory of logical mathematics.

32In the case of affirmative, existence, proofs. Universal negative propositions use the full para-
phernalia of classical logic, including the law of the excluded middle.
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• We shall take the stand that functions are, by definition, computable, and
then test those phenomena which are standardly taken as evidence for the
existence of non-computable functions, to see if we need to yield any ground.

• Given a putative function f — say Rado’s
P
(n) - we do not ask “Is it com-

putable?” but rather “What are the data types of the domain and of the
range?” This question will often have more than one natural answer, and
we will need to consider both restricted and expanded domain/range pairs.
Distinguishing between these pairs will require that we reject excluded mid-
dle for undecidable propositions. If you attempt to pair an expanded domain
for f with a restricted range, you will come to the conclusion that f is non-
computable.

To use this alternative vision of mathematics and mathematical activity towards
a reinterpretation and taming of the activities of the Busy Beaver33 , it will be helpful
to begin by considering the rigorous definition of a real number, either via a Dedekind
cut or via a Cauchy sequence of rationals34 . In the former case the set R of real
numbers is defined as the collection of all Dedekind cuts and the elements of R are
then defined as certain subsets of Q. In the latter case, real numbers are equivalence
classes of Cauchy sequences of rational numbers. There is, of course, more algorithmic
content in the definition of R as equivalence classes of Cauchy sequences of rational
numbers, but the point is that in both definitions a real number is characterized in
terms of a collection of rational numbers.

A real number can only be determined up to a pre-assigned degree of approxima-
tion. Some real numbers are hard to describe, i.e., compute; they are algorithmically
highly complex. It takes time to determine them even to low levels of approximation.
If, taking a cue from this setup, we define

P
(n) in some equivalent way, we would kill

the proverbial two birds with one stone: on the one hand, slow down the growth rate
of
P
(n); on the other, make it analogous to Chaitin’s Ω.
Most integers are random and, hence, ‘complex’; a fortiori, most real numbers

are strongly random and highly ‘complex’. But how do we make these assertions and
notions precise? How does one prove that any given, individual integer, for exampleP
(n), is ‘random’ or ‘complex’ and, if ‘complex’, its degree of complexity? By, first,

freeing the characterization of randomness from its classical underpinnings in proba-
bility theory and regrounding it in information theory. This makes it possible to talk
meaningfully and quantitatively about the randomness of individual (combinatorial)
objects in terms of their information content. Next, to define information algorith-
mically in any one of three equivalent ways: Kolmogorov complexity, Solomonoff ’s
Universal (Inductive) Probabilities and Chaitin’s Program Size Complexity. Finally,

33What is the Busy Beaver if not a mathematician? The question is what kind of mathematician
— constructive, classical, non-standard, computable?

34I shall not consider the other two methods: via nested intervals or by means of decimal
expansion to a base, say b, where b is an integer > 0. Goodstein’s uniform calculus, for example,
proceeds by way of the latter method.
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to define the notion of incompressibility in terms of minimum programs of a universal
computer. Putting all this together we get:

Definition 13. Kolmogorov-Chaitin Complexity
The Kolmogorov-Chaitin complexity, KU (x) of a (binary) string x w.r.t a UTM, U ,
is:

(5.1) KU (x) = min
p:U(p)=x

l (p)

which denotes the minimum length over all programs that print x and halt; i.e.,
KU (x) is the shortest description length of x, taken over all possible algorithmic de-
scriptions by the Universal Computer U .

It is immediate from even a cursory reflection over the statements of theorems 5
and 4 of the previous section that it is easy to prove that KU (x) is uncomputable.
A simple extrapolation would also convince the reader that it is possible to define a
measure of complexity, entirely analogous to KU (x), in terms of

P
(n) — but with

one caveat: it should also be relative to a pre-specified UTM, say UBB . The idea
would be to determine the binary code of any given (combinatorial) object and define
its Busy Beaver complexity as the minimum k-card TM that would print the number
of 1s in that code (perhaps separated by ordered blancs). In this way, we might be
able to free the definition of complexity even from its underpinnings on any concept of
information; instead defining it dynamically in a natural setting. In other words, every
combinatorial object (i.e., algorithmic object) will be the output of some Busy Beaver.
The complexity of the given object is the algorithmic description of the minimum Busy
Beaver that would print its code and halt. Obviously, this complexity, too, would be
uncomputable.

Rissanen’s stochastic complexity is one approximation scheme to tackle the prob-
lem of the uncomputability of KU (x). It should not be difficult to adapt that method
to approximate the Busy Beaver complexity of any object. But this remains an unre-
flected conjecture.

It was Chaitin’s great achievement to have constructed the irrational number Ω
and prove that it was random. In the process, he became one of the three pioneers
of algorithmic complexity theory. Chaitin has himself discussed the analogies between
his Ω and Rado’s

P
(n) and there is no need to expand on that theme in a short,

concluding, section (although I do discuss the analogies more formally and much more
extensively in Velupillai, 2003b).

Now to return to Greenleaf’s philosophy of mathematics and its use in taming
the activities of the Busy Beaver, we exploit the analogies inherent in another aspect
of the real numbers: their definitions as sets of rational numbers plus an approxima-
tion scheme and degree (for example in the Cauchy characterization of R). The first
question in this endeavour, given the above summary of Greenleaf’s mathematical
philosophy, is what is the appropriate data type for studying

P
(n)? It is in answering

this question that the analogy of defining the members of R as subsets of Q will be
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exploited. It may be best to state Greenleaf’s ‘solution’ before even describing its
structure:

“The busy beaver function bb [≡
P
(n)] becomes computable when its

domain and range are properly defined. When the domain is taken
to be N, the range will be the set of ‘weak integers’, a superset of N
. . . ”

ibid, p.226; italics added.

The ‘weak integers’, in essence, ‘weaken’ the over-enthusiasm of the Busy Beavers.
‘Weak integers’ are constructed and defined relative to a given UTM in the following
way:

Step 1:
For any given k, implement the given UTM to enumerate all k-card TMs.
Step 2:
Next, execute each k-card TM from the enumerated list on a standard two-way

infinite blank tape for some given, arbitrarily long, time interval.
Step 3:
Whenever a Busy Beaver is found, its productivity is listed on an auxiliary tape.
Step 4:P
(k) : N→ {N×N;UTM}

where the range is given by a pair constructed as follows: to each element in the
enumerated list of k-state TMs, associate the result, an integer, which is possibly the
determined productivity associated with it or a ‘temporary’ value obtained from an
Oracle computation, by the given UTM35.

Thus the set of ‘weak integers’, say Ξ, are approximations from below in the same
sense in which semi-computable functions are defined to approximate from above and
below and the analogy goes even further: naturally, Ξ, too, will be a recursively
enumerable set that is not recursive. The standard integers will be the singleton sets
and, therefore, N ⊂ Ξ. Natural order relations can be defined over Ξ, but I leave the
interested reader to consult Greenleaf (op.cit) for such details.

I return, finally, to the question posed in pt. 8 of §3 on whether non-recurring
‘never-stoppers’ encapsulate within themselves a code for self-reproduction. After
all, both von Neumann (1966) and Turing (1952) initiated the generic field that has
spawned, in one version, ABCM activities, on the basis of this fundamental question.
Of course, both gave affirmative answers to the question and the pioneering nature
of their classic works resides in the way they demonstrated, constructively, the imple-
mentation of this programme of research. Encapsulating a code for self-reproduction
means constructing the initial conditions in such a way that the dynamics will spawn a
‘universal constructor’ — i.e., an appropriate UTM. I cannot see any other disciplining
mechanism for the simulation activities of ABCM practitioners. On the other hand, I

35At this last stage of the last step I part company with Greenleaf, mainly because I wish to
retain the analogy with Chaitin’s Ω.
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have never seen anything like this question being posed by those involved in building
and simulating agent-based computational models.

There is, however, a paradox here. von Nuemann’s work remained within the digi-
tal domain36 ; Turing’s morphogenesis model lent itself to a natural dynamical systems
interpretation. Turing’s model of computation has been criticised for neglecting the
role played by the real numbers in the natural sciences (cf. Blum et.al, et. al, 1997).
von Neumann, in his last celebrated work, the Silliman Lectures (von Neumann, 1958)
felt that the digital domain was inadequate to encapsulate the full reasoning powers
of the human brain (not quite the ‘mind’ !). Resolving this dichotomy should be part
of the ABCM research agenda. If not, there will always remain an ad hockery between
the digital nature of the formalism of programming languages and the dynamical sys-
tem that is the iteration in a variety of topological spaces. Turing was, of course,
aware of these issues even in his original classic (Turing, 1936-7).

Let me conclude this tangled path through the weird and wonderful world of the
Busy Beaver and its activities by a final comment on the lessons such a journey may
have for the practitioners of the noble art of simulations. Without an articulated
mathematical philosophy that is meaningfully tied to the epistemology underpinning
any simulation exercise, it is easy to be humbled by the power of simple machines
to generate illusions of possible complex worlds. Taming complexity is often also an
exercise in reigning illusions. Only disciplined investigations, foot soldiering and soiled
hands can defeat powerful alien forces, illusions and complexities.

36However, in his famous ‘growth model’ (von Neumann, 1945-6, but first presented in 1932)
the question of self-reproduction was posed and answered topologically. Of course, Kleene’s recursion
theorem and the recursion theoretic fix-point theorems were still events of the future. All that von
Neumann had at his disposal, in the form of fix-point theorems, were the classical ones, in particular
Brouwer’s version. The current formalization of von Neumann’s model of self-reproduction proceeds
via the recursion theoretic fix-point theorem and the recursion theorem.
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CHAPTER 4

Computable Rational Expectations Equilibria

1. Preamble

"If a macro-system as a whole has coherence, perhaps it would be use-
ful to study directly the reasons that determine its coherence. This
probably is the course underlined by Keynes when he stressed his in-
tention of studying ‘the system as a whole’. If a macroeconomic logic
partially independent of that which determines individual behaviour
exists - an underemployment equilibrium is surely an equilibrium rel-
ative to the system and not to the individuals composing it - perhaps
that logic deserves to be analysed in itself. .... My conviction is that
macroeconomics has its own dimension which must be considered and
not just alluded to."

[8], pp.27-8.

The two fundamental principles that underpin the study of a macroeconomic ‘sys-
tem as a whole’ are, firstly, the ‘fallacy of composition’ and, secondly, the idea known
variously as the ‘paradox of thrift’, ‘paradox of saving’ or, more dramatically, as the
‘Banana parable’ (cf. [16], pp.176-8). The ubiquitous ‘representative agent’ has dis-
pensed with these homely wisdoms of a macroeconomic logic. As a result the mo-
mentous macroeconomic issues of growth, fluctuations, unemployment and policy are
disciplined by the logic of microeconomic behavioural determinants. It could so easily
have been otherwise had we, for example, paid more serious attention to one of the
great masters of our subject who straddled the micro-macro divide, John Hicks, when,
in his summarising statements of the ‘Final Discussion’ after the IEA Conference on
‘The Micoreconomic Foundations of Macroeconomics’, pointed out:

"We had been supposed to be discussing the microeconomic foun-
dations of macroeconomics, but we had come to realise that there
were several kinds of macroeconomics, each probably requiring its
own foundations, and though they overlapped they were not wholly
the same. One had to distinguish at the least between macroecono-
metrics and ‘macro-political-economy’. ....[W]e had been much more
concerned with macro-political-economy’.
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There was a close relation between macro-political-economy and
social accounting, so .... it might be useful to arrange our problems in
relation to the social accounting framework in order to see how they
fitted together"

[11],p.373

One of the great merits of Jean-Paul Fitoussi’s work as a macroeconomic theo-
retician, and as a passionate advocate for an active role for policy, has been his ever
vigilant attention to the above ‘two fundamental principles of macroeconomics’ un-
derpinned by their relation ‘to the social accounting framework’. Macro-theoretical
propositions derived solely on the basis of microeconomic theories, particularly if they
are not constrained by the ‘two fundamental propositions of macroeconomics’, have
always left him with a sense of unease. Thus, policy ineffectiveness propositions, based
as they are on strong rational expectations hypotheses, time inconsistency results and
equilibrium interpretations of fluctuations and unemployment are examples where Fi-
toussi’s critical antennae have been seriously disturbed over the past two decades.

For years I have, myself, been struck by a strange anomaly. Many of the fun-
damental concepts that lie at the basis of newclassical macroeconomics - policy in-
effectiveness, credibility, time inconsistency, rational expectations, the advantages of
(transparent) rules over (enlightened) discretion, etc., - were also those that informed
the work of the ‘old’ Stockholm School economics - particularly the work of Erik Lin-
dahl and Gunnar Myrdal from the early 20s through the late 30s. They, in particular
Lindahl, also worked these themes and concepts into dynamic equilibrium schemes.
I cannot find a better, clearer, statement of the dynamic economic environment, in
which what eventually came to be known as the rational expectations hypothesis, than
Lindahl’s discussion of the idea in a presentation of his vision of the Keynesian system
(but it was only a rewording of a basic idea that had been almost a touchstone of his
work on monetary policy and capital theory during the 20s and early 30s):

"It also seems reasonable to postulate an interdependence between
the variables entering an economic system in the case concerning
the determination of the conditions for correctly anticipated processes.
These conditions are that the individuals have such expecta-
tions of the future that they act in ways which are necessary
for their expectations to be fulfilled. It follows that the inter-
dependence between present and future magnitudes is conditioned in
this case by the fact that the latter, via correct anticipations, influ-
ence the former. If we also choose to describe such developments as
equilibrium processes, this implies that we widen the concept of
equilibrium to include also economic systems describing changes over
time where the changes that take place from period to period do not
cause any interruption in, but, on the contrary, are an expression of
the continual adjustment of the variables to each other."
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[13], p.27; bold emphasis added.
However, their fundamental political sympathies were very similar to those es-

poused by Fitoussi and they made their framework - accounting systems par excel-
lence - substantiate an active role for policy. This made me wonder whether there was
something special about the language1 within which the newclassicals developed their
concepts and made them work had a role to play in the scope of the conclusions they
reached.

Thus, in recent years, I have tried to resolve the anomaly mentioned above by
framing aspects of newclassical macroeconomics with the formalism of an alterna-
tive mathematics, of recursion theory, and asking pertinent algorithmic and dynamic
questions. Essentially, I have replaced the use of the standard topological fixed-point
theorems that have been used to encapsulate and formalise self-reference (rational
expectations and policy ineffectiveness), infinite regress (rational expectations) and
self-reproduction and self-reconstruction (growth), in economic contexts, with two fun-
damental theorems of classical recursion theory2. The idea of self-referential behaviour
is, for example, formalized by considering the action of a program or an algorithm on
its own description.

A theoretical framework must mesh smoothly with - be consistent with - the
empirical data generating process that could underpin it from methodological and
epistemological points of view. I do not use these loaded words with grand aims in
mind; I refer to the simple fact that a process that generates the macroeconomic data
that is the basis on which the processes of scientific validations of any sort can be
performed must do so in a way that is consistent with the way the theoretical model
postulates the use of the data. I refer to this as a ’simple fact’ in the elementary and
intuitive sense that data that must be used by rational agents will have to respect
their cognitive structures and the structures of the processing and measuring instru-
ments with which they - and the macroeconomic system as a whole - will analyse and
theorise with them. There is no point in postulating data generating mechanisms that
are incompatible with the cognitive and processing and measuring structures of the
analysing agents of the economy - at the individual and collective levels. In one of my
own collaborative writings with Fitoussi, we have touched upon themes of this sort
([9], esp. pp. 225-32).

In this essay I try to formalise the idea of Rational Expectations Equilibria, REE,
recursion theoretically, eschewing all topological assumptions. The title has the qual-
ifying word ‘tutorial’ to emphasise the fact that I want to try to suggest a modelling
strategy that can be mimicked for other concepts and areas of macroeconomics: policy
ineffectiveness, time inconsistency, growth, fluctuations and other dynamic issues in

1Keeping in mind Samuelson’s Gibbsian admonition that Mathematics is a language ( [17],
epigraph on the title page).

2One of which is also called a fix point theorem.
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macroeconomics. All recursion theoretic formalizations and results come, almost in-
variably, ‘open ended’ - meaning, even when uniqueness results are demonstrated there
will be, embedded in the recesses of the procedures generating equilibria and other
types of solutions, an indeterminacy. This is due to a generic result in computabil-
ity theory called the Halting Problem for Turing Machines. It is a kind of generic
undecidability result, a counterpart to the more formal, and more famous, Gödelian
undecidability results. It is this fact, lurking as a backdrop to all the theorems in
this essay, that makes it possible to claim that Computable Macroeconomics is not as
determinate as Newclassical Macroeconomics. This is also the reason why the Swedes,
again Lindahl and Myrdal in particular, were able to work with concepts that were, os-
tensibly, similar to those being used by the Newclassicals, but were actively engaged in
proposing and devising enlightened, discretionary, policies at the macroeconomic level.
To be categorical about policy - positively or negatively - on the basis of mathematical
models is a dangerous sport.

The essay is organised as follows. In the next section I outline the origins of the ra-
tional expectations problem as a (topological) fixed-point problem. Next, in the third
section, I suggest its reformulation in recursion theoretic terms. This reformulation
makes it possible to re-interpret a rational expectations equilibrium as a recursion the-
oretic fixed-point problem in such a way that it is intrinsically computable ab initio.
Thus, there is no separation between a first step in which the existence of a ratio-
nal expectations equilibrium is ‘proved’ and, then, an ad hoc mechanism devised to
determine it - via uncomputable, equally ad hoc learning processes. Moreover, every
recursion theoretic assumption, and their consequent formalisms I have employed or
invoked, in this essay, is consistent with the known results and constraints on human
cognitive structures and all known computing devices, artificial or natural, ideal or
less-than-ideal.

In the fourth section, respecting existing tradition, I accept any given REE solu-
tion from some, prior, economic model or analysis - in the particular case considered it
is a standard OLG generated REE solution - and devise a recursion theoretic learning
mechanism to determine it.

In the concluding section I try to fashion a fabric, or at least its design, from the
sketches of the threads outlined earlier, that depicts a possible research program on
Computable Macroeconomics as an alternative to the Newclassical Recursive Macroe-
conomics.

2. Topological Rational Expectations

"We can now clearly see the unavoidable dilemma we are facing if
we want to apply the Brouwer theorem in the present situation: if
we restrict ourselves to a discrete variable, i.e. consider the reaction
function f merely as a mapping of P into P [the discrete (finite) set
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of percentages] we are not entitled to use the Brouwer theorem because
of the non-convexity of P . Besides, continuity represents a vacuous
condition in this case. On the other hand, if we use a continuous
variable we can use the Brouwer theorem, but the fixed point is then
generally located outside of P and hence meaningless in the empirical
situation at hand."

[2], p.330; italics in the original.
In a critical discussion of the use of the Brouwer fixed point theorem by Herbert

Simon, [19], that presaged its decisive use in what became the definition of a rational
expectations equilibrium, Karl Egil Aubert, a respected mathematician, suggested
that economists - and political scientists - were rather cavalier about the domain of
definition of economic variables and, hence, less than careful about the mathematics
they invoked to derive economic propositions. I was left with the impression, after a
careful reading of the discussion between Aubert and Simon ([2], [20], [3] and [21]),
that the issue was not the use of a fixed point framework but its nature, scope and
underpinnings. However, particularly in a rational expectations context, it is not only
a question of the nature of the domain of definition but also the fact that there are
self-referential and infinite-regress elements intrinsic to the problem. This makes the
choice of the fixed point theorem within which to embed the question of a rational
expectations equilibrium particularly sensitive to the kind of mathematics and logic
that underpins it. In this section I trace the origins of the ‘topologisation’ of the
mathematical problem of rational expectations equilibrium and discuss the possible
infelicities inherent in such a formalisation.

There are two crucial aspects to the notion of rational expectations equilibrium -
henceforth, REE - ([18], pp.6-10): an individual optimization problem, subject to per-
ceived constraints, and a system wide, autonomous, set of constraints imposing a con-
sistency across the collection of the perceived constraints of the individuals. The latter
would be, in a most general sense, the accounting constraint, generated autonomously,
by the logic of the macroeconomic system. In a representative agent framework the
determination of REE s entails the solution of a general fix point problem. Suppose
the representative agent’s perceived law of motion of the macroeconomic system (as
a function of state variables and exogenous ‘disturbances’) as a whole is given by H3.
The system wide autonomous set of constraints, implied, partially at least, by the
optimal decisions based on perceived constraints by the agents, on the other hand,
imply an actual law of motion given by, say, H∗. The search for fixed-points of a
mapping, T , linking the individually perceived macroeconomic law of motion and the
actual law of motion:

(2.1) H∗ = T (H)

3Readers familiar with the literature will recognise that the notation H reflects the fact that, in
the underlying optimisation problem, a Hamiltonian function has to be formed.
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as the fixed-points of H of T 4:

(2.2) H = T (H)

determines REEs.

What is the justification for T? What kind of ‘animal’ is it? It is variously referred
to as a ‘reaction function’, a ‘best response function’, a ‘best response mapping’, etc.
But whatever it is called, eventually the necessary mathematical assumptions are
imputed to it such that it is amenable to a topological interpretation whereby appeal
can be made to the existence of a fix point for it as a mapping from a structured domain
into itself. So far as I know, there is no optimising economic theoretical justification
for it.

There is also a methodological asymmetry in the determination of H and H∗,
respectively. The former has a self-referential aspect to it; the latter an infinite regress
element in it. Transforming, mechanically, (1) into (2) hides this fact and reducing it
to a topological fixed-point problem does little methodological justice to the contents
of the constituent elements of the problem. These elements are brought to the surface
at the second, separate, step in which ostensible learning mechanisms are devised, in
ad hoc ways, to determine, explicitly the uncomputable and non-constructive fixed-
points. But is it really impossible to consider the twin problems in one fell swoop, so
to speak?

This kind of tradition to the formalization and determination of REE s has al-
most by default forced the problem into a particular mathematical straitjacket. The
mapping is given topological underpinnings, automatically endowing the underlying
assumptions with real analytic content5. As a consequence of these default ideas the
problem of determining any REE is dichotomized into two sub-problems: a first part
where non-constructive and non-computable proofs of the existence of REEs are pro-
vided; and a subsequent, quite separate, second part where mechanisms - often given
the sobriquet ‘learning mechanisms’ - are devised to show that such REEs can be
determined by individual optimising agents6. It is in this second part where ortho-
dox theory endows agents with an ad hoc varieties of ‘bounded rationality’ postulates,
without modifying the full rationality postulates of the underlying, original, individual
optimization problem.

4In a space of functions.
5In the strict technical sense of the mathematics of real analysis as distinct from, say, construc-

tive, computable or non-standard analysis.
6A perceptive (sic !) reader may wonder whether there should not also be an optimization

exercise over the set of feasible or perceived learning mechanisms? Carried to its logical conclusion,
this would entail the determination of a set of REE s over the collection of learning mechanisms, ad
infinitum (or ad nauseum, whichever one prefers).
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Now, how did this topological fixed-point REE tradition come into being? Not,
as might conceivably be believed, as a result of Muth’s justly celebrated original
contribution,[16], but from the prior work of Herbert Simon on a problem of pre-
dicting the behaviour of rational agents in a political setting, [19] and an almost
simultaneous economic application by Franco Modigliani and Emile Grunberg, [10].
Let me explain, albeit briefly, and to the extent necessary in the context of this essay.7

Simon, in considering the general issue of the feasibility of public prediction in a
social science context, formalised the problem for the particular case of investigating
how ‘the publication of an election prediction (particularly one based on poll data)
might influence [individual] voting behaviour, and, hence - ... - falsify the prediction’.
Simon, as he has done so often in so many problem situations, came up with the
innovative suggestion that the self-referential and infinite-regress content of such a
context may well be solved by framing it as a mathematical fixed point problem:

"Is there not involved here a vicious circle, whereby any attempt to
anticipate the reactions of the voters alters those reactions and hence
invalidates the prediction?

In principle, the last question can be answered in the negative:
there is no vicious circle.

....
We [can prove using a ‘classical theorem of topology due to Brouwer

(the ‘fixed-point’ theorem)] that it is always possible in principle to
take account of reactions to a published prediction in such a way that
the prediction will be confirmed by the event."

Simon, op.cit, [19], pp. 82-4; italics added.

The ‘vicious circle’ refers to the self-referential and infinite-regress nature of any
such problem where a (rational) agent is placed in a social situation and the indi-
vidual’s behaviour determines, and is determined by, the mutual interdependencies
inherent in them. Almost simultaneously with Simon broaching the above problem,

7My aim is to show that the framing the REE problem as a topological fixed-point problem
was not necessary. Moreover, by forcing the REE problem as a topological fixed-point problem it
was necessary to dichotomize into the proof of existence part and a separate part to demonstrate
the feasibility of constructing mechanisms to determine them. This is mainly - but not only - due
to the utilization of non-constructive topological fixed-point theorems in the first, ‘proof of REE
existence’, part. In this sense the REE learning research program is very similar to the earlier
dichotomizing of the general equilibrium problem. In that earlier phase, a long tradition of using
topological fixed-point theorem to prove the existence of a economic equilibria was separated from
devising constructive or computable mechanisms to determine them. The later phase resulted in
the highly successful Computable General Equilibrium (CGE) models. It remains a melancholy fact,
however, that even after over forty years of sustained and impressive work on CGE models, they are
neither constructive nor computable, contrary to assertions by proponents of the theory.
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Grunberg and Modigliani took up a similar issue within the more specified context of
individually rational behaviour in a market economy8:

"The fact that human beings react to the expectations of future events
seems to create difficulties for the social sciences unknown to the
physical sciences: it has been claimed that, in reacting to the published
prediction of a future event, individuals influence the course of events
and therefore falsify the prediction. The purpose of this paper is to
verify the validity of this claim."

[10], p.465; italics added.
Grunberg andModigliani recognised, clearly and explicitly, both the self-referential

nature of the problem of consistent individually rational predictions in the face of being
placed in an economic environment where their predictions are reactions to, and react
upon, the aggregate outcome, but also were acutely aware of the technical difficulties
of infinite regression that was also inherent in such situations (cf., in particular, [10],
p. 467 and p. 471). In their setting an individual producer faced the classic problem of
expected price and quantity formation in a single market, subject to public prediction
of the market clearing price. It was not dissimilar to the crude cobweb model, as was
indeed recognised by them ([10], p.468, footnote 13). Interestingly, what eventually
came to be called rational expectations by Muth was called a warranted expectation9

by Grunberg and Modigliani (ibid, pp. 469-70). In any event, their claim that it was
‘normally possible’ to prove the existence of ‘at least one correct public prediction in
the face of effective reaction by the agents’ was substantiated by invoking Brouwer’s
Fixed Point Theorem (ibid, p. 472). To facilitate the application of the theorem,

8In their first footnote, Modigliani and Grunberg pay handsome acknowledgement to Herbert
Simon for, in particular, suggesting ‘the use of Brouwer’s Fixed Point Theorem’. ([10], p.465, foot-
note,1).

Simon himself later, during the ‘debate’ with Aubert, on the appropriateness of the use of the
Brouwer Fixed Point Theorem in economic contexts, recalled:

"More recently, the question of the self-consistency of predictions has arisen again
in connection with the so-called rational expectations theories of economic behav-
ior under uncertainty. .... John Muth’s important 1961 paper, which introduced
the rational expectations theory, acknowledged the Grunberg-Modigliani paper as
a direct ancestor.

..... It was the purpose of my paper, and that of Grunberg and Modigliani,
to demonstrate that it was always in principle possible to anticipate the reaction
in the forecast, however difficult it may be to make the correct forecast. " ([19],
p.608; italics in original)

9I am reminded that Phelps, in one of his early, influential, papers that introduced the concept of
the natural rate of unemployment in its modern forms, first referred to it as a warranted rate. Even-
tually, of course, the Wicksellian term natural rate, introduced by Friedman, prevailed. Phelps and
Grunberg-Modigliani were, presumably, influenced by Harrodian thoughts in choosing the eminently
suitable word ‘warranted’ rather than ‘natural’ or ‘rational’, respectively. Personally, for aesthetic
as well as reasons of economic content, I wish the Phelps and Grunberg-Modigliani suggestions had
prevailed.
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the constituent functions10 and variables - in particular, the reaction function and the
conditions on the domain of definition of prices - were assumed to satisfy the necessary
real number and topological conditions (continuity, boundedness, etc).

Thus it was that the tradition, in the rational expectations literature of ‘solving’
the conundrums of self-reference and infinite-regress via topological fixed-point theo-
rems was etched in the collective memory of the profession. And so, four decades
after the Simon and the Grunberg-Modigliani contributions, Sargent, in his influential
Arne Ryde Lectures ([18]) was able to refer to the fixed-point approach to rational
expectations, referring to equation (2), above, without blinking the proverbial eyelid:

"A rational expectations equilibrium is a fixed point of the mapping
T ."

[18], p.10.

Now, fifty years after that initial introduction of the topological fixed-point tra-
dition by Simon and Grunberg-Modigliani, economists automatically and uncritically
accept that this is the only way to solve the REE existence problem - and they are
not to be blamed. After all, the same somnambulent complacency dominates the fun-
damentals of general equilibrium theory, as if the equilibrium existence problem can
only be framed as a fixed-point solution. Because of this somnambulent complacency,
the existence problem has forever been severed of all connections with the problem of
determining - or finding or constructing or locating - the processes that may lead to the
non-constructive and uncomputable equilibrium. The recursion theoretic fixed-point
tradition not only preserves the unity of equilibrium existence demonstration with the
processes that determine it; but it also retains, in the forefront, the self-referential and
infinite-regress aspects of the problem of the interaction between individual and social
prediction and individual and general equilibrium.

3. Recursion Theoretic Rational Expectations

"Suppose that we want to give an English sentence that commands
the reader to print a copy of the same sentence. One way to do so is
to say:

Print out this sentence

10The relation between a market price and its predicted value was termed the reaction function :
"Relations of this form between the variable to be predicted and the prediction will be called reaction
functions." ([10], p.471; italics in original).

As became the tradition in the whole rational expectations literature, the functional form for
the reaction functions were chosen with a clear eye on the requirements for the application of an
appropriate topological fixed point theorem. The self-reference and infinite-regress underpinnings
were thought to have been adequately subsumed in the existence results that were guaranteed by
the fixed point solution. That the twin conundrums were not subsumed but simply camouflaged was
not to become evident till all the later activity on trying to devise learning processes for identifying
REE s.

89



This sentence has the desired meaning because it directs the
reader to print a copy of the sentence itself. However, it doesn’t
have an obvious translation into a programming language because
the self-referential word ‘this’ in the sentence has no counterpart.
...

..
The recursion theorem provides the ability to implement the self-

referential this into any programming language."
[22], p.200; italics in original.11; bold italics added.

There is nothing sacrosanct about a topological interpretation of the operator
T , the reaction or response function. It could equally well be interpreted recursion
theoretically, which is what I shall do in the sequel.12. I need some unfamiliar, but
elementary, formal machinery, not normally available to the mathematical economist
or the macroeconomist.

Definition 14. An operator is a function:

(3.1) Φ : Fm −→ Fn

where Fk (k = 1) is the class of all partial (recursive) functions from Nk to N.

Definition 15. Φ is a recursive operator if there is a computable function φ
such that ∀f ∈ Fm and x∈ Nk, y∈ N :

Φ (f) (x) ' y iff ∃ a finite θ v f such that φ
³eθ,x´ ' y

where13 eθ is a standard coding of a finite function θ, which is extended by f .

Definition 16. An operator Φ : Fm −→ Fn is continuous if, for any f ∈ Fm,
and ∀x, y:

Φ (f) (x) ' y iff ∃ a finite θ v f such that Φ (θ) (x) ' y

11Sipser’s reference is to what is called the ‘Second Recursion Theorem ’. I shall be working with
and appealing to the ‘First Recursion Theorem ’. But, of course, they are related. I want to work,
explicitly, with a space of functions as the domain or relevance, i.e., with functionals, because the
economic setting is dynamic. In the static economic case, it would have been sufficient to work with
the ‘Second Recursion Theorem ’.

12I have relied on the following four excellent texts for the formalisms and results of recursion
theory that I am using in this part of the essay: [6], [7], [15] and [24].

13If f (x) and g (x) are expressions involving the variables x =(x1, x2, ....., xk), then:

f (x) ' g (x)

means: for any x, f (x) and g (x) are either both defined or undefined, and if defined, they are
equal.
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Definition 17. An operator Φ : Fm −→ Fn is monotone if, whenever f, g ∈ Fm
and f v g, then Φ (f) v Φ (g) .

Theorem 6. A recursive operator is continuous and monotone.

Example 2. Consider the following recursive program, Þ ,(also a recursive
operator) over the integers:

Þ: F (x, y)⇐= if x = y then y + 1, else F (x, F (x− 1, y + 1))
Now replace each occurrence of F in Þ by each of the following functions:

(3.2) f1 (x, y) : if x = y then y + 1, else x+ 1

(3.3) f2 (x, y) : if x = y then x+ 1, else y − 1

(3.4) f3 (x, y) : if (x = y) ∧ (x− y even) then x+ 1, else undefined.

Then, on either side of ⇐= in Þ, we get the identical partial functions:

(3.5) ∀i (1 5 i 5 3) , fi (x, y) ≡ if x = y then y = 1, else fi (x− 1, y + 1)

Such functions fi (∀i (1 5 i 5 3)) are referred to as fixed-points of the recursive
program Þ (recursive operator).

Note that these are fixed-points of functionals.

Remark 2. Note that f3, in contrast to f1 and f2, has the following special
property. ∀hx, yi of pairs of integers such that f3 (x, y) is defined, both f1 and f2 are
also defined and have the same value as does f3.

• f3 is, then, said to be less defined than or equal to f1 and f2 and this
property is denoted by f3 v f1 and f3 v f2.

• In fact, in this particular example, it so happens that f3 is less defined
than or equal to all fixed points of Þ.

• In addition, f3 is the only partial function with this property for Þ and is,
therefore called the least fixed point of Þ.

We now have all the formal machinery needed to state one of the classic theorems
of recursive function theory, known variously as the first recursion theorem, Kleene’s
theorem or, sometimes, as the fixed point theorem for complete partial orders.
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Theorem 7. Suppose that Φ : Fm −→ Fn is a recursive operator (or a recursive
program Þ). Then there is a partial function fφ that is the least fixed point of Φ :
Φ (fφ) = fφ;
If Φ (g) = g, then fφ v g.

Remark 3. If, in addition to being partial, fφ is also total, then it is the unique
least fixed point. Note also that a recursive operator is characterised by being contin-
uous and monotone. There would have been some advantages in stating this famous
theorem highlighting the domain of definition, i.e., complete partial orders, but the
formal machinery becomes slightly unwieldy.

It is easy to verify that the domain over which the recursive operator and the
partial functions are defined are weaker than the conventional domains over which the
economist works. Similarly, the continuity and monotonicity of the recursive operator
is naturally satisfied by the standard assumptions in economic theory for the reaction
or response function, T . Hence, we can apply the first recursion theorem to equation
(2), interpreting T as a recursive operator and not as a topological mapping. Then,
from the theorem, we know that there is a partial function - i.e., a computable function
- ft that is the least fixed point of T . Stating all this pseudo-formally as a summarising
theorem, we get:

Theorem 8. Suppose that the reaction or response function, T : Hm −→ Hn is
a recursive operator (or a recursive program Γ). Then there is a computable function
ft that is a least fixed point of T :

T (ft) = ft;
If T (g) = g, then ft v g

What are the advantages of recasting the problem of solving for the REE recursion
theoretically rather than retaining the traditional topological formalizations?

An advantage at the superficial level, but nevertheless important, is the simple fact
that, as even the name indicates, recursion encapsulates, explicitly, the idea of self-
reference because functions are defined, naturally, in terms of themselves. Secondly,
again at the superficial level, the existence of a least fix point is a solution to the
infinite-regress problem. Thus the two ‘birds’ are encapsulated in one fell swoop -
and, that too, with a computable function. There is, therefore no need to dichotomise
the solution for REE into an existence part and a separate process or computable or
learning part.

Think of the formal discourse of economic analysis as being conducted in a pro-
gramming language; call it =. We know that we choose the underlying terminology for
economic formalisms with particular meaning in mind for the elemental units: pref-
erences, endowments, technology, information, expectation and so on; call the generic
element of the set ς. When we form a compound economic proposition out of the ς
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units, the meaning is natural and clear. We can, therefore, suppose that evaluating
a compound expression in = is immediate: given an expression in =, say λ (ς), the
variables in λ, when given specific values α, are to be evaluated according to the se-
mantics of =. To actually evaluate a compound expression, λ (ς) , we write a recursive
program in the language =, the language of economic theory. But that leaves a key
question unanswered: what is the computable function that is implicitly defined by
the recursive program? The first recursion theorem answers this question with the an-
swer: the least fixed-point. In this case, therefore, there is a direct application of the
first recursion theorem to the semantics of the language =. The artificial separation
between the syntax of economic analysis, when formalized, and its natural semantics
can, therefore, be bridged effectively.

If the language of economic theory is best regarded as a very high level program-
ming language, =, to understand a theorem in economics, in recursion theoretic terms,
represent the assumptions - i.e., axioms and the variables - as input data and the con-
clusions as output data. State the theorem as an expression in the language =.Then
try to convert the proof into a program in the language =, which will take in the inputs
and produce the desired output. If one is unable to do this, it is probably because
the proof relies essentially on some infusion of non-constructive or uncomputable ele-
ments. This step will identify any inadvertent infusion of non-algorithmic reasoning,
which will have to be resolved - sooner or later, if computations are to be performed
on the variables as input data. The computations are not necessarily numerical; they
can also be symbolic.

In other words, if we take algorithms and data structures to be fundamen-
tal,then it is natural to define and understand functions in these terms. If a function
does not correspond to an algorithm, what can it be? The topological definition of
a function is not algorithmic. Therefore, the expressions formed from the language
of economic theory, in a topological formalisation, are not necessarily implementable
by a program, except by fluke or by illegitimate and vague approximations. Hence
the need to dichotomise every topological existence proof. In the case of REE, this is
the root cause of the artificial importance granted to a separate problem of learning
REEs. Nevertheless, the separation does exist and I shall approach a resolution of it
in recursion theoretic terms in the next section.

4. Recursively Learning a REE

"The development of computable analysis as an alternative to con-
ventional mathematical analysis was essentially complete by 1975,
although today this analysis is largely unknown.

A perfectly natural reaction at this point is to ask ‘Why bother?
Calculus has been in use now for over three centuries, and what possi-
ble reason is there for altering its rules?’. The simplest answer to this
question must be .... [that] we still do not solve our mathematical
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problems precisely. [In computable analysis]...the key mathematical
concepts - the real numbers, sequences, functions and so on - are
defined in terms of some computation that an ideal computer could
perform."

[1], pp. 2-3.
In the previous section I took as given by a previous economic analysis the argu-

ments in the operator T . In this section14 I go behind the scenes, so to speak, and
take one of the many possible economic worlds on which T operates, a simple Over-
lapping Generation Model (OLG), with standard assumptions, which generates REE s
as solutions to the following type of functional dynamic equation (cf. [4], pp. 414-6):

(4.1) u0 (e1 −mt) = E
½
mt+1

mt

Lt+1
Lt

v0(e2 +mt+1
Lt+1
Lt

) | It
¾
,∀It

Where:
u and v are functional notations for the additive utility functions;
The real gross yield on money, Rt =

ptxt+1
pt+1

= mt+1

mt

Lt+1
Lt
;

The real per capita currency balances, mt =
Mt

ptLt
;

Lt : size of generation t (a discrete random variable with standard assumptions);
Mt : aggregate stock of currency;
pt : realized price (of the one consumption good);
pt+1 : future price (random variable);
et : endowment at time t;
It : information set defined by

(4.2) It = I {It−1, Lt−1, xt−1, pt−1, θt}
θt : vector of all other residual variables that the agent believes will influence

future prices;

The problem I pose is the devising of an effective mechanism to learn and identify
the above REE solution, without asking how the solution was arrived at - it could
have been arrived at by magic, by pronouncements by the Delphic Oracle, prayers,
torture or whatever. However, it is immediately clear that one must first ensure that
the solution is itself a recursive real, if an effective mechanism is to locate it. A
priori, and except for flukes, it is most likely that the standard solution will be a non-
recursive real. To make it possible, therefore, to ensure a recursively real solution to
the above functional dynamic equation, this OLG structure must be endowed with an
appropriate recursion theoretic basis. I shall, now, indicate a possible set of minimum
requirements for the required recursion theoretic basis.

14The model and results of this section are an abbreviation, with minor modifications, of what
was presented in [33], pp. 94-100.

94



The derivative of the second period component of the additive utility function,
v, must be a computable real function. Roughly speaking, if the domain of v is cho-
sen judiciously and if v ∈ C2, and computable, then v0 is computable. But, for
these to be acceptable assumptions, the arguments of v0,i.e., e2,mt+1, and

Lt+1
Lt

, must
be computable reals. Since this is straightforward for e2 and per capita currency
balances15,mt+1, a recursion theoretic interpretation for the random variable Lt will
ensure that the assumptions underlying v0 are recursion theoretically sound. Now,
the random variables in the OLG model above are characterized by finite means and
stationary probability distributions. It is, therefore, easy to construct a Probabilistic
Turing Machine, PTM, endowed with an extra random-bit generator which outputs,
whenever necessary, the necessary element that has the pre-assigned probability distri-
bution. Next, there is the question of the recursivity of the information set, It. Given
that a recursion theoretic learning model requires this information set to be recur-
sively presented to the agents, it is only the element θt that remains to be recursively
defined. However, this is a purely exogenous variable that can be endowed with the
required recursive structure almost arbitrarily.

Finally, the expectations operator is interpreted as an integration process and,
since integration is a computable process, this completes the necessary endowment of
the elements of the above OLG model with a sufficient recursive structure to make
the REE generated by the solution to the functional equation a recursive real. The
minor caveat ’sufficient recursive structure’ is to guard against any misconception that
this is the only way to endow the elements of an OLG model as given above with the
required assumptions to guarantee the generation of a recursive real as a solution.
There are many ways to do so but I have chosen this particular mode because it
seems straightforward and simple. Above all, these assumptions do not contradict any
of the standard assumptions and can live with almost all of them, with minor and
inconsequential modifications.

With this machinery at hand, I can state and prove the following theorem:

Theorem 9. A unique, recursively real, solution to (8) can be identified as the
REE and learned recursively.

Proof. See [33], pp. 98-9. ¤

Remark 4. The theorem is about recursive learning; nevertheless it does embody
an unpleasant epistemological implication: there is no effective way for the learning
agent to know when to stop applying the learning mechanism!

15Provided we assume a straightforward recursive structure for prices, which turns out, usually,
to be natural.
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Remark 5. Nothing in the assumptions guarantee tractable computability at any
stage.

5. Recursive Reflections

"I went out to take a walk and to recollect after dinner. I did not
want to determine a route for my stroll; I tried to attain a maximum
latitude of probabilities in order not to fatigue my expectation with
the necessary foresight of any one of them. I managed, to the imper-
fect degree of possibility, to do what is called walking at random; I
accepted, with no other conscious prejudice than that of avoiding the
wider avenues or streets, the most obscure invitations of chance. ...
My progress brought me to a corner. I breathed in the night, in a
most serene holiday from thought."

Borges: A New Refutation of Time, in [5], pp. 225-6.

In recent years Sargent and his collaborators have developed what they call a
Recursive Macroeconomics and before that there was the encyclopedic treatise by
Lucas and Stokey (with Prescott) on Recursive Methods in Economic Dynamics ([14],
[23]). Recursive Macroeconomic Theory, as Sargent et.al see it, is recursive in view
of the three basic theoretical technologies that underpin the economic hypotheses:
sequential analysis, dynamic programming and optimal filtering. To put it in terms of
the pioneers whose theories underpin Recursive Macroeconomic Theory, the core of this
approach harnesses the theoretical technologies of AbrahamWald’s sequential analysis,
Richard Bellman’s dynamic programming and Rudolf Kalman’s filtering frameworks.
This means, the underlying economic hypotheses of Recursive Macroeconomic Theory
will be framed and formalised in such a way as to be based on the mathematics
of sequential analysis, dynamic programming and optimal filtering - whether or not
economic reality demands it; whether or not economic behaviour warrants it; whether
or not economic institutions justify it; and most basically, whether or not economic
data conform to their requirements.

The word recursive is heavily loaded with connotations of dynamics, computation
and numerical methods. But these connotations are also fraught with dangers. For
example the methods of dynamic programming are provably complex in a precise
sense; the equations that have to be solved to implement optimal filtering solutions
are also provably intractable; ditto for sequential analysis.

The recursion theoretic framework for rational expectations equilibria that I have
suggested in the main part of this essay is explicitly computational, algorithmically
dynamic and meaningfully numerical. Moreover, the theorems that I have derived
above, have an open-ended character about them. To put in blunt words, these the-
orems tell an implementable story about things that can be done; but they are silent
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about things that cannot be done16. But the stories are always about what can be
done with well defined methods to do them - the algorithms. They are never about
pseudo-recursive operators that are somnambulatory with regard to computations and
numerical methods.

The two exercises presented in the third and fourth sections of this paper are
prototypes of a strategy to be applied to defining areas of macroeconomics: growth,
fluctuations, policy, capital, monetary and unemployment theories. The general idea
is to strip the formal models in the respective fields of their topological underpinnings
and replace them, systematically, with recursion theoretic elements in such a way that
the open-endedness is enhanced and the numerical and computational contents made
explicit and implementable. The specific way it was done in §3 was to concentrate on
the use of the topological fixed-point theorem and replace it with a recursion theoretic
fixed-point theorem. Similarly, in the case, of growth theory, say of the von Neumann
variety, an analogous exercise can be carried out. This will lead to the use of the second
recursion theorem rather than the one I have harnessed in this paper and growth will
mean self-reconstruction and self-reproduction. In the case of fluctuations, the idea
would be to replace all reliance on differential or difference equation modelling of
economic dynamics and replace them with naturally recursion theoretic entities such
as cellular automata17. The aim, ultimately, is to produce a corpus of theories of
the central macroeconomic issues so that they can be collected under the alternative
umbrella phrase: Computable Macroeconomics.

The question will be asked, quite legitimately, whether this line of attack aims
also to maintain fidelity with microeconomic, rationality, postulates and, if so, in
what way it will differ in the foundations from, say, Recursive Macroeconomic Theory.
The canonical workhorse on which Recursive Macroeconomic Theory rides is the com-
petitive equilibrium model of a dynamic stochastic economy. A rational agent in such
an economic environment is, essentially, a signal processor. Hence, optimal filtering
plays a pivotal role in this approach to macroeconomic theory. The simple answer, as
a Computable Macroeconomist, would be that the rational agent of microeconomics

16I cannot resist recalling those famous ‘last lines’ of the early Wittgenstein:

"What we cannot speak about we must pass over in silence." ([27], §7).
The sense in which this famous aphorism comes to mind is that in the recursion theoretic ap-

proach one does not invoke magic, metaphysics or other formal or informal tricks to solve equations.
A problem is always posed in a specific context of effective methods of solution. The formal mathe-
matical approach in standard economic theory is replete with magical and metaphysical methods to
‘solve’, ‘prove’ or determine solutions, equilibria, etc.

17There is more to this suggestion than can be discussed here. It has to do with the connections
between dynamical systems theory, numerical analysis and recursion theory, if digital computers are
the vehicles for experimental and simulation exercises. If, on the other hand, one is prepared to
work with special purpose analogue computers, then the connection between dynamical systems and
recursion theory can be more direct and it may not be necessary to eschew the use of differential or
difference equations in investigating and modelling economic dynamics. I have discussed these issues
in [26].
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would be reinterpreted as a Turing Machine - a construction I have developed in great
detail in, for example, [33], chapter 3. The analogous construction for the other side
of the market is equally feasible, starting from re-interpreting the production function
as a Turing Machine. This endows the production process with the natural dynamics
that belonged to it in the hands of the classical economists and the early Austrians but
was diluted by the latter-day newclassicals. What of market structure - i.e., economic
institutions? Here, too, following in the giant footsteps of Simon and Scarf, there is a
path laid out whereby an algorithmic interpretation of institutions is formally natural.

That leaves only, almost, that sacrosanct disciplining rule of economic theory:
optimization. Recursion theoretic problem formulations eschew optimizations and re-
place them with decision problems. Simply stated, one asks whether problems have
solutions or not and if they do, how hard they are and if they do not how must one
change the problem formulation to make them solvable. Decidability, solvability and
computability are the touchstones of a modelling strategy in Computable Macroeco-
nomics. I am reminded, once again, as I conclude, of the early Witgenstein’s poignant
observations ([27], §6.51):

"For doubt can exist only where a question exists, a question only
where an answer exists, and an answer only where something can be
said."
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CHAPTER 5

The Unreasonable Ineffectiveness of Mathematics in

Economics

1. Preamble

"Well, you know or don’t you kennet or haven’t I told you every telling
has a taling and that’s the he and the she of it."

James Joyce: Finnegan’s Wake, p.213
Eugene Wigner’s Richard Courant Lecture in the Mathematical Sciences, delivered

at New York University on May 11, 1959, was titled, picturesquely and, perhaps, with
intentional impishness The Unreasonable Effectiveness of Mathematics in the Natural
Sciences, [35]. Twenty years later, another distinguished scientist, Richard W. Ham-
ming, gave an invited lecture to the Northern California Section of the Mathematical
Association of America with the slightly truncated title The Unreasonable Effective-
ness of Mathematics, [10]. A decade or so later Stefan Burr tried a different variant of
Wigner’s title by organising a short course on The Unreasonable Effectiveness of Num-
ber Theory, [4]. Another decade elapsed before Arthur Lesk, a distinguished molecular
biologist at Cambridge, gave a lecture at the Isaac Newton Institute for Mathemat-
ical Sciences at Cambridge University where he invoked yet another variant of the
Wigner theme: The Unreasonable Effectiveness of Mathematics in Molecular Biology,
[17]. First a physicist; then a computer scientist; then number theorists and, finally,
also molecular biologists; so why not an economist, too? But note that my title is
not about the unreasonable effectiveness of mathematics in economics; I am, instead,
referring to its ineffectiveness. I was not a little influenced by the story behind Arthur
Lesk’s eventual choice of title (cf. [18]).

I.M. Gelfand, a noted mathematician, had suggested as a counterpoint to Wigner’s
thesis his own principle on The Unreasonable Ineffectiveness of Mathematics in the Bi-
ological Sciences. Lesk, unaware of this Wigner-Gelfand principle at the time his talk
was conceived, had himself suggested a similar title for his own talk at the Newton
Institute but was persuaded by the organisers to retain the Wigner flavour by drop-
ping ineffective in favour of effective. To his surprise, when his talk was published
in The Mathematical Intelligencer, the editors of the Journal, without his approval or
knowledge, had inserted an inset ([17], p.29) describing the anecdote of the genesis of
the Wigner-Gelfand principle. This prompted Lesk to recount the genesis of his own
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title in a subsequent issue of the Journal ([18])where he admitted that his preferred
choice had been with the word Ineffective. He had proposed, to the organisers of a
conference on ’Biomolecular Function and Evolution in the Context of the Genome
Project’, at the Newton Institute, in 1998, a talk with the title On the Unreasonable
Ineffectiveness of Mathematics in Molecular Biology, which he - Lesk - thought re-
flected ‘an echo of E.P.Wigner’. At this point the following reactions by the convener
ensued:

‘A prolonged and uneasy silence. Then: "But, you see, this is not
quite the message that we want to send these people." More silence.
Then: "Would you consider changing ‘ineffective’ to ‘effective’?" ’[18].

Lesk acquiesced, but did go on to point out that:

‘Of course, the change in title had absolutely no effect on my remarks.’
(ibid).

Anecdotal amusements apart, there was a more substantive point Lesk was trying
to make with the intended title where Ineffective was emphasised in a Wignerian
context. Lesk had felt that:

‘...biology lacks the magnificent compression of the physical sciences,
where a small number of basic principles allow quantitative predic-
tion of many observations to high precision. A biologist confronted
with a large body of inexplicable observations does not have faith
that discovering the correct mathematical structure will make sense
of everything by exposing the hidden underlying regularities.

.... A famous physicist once dismissed my work, saying: "You’re
not doing science, you’re just doing archaeology!" .... [I]t emphasizes a
genuine and severe obstacle to applications of mathematics in biology.’
(ibid).

It is a neoclassical illusion, compounded by newclassical vulgarisations, that eco-
nomics is capable of a similar ‘magnificent compression’ of its principles to ‘a small
number of basic principles’ that has led to the faith in the application of the mathe-
matical method in economics. Keynes famously thought ‘if economists could manage
to get themselves thought of as humble, competent people, on a level with dentists,
that would be splendid’ ([16],p.373). I would happily settle for being thought of as
an archaeologist - but with the difference that ours is a subject where we investigate
future archaeological sites that we are the architects of, as well as those left for us by a
past of which we are the noble inheritors. We excavate, compare, decipher our version
of hieroglyphics, decode and reconstruct the past, present and future, and read into
and from all three of these repositories of time and its arrows. As a famous mathe-
matician - who also made interesting contributions to analytical economics - observed,
the veneer of mathematics tends:
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‘[T]o dress scientific brilliancies and scientific absurdities alike in the
impressive uniform of formulae and theorems. Unfortunately however,
an absurdity in uniform is far more persuasive than an absurdity
unclad.’

([28], p.22)

The aim I have set forth for myself, in this essay, is to unclothe some of the
uniforms of this empress, in her economic incarnations as a mathematical economist,
and show her naked torso for what it is: ineffective and non-constructive in the strict
technical sense of formal recursion theory and constructive mathematics; but also to
try to unclothe a few of her generals and footsoldiers, as well, and show them in their
splendid, unclad, absurdities.

Wigner’s essay was admirably concise (it was only 16 pages long) and dealt with
a host of vast and deep issues within the confines of those brief number of pages.
It was divided into five subsections, in addition to a brief introduction1. I shall,
to some extent, mimic that structure. Hence, the next section in this essay will
try to summarise the salient points underlying alternative mathematical traditions.
Wigner’s brilliant lecture was delivered at a time when real analysis reigned supreme
and formalism of one variety or another ruled, implicitly or explicitly2. There was,
if not universal agreement, blissful ignorance of alternative traditions that may have
provided different perspectives on physical theories, at least in the practice of the
more formalized sciences. Hence, Wigner could happily confine his discussions on
‘What is Mathematics? ’3 to just a page and a half! Today such conciseness is almost
impossible, even from the point of view of the knowledge of the mathematically minded
economist. Classical real analysis is only one of at least four mathematical traditions
within which economic questions can be formalized and discussed mathematically.
Nonstandard, constructive and computable analyses have been playing their own roles
in the formalization and mathematization of economic entities - but almost always
within what I call the closure of neoclassical theory.

1The five main subsections were titled:

• What is Mathematics?
• What is Physics?
• The Role of Mathematics in Physical Theories.
• Is the Success of Physical Theories Truly Surprising?
• The Uniqueness of the Theories of Physics.

2The one footnote in which intuitionism is mentioned was a reference to Hilbert’s disdainful
dismissal of it (cf. [35], footnote 4).

3I found it mildly surprising that Wigner, in a Richard Courant Lecture, did not refer to Courant’s
own famous attempt to provide an answer to the seemingly simple question ‘What is Mathematics?’
with a whole book with that title (cf. [6]). Courant’s answer, by the way, was to show what
mathematics is by describing, explaining and demonstrating what they actually do. That was,
perhaps, not suitable for Wigner’s aims in the lecture.
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Wigner’s discussion of Physics and Physical theories are predicated upon the ex-
plicit and implicit fact that such theories have organising and disciplining criteria such
as invariance, symmetry and conservation principles (cf. also [36]). Lesk, on the other
hand, by confining his discussion to that part of Molecular Biology which has come
to be called Computational Molecular Biology, was able to single out the restraining
and guiding hands provided by the laws of physics and chemistry, without subscribing
to any kind of reductionism. He coupled these underpinnings to the mechanism of
evolution and the role of chance in the latter, in particular, as organising principles
to demonstrate the effectivity of mathematical theorising in Computational Molecular
Biology. These organising principles operate, of course, also in Molecular Biology in
general; it is just that, by concentrating on the computational subset, Lesk was able
to characterize the canonical mathematical methods used as being sequence alignment
and structure superposition.

If I was to follow Lesk’s strategy, then I have one of three possibilities. I can ei-
ther work within the framework of General Equilibrium Theory (GET) as the core of
neoclassical economics and choose its computational ’subset’, i.e., Computable General
Equilibrium theory (CGE) and discuss the unreasonable effectiveness, or not, of math-
ematics inside these, narrow but well-defined citadels of application of mathematics in
economics. The second possibility is to choose the computable subset of either GET or
some other part of economic theory, not necessarily neoclassical in spirit, and highlight
the effectivity of mathematical theorising in these subsets. The third alternative is to
confine my attention to that amorphous practice, increasingly called Computational
Economics, and discuss the effectivity of mathematical theorising in this field. I rule
out the latter two alternatives in view of a lack of clearly defined disciplining criteria
that would make it possible to provide a decent discussion within the confines of a
single, page-constrained, essay. Therefore, I choose, in §3, to define the ‘economic
theory’ to which mathematics has been applied ineffectively, and unreasonably so, as
GET and confine myself to brief remarks on other, related areas of economics aspiring
to the status of a mathematical discipline.

I try, in §4 to suggest that we return to the tradition of the methodologies and
epistemologies of the natural historian - perhaps, implicitly, also that of the dentist
and the archaeologist. This final section is also a reflection of the way mathematics
might develop and to speculate that the possible scenarios would reinforce the return
of economics to what it once was: Political Arithmetic.

2. Mathematical Traditions

"Among the abstract arts music stands out by its precise and complex
articulation, subject to a grammar of its own. In profundity and scope
it may compare with pure mathematics. Moreover, both of these
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testify to the same paradox: namely that man can hold important
discourse about nothing."

Michael Polanyi: Personal Knowledge ([23]), p.193; italics
added.

If ‘Poetry Makes Nothing Happen’4, what, then, of philosophy and mathematics?
Do they make anything happen? Surely, for them - and for poetry - to make anything
happen, they have to be about something. What are they about, then? Michael
Dummett’s enlightened and informed criteria may offer a starting point5:

"The two most abstract of the intellectual disciplines, philosophy and
mathematics, give rise to the same perplexity: what are they about?
.....

An uninformative answer could be given by listing various types
of mathematical object and mathematical structure: mathematicians
study the properties of natural numbers, real numbers, ordinal num-
bers, groups, topological spaces, differential manifolds, lattices and
the like. .....

A brilliant answer to our question .. was, essentially, that math-
ematics is not about anything in particular : it consists, rather, of
the systematic construction of complex deductive arguments.
Deductive reasoning is capable of eliciting, from comparatively mea-
gre premisses and by routes far from immediately obvious, a wealth
of often surprising consequences; in mathematics such routes are
explored and the means of deriving those consequences are stored
for future use in the form of propositions. Mathematical theorems, on
this account, embody deductive subroutines which, once discovered,
can be repeatedly used in a variety of contexts."

[9], pp.11-14; bold emphasis added.

4I have in mind Auden’s poignant eulogy to Yeats: "Mad Ireland hurt you into poetry, Now
Ireland has her madness and her weather still, For poetry makes nothing happen : it survives.. ."
Auden: ‘In Memory of W.B.Yeats’ (italics added).

5Dummett’s question, and enlightened answer, is entirely consistent with Hardy’s analogous
question and equally felicitous answer - except that the latter aimed at characterizing the mathe-
matician : ‘A mathematician, like a painter or a poet, is a maker of patterns. If his
patterns are more permanent than theirs, it is because they are made with ideas. A painter
makes patterns with shapes and colours, a poet with words..... .

The mathematician’s patterns, like the painter’s or the poet’s, must be beautiful ; the
ideas, like the colours or the words, must fit together in a harmonious way. ...

It may be very hard to define mathematical beauty ... but that does not prevent us from
recognising one when we [see] it. ([12], pp. 84-5; bold emphasis added).

Hardy’s mathematician, who is a ‘maker of beautiful patterns’, is exactly Dummett’s ‘constructor
of complex deductive arguments’. Just as Dummett’s ‘complex deductive arguments’ are arrived at by
’routes far from immediately obvious’, the ‘beauty’ of the patterns devised by Hardy’s mathematicians
are ‘hard to define’.
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In other words, mathematics is about proof. I believe this to be a valid and stan-
dard characterisation which helps delineate the different ‘schools’ of mathematics in
terms of it. Some ‘routes’ for the ‘construction of complex deductive arguments’ are
aesthetically more acceptable, on clearly defined criteria, to one class of mathemati-
cians and others to another class and this is one of the ways these different ‘schools’
have tried to distinguish themselves from each other. As one may expect, different
‘routes’ may lead the traveller to different destinations - to different classes of mathe-
matical objects and, equally, different classes of mathematicians have approved - and
disapproved, as the case may be - for aesthetic and epistemological reasons, as valid
or invalid, alternative structures of ‘deductive arguments’. In other words, there is no
such thing as universally valid and acceptable class of ‘deductive arguments’ that must
exclusively be used in the exploratory journeys along ‘far from immediately obvious
routes’. Many times, the ‘routes’ are discovered ; at other times, they are invented.
A whole, respectable and resilient, mathematical movement, methodologically and
epistemologically rigorous in its ways, has always claimed that there are no ‘routes’
out there, laid out by the Gods, for mathematicians to discover. Mathematicians,
equipped with a stock of ideas, explore alternative ‘routes’ with aesthetically and
epistemologically acceptable deductive structures - i.e., construction rules - and create
- i.e., invent - new pathways that lead to unexpected destinations. Others live in a
world of Platonic shadows and discover routes that have been laid out by the Gods6.
The former are called the Intuitionists; the latter are the formal Platonists. These two
classes do not, of course, exhaust the class of mathematicians; there are varieties of
Platonists and, equally, varieties of Intuitionists, and others besides: Hilbertian For-
malists, Bourbakists, Bishop-style Constructivists, Logicists,and so on. A flavour of
the main differences, based on the Dummett-Hardy characterisation of mathematics
and the mathematician, can be discerned from the following artificial dialogue between
a mythical Intuitionist (I) and an undifferentiated Formalist (ME)7:

Example 3.

ME: I have just proved ∃xA.
I: Congratulations. What is it? How did you prove it?
ME: It is an economic equilibrium. I assumed ∀x¬A and derived a contradiction.
I: Oh! You mean you ‘proved’ ¬∀x¬A?
ME: That’s what I thought I said.
I: I don’t think so.

Example 4.

6As David Ruells perceptively observed in his ‘Gibbs Lecture’:‘ We like to think of the
discovery of mathematical structure as walking upon a path laid out be the Gods. But
.... may be there is no path..’ ([24], p.266).

7Adapted from [21]. Anticipating the characterisation of a Mathematical Economist in the next
section, ME in this dialogue refers to such a being.
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ME: I have proved A ∨B.
I: Excellent. Which did you prove?
ME: What?
I: You said that you had proved A or B and I was wondering whether you had

proved A or B or both.
ME: None of them! I assumed ¬A ∧ ¬B and derived a contradiction.
I: Oh, you mean you proved ¬ [¬A ∧ ¬B]?
ME: That’s exactly right. Your way of stating it is simply another way of saying

the same thing.
I: No - not at all.

As a direct instance of the first example, with immediate implications for the
foundations of GET, there is the case of Brouwer’s original proof of his celebrated fix
point theorem. He - and legions of others after him, scores of whom were economists -
did not prove that ‘every f (in a certain class of functions) has a fixed point ’ (i.e.,∃xA)
. What he did prove was: ‘There is no f (in a certain class of functions) without a
fixed point ’ (i.e., ¬∀x¬A). The equivalence between the two propositions entails an
acceptance of the deductive validity of: ¬ (¬A)⇔ A. Brouwer himself came to reject
the validity of this principle and, forty years after the initial publication of his famous
result, reformulated the proof without reliance on it [3].

The second example illustrates a widely used non-constructive principle, most con-
spicuously utilised in the ’proof’ of the Bolzano-Weierstrass Theorem (cf.[8], pp.10-11),
which is implicitly assumed in all ‘constructions’ of equilibria in CGE models. The
reason for some mathematicians to object to proofs of the sort in the second example
is that it shows that one or the other of two specific conditions hold without specifying
a means to determine which of them is valid in any specific set of circumstance. It
is as if the mathematician in his journey along those characterising ‘routes’ comes
to a fork in the pathway and is told that one or the other of the alternatives will
lead to a specified destination, but is not given any further information as to which
one might do so. Is she to take both, simultaneously or one after the other - even
along mathematical pathways that are routinely non-finite, as, indeed, the case in the
Bolzano-Weierstrass Theorem? What are the consequences of traversing an infinite
path, speckled with forks, where undecidable disjunctions can paralyse progress? The
classical mathematician is not troubled by such conundrums; almost all other tradi-
tions tame undecidable disjunctions at their buds. The mathematical economist and
almost all applications of mathematics in economics traverse with princely unconcern
for the forks, donning the proverbial blind every time such bifurcations are encoun-
tered. No wonder, then, that the subject remains entwined and entangled in numerical
indeterminacies and logical undecidabilities - but this is an item for the next section.
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In the above explicit instance of the first example I have invoked the idea of a
function without trying to define its meaning. So, what is a function?8 How do
different mathematical traditions confront the task of answering this question? The
ordinary meaning of the word ‘function’ is associated with the ‘idea’ of performing a
task. All mathematical traditions, with the notable exception of what, for want of
a better name, I shall call ‘classical real analysis’ or ‘classical mathematics’, each in
their own way, retain fidelity to the ordinary meaning of the word ‘function’ in their
specialised characterisations. Historically, in mathematics, the meaning of the concept
was intimately tied to the notion of a rule, a procedure, a set of instructions to perform
a task. Thus, for example, a function f was supposed to enable a mathematician to
calculate, given a number, say x, - real, natural, or whatever - another number, denoted
by f(x) such that, whenever x = y, then f(x) = f(y). This was to impose some
disciplining criteria in the procedures - the methods by which patterns are created.
However, at the hands of the classical mathematicians this became ossified as the
well-known Kuratowski-Dirichlet definition9:

Definition 18. A function f : A −→ B is any subset f v (A×B) which satisfies:
(∀x ∈ A) (∃y ∈ B) s.t (x, y) ∈ f&(x, y0) ∈ f =⇒ y = y0.

However, this definition - ‘function as a graph’ - makes sense only within set
theory.10 The definition has severed all connections with the meaning attributed to
the word ‘function’ in ordinary discourse; there is little sense in which it can be
understood to ‘perform a task’. The idea of a ‘rule’, a ‘procedure’, encapsulated within
the historical definition of the idea - concept - of a ‘function’ has disappeared. This is
best illustrated by an example (cf. [20], p.41). The following ‘formulas’ for computing

8I could, instead, proceed, at this point, by asking the analogous question: what is a number? or
any related question, substituting, for ‘function ’ and ‘number ’, other basic ‘ideas ’ that are the objects
manipulated by deductive arguments to construct the patterns that pave the route. For reasons of
convenience and familiarity, I shall confine my discussion to the object referred to as ‘function’.

9I add the name Dirichlet to the standard naming which justly credits Kuratowski with this
definition, for historical reasons. It was, however, Dirichlet who initiated this particular tradition,
culminating in Kuratowski’s ‘function as a graph’ definition. Dirichlet’s definition, in terms of open,
continuous, intervals, remains the touchstone, as one can see from the way the Bishop-style construc-
tivists and the Brouwerian Intuitionists have, eventually, defined functions. (cf. for example, [15],
p.274: ‘It thus appears that an adequate definition of a function for a continuous interval (a, b) must
take the form given to it by Dirichlet’. Hobson does not elaborate upon the meaning of ‘adequate’,
but it certainly had nothing to do with ‘performing a task’. ). Of course, the motivation and criteria
in the latter two approaches were quite different from those of Dirichlet and Kuratowski.

10And set theory is only one of at least four sub-branches of mathematical logic; the others being:
proof theory, recursion theory and model theory. Loosely speaking, but not entirely inaccurately, it
is possible to associate one particular class of numbers with each of these sub-branches of logic:
real numbers, constructive numbers, computable numbers and non-standard numbers, respectively.
Analogously, each of these form the subject matter of: real analysis, constructive analysis, computable
analysis and non-standard analysis. Which of these numbers and, hence, which kind of analysis, is
appropriate for economic analysis is never discussed in any form or forum of mathematical economics
or mathematics in economics. It is taken for granted that real numbers and its handmaiden, real
analysis, is the default domain. Why?
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the square of two numbers, defined on the reals, are equivalent in the ‘function as a
graph’ definition implied by the above Dirichlet-Kuratowski characterization:

f (x, y) ≡ (x+ y)2

g (x, y) ≡ x2 + 2xy + y2

However, as tasks to be performed, say on a digital computer via a simple program,
they result in different sets of instructions. The key point is this: whether the notion
of a function that is based on ‘performing a task’ can be represented in set theory in
such a way as to capture its full intuitive content remains an open question. In spite
of this indeterminacy, mathematical economists - and, so far as I know, all economists
who apply mathematics in economics - routinely rely on this particular definition for
their so-called rigorous notion of a function.

On the other hand, almost all other traditions, as mentioned above, in their defi-
nitions of the notion of a function, retain fidelity with the ordinary meaning and math-
ematical tradition. Thus, in Bishop-style constructive mathematics the distinguishing
starting point is that all existence proofs should be constructive in the precise sense
that every proof can be implemented, in principle, as an algorithm in a computer11

to demonstrate, by explicit construction, the object in question. This means, firstly,
that the law of the excluded middle12 is not invoked in infinitary cases; secondly, as a
by-product of such a discipline on existence as construction, all functions are required
to be uniformly continuous in each closed interval. In other words, if mathematics is
about proving theorems, and if proofs are to be constructive - i.e., performable tasks,
at least in principle, by a set of explicit instructions - then each function must be
characterized in a certain precise way. Hence, Bishop-style constructive mathematics
retains fidelity with the ordinary meaning of the concept of function by endowing it
with certainmathematical properties - i.e., uniformly continuous in each closed interval
- such that when they are used in the pattern formation activities of the mathematician
they will facilitate the ‘performance of tasks’.

In that variant of constructive mathematics known as Brouwerian Intuitionism,
the starting point is what is known as ‘free choice sequences’ - where a rule for deter-
mining a real number is a result of free choices by an autonomous human intelligence,
independent of the strictures of the undecidable disjunctions of classical logic. This
implied, in Brouwerian Intuitionism, that all functions from reals to reals are con-
tinuous. Here, too, starting from a metatheoretic assumption - construction of the
primitives by ‘free choice sequences’, based on what Brouwer considered was the do-
main of activity of the mathematician - his or her autonomous intelligence - one was
led to consider a characterisation of functions that retained fidelity with tradition and
the ordinary meaning of the word.

11The computer could be digital or analog.
12Tertium non datur.
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Then, there is the class of computable functions, the domain of the recursion
theorist, acting under the discipline of the Church-Turing Thesis. The most direct
way of describing or characterising these functions - although not the mode that I
find most congenial - is to say that they are that subset of the functions defined in
classical mathematics which can be implemented on an ideal digital computer - i.e.,
the Turing Machine. Next, invoking the Church-Turing Thesis, one identifies them,
depending on the aims of the analysis, as the class of partial recursive functions or
Church’s λ-definable functions, etc. Then, by way of a elementary counting arguments
it is shown that there are ‘only’ a countable infinity of Turing Machines and, hence,
also of partial recursive functions, implying thereby that the complement of this set
in the class of all classically defined functions contains the uncomputable functions.
They are, therefore, uncountably infinite in number! This, by the way, is the class
of functions routinely used and assumed in mathematical economics of every variety,
without exception.

It is, of course, possible to continue a finer classification of varieties of construc-
tive mathematics and, also, varieties of Formalists, Platonists, and Logicists and so
on13. However, this will achieve no particular purpose beyond that which has been
achieved with the above few considerations and characterisations for the following
reasons. Given the Hardy-Dummett characterisation of mathematics and the activity
of the mathematician in terms of ‘the systematic construction of complex deductive
arguments’, it was inevitable that there would be some dissonance in the meaning and
interpretation to be attached to ‘construction’ and the acceptability or not of valid
deductive rules for the ‘construction’. Depending on the kind of deductive rules and
constructions accepted as valid, there are different ways to characterise mathematics
and mathematicians. I have highlighted a few of the possible ways to do this - but
many other ways could have been attempted with equal ease, which would have re-
sulted in a many-splendoured world of possible mathematics and mathematicians. The
main point to note is that it is not a monolithic world, characterised by one concept
of ‘proof’ and a single way of ‘constructing patterns’ from an inflexibly determined set
of deductive rules.

13Although it may appear paradoxical, I am of the opinion that non-standard analysis should be
placed squarely in the constructive tradition - at least from the point of view of practice. Ever since
Leibniz chose a notation for the differential and integral calculus that was conducive to computation,
a notation that has survived even in the quintessentially non-computational tradition of classical real
analysis, the practice of non-standard analysis has remained firmly rooted in applicability from a
computational point of view. Indeed, the first modern rejuvenation of the non-standard tradition
in the late 50s and early 60s, at the hands of Schmieden and Laugwitz (cf. [26]), had constructive
underpinnings. I add the caveat ‘modern’ because Veronese’s sterling efforts (cf.[34]) at the turn of
the 19th century did not succeed in revitalising the subject due to its unfair dismissal by Peano and
Russell, from different points of view. The former dismissed it, explicitly, for lacking in ‘rigour’; the
latter, implicitly, by claiming that the triple problems of the infinitesimal, infinity and the continuum
had been ‘solved’.
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3. A Glittering Deception

"And he wondered what the artist had intended to represent (Watt
knew nothing about painting), ... a circle and a centre not its centre
in search of a centre and its circle respectively, in boundless space, in
endless time (Watt knew nothing about physics) ... ."

Samuel Beckett: Watt ([2]), p.127; italics added.
In their seminal textbook on mathematical economics, Arrow and Hahn ([1]) state

that their ‘methods of proof are in a number of instances quite different’ from those in
Debreu’s classic, codifying, text on the Theory of Value ([7]). Debreu, in turn, claimed
that he was treating the theory of value, in his book, ‘with the standards of rigor of
the contemporary formalist school of mathematics’ and that, this ‘effort toward rigor
substitutes correct reasonings and results for incorrect ones’ (ibid, p.viii). But we are
not told, by Arrow and Hahn or by Debreu, either what these ‘different methods of
proof’ mean in the form of new insights into economics or what concept of ‘rigor’
underpins the substitution of ‘correct reasonings and results for incorrect ones’14.

On the other hand, the crowning achievement of the Arrow-Debreu reformulation
of the Walrasian problem of the existence of an economic (exchange) equilibrium
was its formal demonstration as the solution to a fixed point problem. In addition
to this, there was the harnessing of theorems of the separating hyperplane - more
generally, the Hahn-Banach Theorem and Duality Theorems - to formally demonstrate
the mathematical validity of the two fundamental theorems of welfare economics.
Thus, existence of economic equilibrium and welfare economics were given so-called
rigorous mathematical formulations and formal demonstrations as theorems of various
sorts. Both Arrow and Debreu were handsome in their acknowledgement of debts
to the trails that had been blazed by the pioneers in mathematical method for such
issues: von Neumann, Wald and Nash being the most prominent among them, but
also numerous mathematicians - Brouwer, Kakutani, Banach, to name the obvious
ones.

As a sequel to the codification achieved by Debreu, Scarf began a sustained re-
search program to ‘constructivise’ one aspect of the mathematics of general equilibrium
theory: the problem of existence. Early on, he had realised that proving existence by
non-constructive means was unsatisfactory from the point of view of economics as an

14The inspiration for the heading of this section came about as follows. Jacob Schwartz, a
distinguished mathematician, but also the author of a fine, though unfortunately little acknowledged,
monograph on ‘the mathematical method in analytical economics’ [27] , observed pungently: "The
very fact that a theory appears in mathematical form, that, for instance, a theory has provided
the occasion for the application of a fixed-point theorem .. somehow makes us more ready to take it
seriously. .. The result, perhaps most common in the social sciences, is bad theory with a mathematical
passport. .. The intellectual attractiveness of a mathematical argument ... makes mathematics a
powerful tool of intellectual prestidigination - a glittering deception in which some are entrapped,
and some, alas, entrappers. ([28] , pp. 22-3, italics added)
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applied subject, even apart from possible aesthetic motivations and intellectual chal-
lenges to constructivise non-numerical concepts. This is the research program under
the rubric of Computable General Equilibrium theory (CGE), with far reaching policy
implications. Surprisingly, no one has tried to constructivise or effectivise the formal-
izations of the two fundamental theorems of welfare economics, on which momentous
policy prescriptions - even of a philosophical nature - depend.

The main question I wish to pose in this section is the following: suppose the
modern masters of mathematical general equilibrium theory had been more enlight-
ened in their attitude and, possibly, knowledge of mathematics and its philosophy and
epistemology, and had they taken the trouble to ‘treat the theory of value with the
standards of rigour of’ not only ‘the contemporary formalist school of mathematics’,
but with the ‘standards of rigour’ of other contemporary schools of mathematics, how
much of their economic propositions would remain valid? In other words, did the
spectacular successes of the Theory of Value depend on the fortuitous fact of having
been formalised in terms of ‘the contemporary formalist school of mathematics’?

A subsidiary question I pose, next, is whether Scarf’s program can be carried
through successfully. The claim, by leading applied economists, is that it has been
carried through successfully and GET is, now, an eminently applicable field, with clear
computational and numerical content.

My answer to the first question is that the results are hopelessly sensitive to the
kind of mathematics used. The answer to the second question is that the Scarf program
cannot succeed in its aim to constructivise the equilibrium existence problem of GET,
i.e, the constructive and computable content of CGE is vacuous.

Before I consider the unreasonable ineffectiveness of mathematical general equi-
librium theory, there are a few ghosts to rekindle and some to lay to rest. The first
ghost that deserves a rekindling is the existence problem - and from two points of
view. Firstly, is it really necessary to pose as a formal, mathematical, problem the
question of equilibrium existence? Hicks did not think so:

"[T]he [Value and Capital ] model is not much affected by the crit-
icism, made against it by some mathematical economists, that the
existence of an equilibrium, at positive prices, is not demonstrated.
..... Existence, from my point of view, was a part of the hypothesis:
I was asking, if such a system existed, how would it work?"

[14], p.374; italics added.
With an eye at some questions to be raised below, let me ask: why ‘at positive

prices’ and not ‘positive integer or rational prices’?

Next, even if there is a satisfactory answer to the first question - in spite of the
weight of Hicks’ vision and stand - was it necessary to formulate the equilibrium
existence problem as a fix point problem? Smale did not think so:
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"We return to the subject of equilibrium theory. The existence theory
of the static approach is deeply rooted to the use of the mathematics
of fixed point theory. Thus one step in the liberation from the static
point of view would be to use a mathematics of a different kind.
Furthermore, proofs of fixed point theorems traditionally use diffi-
cult ideas of algebraic topology, and this has obscured the economic
phenomena underlying the existence of equilibria. Also the economic
equilibrium problem presents itself most directly and with the most
tradition not as a fixed point problem, but as an equation, supply
equals demand. Mathematical economists have translated the
problem of solving this equation into a fixed point problem.

I think it is fair to say that for the main existence problems in
the theory of economic equilibrium, one can now bypass the fixed
point approach and attack the equations directly to give ex-
istence of solutions, with a simpler kind of mathematics and
even mathematics with dynamic and algorithmic overtones."

[29], p.290; bold emphasis added.

Why, then, did ‘mathematical economists translate the problem of solving’ equa-
tions ‘into a fixed point problem’? Also, suppose we return to the ‘equation’ tradition
but impose natural economic constraints on the variables, parameters and constants
of the supply-demand relations. Such natural constraints would imply integer and
rational valued variables, constants and parameters. To return to a variant of the
question I posed just after the Hicks quote: why the fetishism of looking for ‘non-
negative prices’ in an equilibrium configuration? Surely, a return to the equation
tradition, with non-negative integer or rational valued variables, constants and pa-
rameters means a confrontation with a combinatorial monster: Diophantine equation.
In such an environment, the economic problem would naturally become a (recursion-
theoretic) decision problem and will no longer be a traditional optimization problem15.

As a tentative answer to these two questions I can do no better than recall the
immortal words of the great Charles Dickens:

15It is worth mentioning, especially in the context of the forum for which this essay is prepared,
that the supreme examples of equation systems that were solved without recourse to any kind of
fixed point theorem were those presented in Sraffa’s remarkable little book ([30]). Of course, the
Sraffa systems were not of the supply=demand variety; nevertheless, they were equilibrium systems
of a sort. That legions of mathematical economists, both well-meaning and hostile, spent time and
effort to re-prove what had been proved quite adequately, although not by formalistic means, remains
an unfathomable mystery to me. It was as if no one could understand simple, constructive proofs
or, worse, that even mathematically competent readers were one-dimensional in their knowledge of
techniques of proofs. Why someone did not use Sraffa’s perfectly adequate and competent methods
to re-prove, say, the Perron-Frobenius theorem, and free it from the shackles of reliance on the
non-constructive Brouwer fixed point theorem is also a mystery to me.
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"They took up several wrong people, and they ran their heads very
hard against wrong ideas and persisted in trying to fit the circum-
stances to the ideas, instead of trying to extract ideas from circum-
stances."

Charles Dickens: Great Expectations, italics added.
My point is that the mathematical economists ‘persisted in trying to fit the cir-

cumstances’, i.e., existence of economic equilibrium question, ‘to the ideas’, i.e., to
the mathematics they knew, ‘instead of trying to extract ideas’, i.e., instead of trying
to extract possible mathematical ideas, ‘from circumstances’, i.e., from the economic
circumstances - as Sraffa did.

Let me, now, return to GET and CGE and their mathematically unreasonable
ineffectiveness. Here I shall mean, by ineffectiveness, the strict technical sense of
being uncomputable or non-constructive. The caveat unreasonable signifies the fact
that the mathematics used - i.e., methods of proof utilized in GET and CGE - and
the axioms assumed - were not only economically injudicious but also unnecessary and
irrelevant from every conceivable numerical and computational point of view.

The formal underpinnings of the economic theory enunciated in Debreu’s Theory of
Value depend crucially on the following mathematical axiom, concepts and theorems:

(1) The axiom of completeness ([7], §1.5.d, p.10)
(2) Compactness ([7], §1.6.t, p.15)
(3) Continuity - topologically characterized ([7], §1.7.b, p.15)
(4) The maximum-minimum theorem or, as Debreu has named it, the Weier-

strass theorem ([7],§1.7.h (4’), p.16)
(5) Separating hyperplane theorems ([7], §1.9, pp.24-5)
(6) The Brouwer and Kakutani Fixed Point Theorems ([7], §1.10, p.26)

Let me, now, add, to this mathematical apparatus in the Theory of Value, the
following six theorems, propositions and facts16:

Theorem 10. (Specker’s Theorem in Computable Analysis)
A sequence exists with an upper bound but without a least upper bound.

Proposition 10. The Heine-Borel Theorem (on Compactness) is invalid in Com-
putable Analysis

Claim 1. There are ‘clear intuitive notions of continuity which cannot be topo-
logically defined’ ([?], p.73)

16I should, for completeness, add a list of the deductive rules that are valid in different kids
of mathematics, too. For example, the reason for the failure of the Bolzano-Weierstrass theorem in
constructive mathematics is the uncritical use of the law of the excluded middle. This law and the law
of double negation are the ’culprits’ in the failure of the Brouwer fixed-point theorem in Brouwerian
Intuitionistic mathematics. But I have refrained from making these explicit in view of the brief hints
given in the previous section.
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Proposition 11. The Bolzano-Weierstrass Theorem is invalid in Constructive
Mathematics

Claim 2. The Hahn-Banach Theorem is invalid in its classical form in Construc-
tive and Computable analysis.

Claim 3. The fixed point theorems in their classical versions are not valid in
(Intuitionistically) Constructive Mathematics.

If the above theorem, propositions and claims are appended to the Theory of
Value, or to any later ‘edition’ of it such as [1], then it can be shown that none
of the propositions, theorems and claims of a mathematical sort would retain their
validity without drastic modifications of their economic content and implications. In
particular, not a single formal proposition in the Theory of Value would have any
numerical or computational content.

Suppose we add, to the above six supplementary ‘riders’, the following Claim on
the Uzawa Equivalence Theorem ([32]):

Claim 4. The Uzawa Equivalence Theorem is neither constructively nor com-
putably valid.

Then, in conjunction with the invalidity Proposition of the Bolzano-Weierstrass
Theorem, the above Claim implies that the constructive content of CGE models, and
their computational implications for economic policy analysis, are vacuous.

A similar exercise can be carried out for every sub-field of economic theory to
which the mathematical method has been applied - in particular, game theory. It
will be a tedious exercise but I suspect that, eventually, such an exegesis can even be
automated! The general strategy would be to identify the key mathematical axioms,
theorems and concepts that underlie any particular mathematics applied to a sub-
field of economic theory and, then, to investigate their constructive, computable, non-
standard or real analytic nature. Thus, for example, a seemingly innocuous application
of dynamical systems theory in endogenous theories of the business cycle would also
be susceptible to such an exegetic exercise. Any use of the Cauchy-Peano theorem in
the existence theory for differential equations will fall foul of the failure of the validity
of the Bolzano-Weierstrass Theorem in Constructive mathematics. This is because
the Bolzano-Weierstrass Theorem is equivalent to the Ascoli Lemma which, in turn,
is used to simplify the proof of the Cauchy-Peano Theorem. ‘O what a tangled web
we weave...’ (pace Sir Walter Scott)!

In passing, it must, of course, be pointed out that fixed point theorems did not
enter economic analysis by way of the existence problem of general equilibrium theory;
the entrance points were game theory and growth theory - both at the hands of von
Neumann. For reasons of space, my remarks on these two issues will have to be
brief. First of all, as regards game theory, I have already tried to make a case for
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recasting every game theoretic problem in economics as an Arithmetical Game (cf.
[33], ch. 7). This implies that their solutions can be reduced to Diophantine decision
problems, in analogy with the equation approach to the economic equilibrium existence
problem. Secondly, in the case of growth theory, the original fixed point problem of a
minimax system, was ‘simplified’ into a separating hyperplane problem. But as pointed
out above, the separating hyperplane theorem, or the Hahn-Banach theorem, has
neither an exact equivalent formulation in constructive mathematics nor is it known,
at present, whether it is valid in computable analysis. However, the fact remains that
growth theory is a problem of self-reproduction and self-reconstruction, and to that
extent the theory can felicitously be reformulated as a recursion theoretic problem and
the standard, numerically implementable, fixed point theorem of recursion theory can
be applied.

What kind of lessons are we to draw from this particular exercise in exegesis?
There is almost no better way to phrase the main lesson to be drawn than in the
words of a leading newclassical mathematical economist:

".. [A]s economic analysts we are directed by, if not prisoners of, the
mathematical tools that we possess."

[25], p.xix; italics added.
Should we not, if we are ‘prisoners’ of anything, try to liberate ourselves from that

which imprisons us?

4. The Path We Will Never Walk Again

"Mathematics is not a finished object based on some axioms. It
evolves genetically. This has not yet quite come to conscious real-
ization. ...

[T]here might someday be entirely new points of view, even about
sets or classes of sets. Sets may someday be considered as ‘imaginary.’
I think that will come to pass, though at present it is not admissible.

Mathematics will change. Instead of precise theorems, of which
there are now millions, we will have, fifty years from now, general
theories and vague guidelines, and the individual proofs will be worked
out by graduate students or by computers.

Mathematicians fool themselves when they think that the purpose
of mathematics is to prove theorems, without regard to the broader
impact of mathematical results. Isn’t it strange.

In the next fifty years there will be, if not axioms, at least agree-
ments among mathematicians about assumptions of new freedoms of
constructions, of thoughts. Given an undecidable proposition, there
will be a preference as to whether one should assume it to be true or
false. Iterated this becomes: some statements may be undecidably
undecidable. This has great philosophical interest
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Ulam ([5], pp. 310-2; italics added)
It is not for nothing that one of the great masters of modern economic theory, even

in its mathematical versions, John Hicks, never tired of emphasising the importance
of the accounting tradition in economic analysis, particularly dynamic economics:

"In all its main forms, modern economic dynamics is an accounting
theory. It borrows its leading concepts from the work which had
previously been done by accountants (with singularly little help from
economists); and it is in accordance with this that social accounting
should be its main practical instrument of application."

[13]
Somewhere between the Political Arithmetician17 and the Accountant lies the

task of the quantitative economist’s analytical role and none of the theoretical or
applied tasks of these two paradigmatic figures requires anything more than arithmetic,
statistics and the rules of compound interest18. These, in turn, require nothing more
than an understanding of the conditions under which systems of equations can and
cannot be solved. But what kind of quantities do these equations encapsulate as
parameters, constants and variables? Surely, the kind of quantities that enter the
equations of the Political Arithmetician and the Accountant cannot be other than
rational or natural numbers - negative and non-negative?19 I cannot see any role for
real numbers in quantitative economics and, hence, none whatsoever for real analysis.

Richard Hamming wondered, similarly, about the appropriate kind of numbers for
probablity theory20:

"Thus without further examination it is not completely evident that
the classical real number system will prove to be appropriate to the
needs of probability. Perhaps the real number system is: (1) not
rich enough - see non-standard analysis; (2) just what we want - see
standard mathematics; or (3) more than is needed - see constructive
mathematics, and computable numbers. ...

What are all these uncountably many non-computable numbers
that the conventional real number system includes?....

17The title for the heading of this section was inspired by the last line in one of the stanzas
of one of Antonio Machado’s great Cantares (my translation): Caminante no hay camino, se hace
camino al andar. Al andar se hace camino, y al volver la vista atras se ve la senda que nunca se ha
de volver a pisar. ...’

18I have always tried to read Sraffa’s magnum opus as if it was an accountant’s manual, supple-
mented by ingenious constructive devices to prove the solvability of systems of equations.

19The lasting contribution of economic analysis, to the mercantile culture of the modern era,
was - in my opinion - double-entry bookkeeping. The Political Arithmetician and the Accountant
has to deal with credit as well as the debit side of such bookkeeping discipline and, hence, it is not
enough to confine attention to equations constrained by non-negative numbers. Negative numbers,
even in their origin, play a role in doulbe-entry bookkeeping.

20Simply substitute ‘economic theory’ for ‘probability theory’, when reading this quote!
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The intuitionists, of whom you seldom hear about in the process of
getting a classical mathematical education, have long been articulate
about the troubles that arise in the standard mathematics ....

What are we to think of this situation? What is the role in prob-
ability theory for these numbers which can never occur in practice?"

[11]

Thus, the only kind of equations that can play any role in the analytical activities
of the Political Arithmetician and the Accountant are Diophantine equations. How
can the problem of solvability of such equations be studied and what methods are
available to systematise and routinise their use? The paradoxical answer to both of
these questions is that the problem of solvability is intractable and their systematic
and routinised study is almost impossible. They share, with that other ‘Cinderella of
pure mathematics’, nonlinear differential and difference equations, a Linnean status,
as poignantly and accurately described by George Temple21:

"The group of problems which I propose to describe belong to that
Cinderella of pure mathematics- the study of Diophantine equations.
The closely guarded secret of this subject is that it has not yet at-
tained the status and dignity of a science, but still enjoys the freedom
and freshness of such pre-scientific study as natural history compared
with botany. The student of Diophantine equations ... is still living
at the stage where his main tasks are to collect specimens, to describe
them with loving care, and to cultivate them for study under labo-
ratory conditions. The work of classification and systematization has
hardly begun. ....

... An inviting flora of rare equations and exotic problems lies
before a botanical excursion into the Diophantine field."

[31], p.233.

Why are they intractable? How will they relate to the more conventional analytical
approaches via the behaviour of rational agents? Indeed, what kind of animals are
they? I cannot, of course, go into the full details of these ‘inviting flora of rare
equations’ but shall try to provide a glimpse into their ‘closely guarded secrets’22

.

Definition 19. A relation of the form

D (a1, a2, ....., an, x1, x2, ..., xm) = 0

21I have taken the liberty of substituting Diophantine equations for differential equations in the
quoted paragraph.

22I follow the terminology in Matiyasevich’s elegant book for the formal statements about Dio-
phantine equations. (cf. [19])
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where D is a polynomial with integer coefficients with respect to all the variables
a1, a2, ....., an, x1, x2, ..., xm (also integer or rational valued), separated into parame-
ters a1, a2, ....., an and unknowns x1, x2, ..., xm, is called a parametric Diophan-
tine equation.

Definition 20. D in Definition 9 defines a set z of the parameters for which
there are values of the unknowns such that:

ha1, a2, ....., ani ∈ F ⇐⇒ ∃x1, x2, ..., xm [D (a1, a2, ....., an, x1, x2, ..., xm) = 0]

Loosely speaking, the relations denoted in the above two definitions can be called
Diophantine representations. Then sets, such as z, having a Diophantine representa-
tion, are called simply Diophantine. With this much terminology at hand, it is possible
to state the fundamental problem of Diophantine equations as follows:

Problem 1. A set, say ha1, a2, ....., ani ∈ F , is given. Determine if this set is
Diophantine. If it is, find a Diophantine representation for it.

Of course, the set z may be so structured as to possess equivalence classes of
properties, P and relations, R.Then it is possible also to talk, analogously, about
a Diophantine representation of a Property P or a Diophantine representation of a
Relation R. For example, in the latter case we have:

R (a1, a2, ....., an)⇐⇒ ∃x1, x2, ..., xm [D (a1, a2, ....., an, x1, x2, ..., xm) = 0]
Hence, given, say partially ordered preference relations, it is possible to ask

whether it is Diophantine and, if so, search for a Diophantine representation for it.
Next, how can we talk about the solvability of a Diophantine representation? This is
where undecidability (and uncomputability) will enter this family of ‘inviting flora of
rare equations’ - through a remarkable connection with recursion theory, summarized
in the next Proposition:

Proposition 12. Given any parametric Diophantine equation, D, it is possible
to construct a Turing Machine, M , such that M will eventually Halt, beginning with
a representation of the parametric n-tuple, ha1, a2, ....., ani, iff D in Definition 9 is
solvable for the unknowns, x1, x2, ..., xm.

But, then, given the famous result on the Unsolvability of the Halting problem for
Turing Machines, we are forced to come to terms with the unsolvability of Diophantine
equations23. Hence, the best we can do, as Political Arithmeticians and Accountants,
and even as behavioural agents, however rational, so long as the constraints are Dio-
phantine, is to act according to the gentle and humble precepts enunciated by George
Temple: ‘collect specimens, to describe them with loving care, and to cultivate them

23It must, of course, be remembered that all this is predicated upon an acceptance of the Church-
Turing Thesis.
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for study under laboratory conditions’. Clearly, anyone familiar with the work of
Charles Sanders Peirce will also realise that this kind of natural historic study fits
comfortably with that great man’s advocacy of retroduction24 in such disciplines. The
tiresome dichotomy between induction and deduction, refreshingly banished by Peirce
more than a century ago, may well get cremated in economics, once and forever, if
we combine the methodology of the natural historian with the epistemology that is
implied in retroduction.

The headlong rush with which economists have equipped themselves with a half-
baked knowledge of mathematical traditions has led to an un-natural mathematical
economics and a non-numerical economic theory. Whether this trend will reverse
itself of its own volition is very doubtful. But discerning scholars of mathematical
philosophy - including front-ranking mathematical theorists like Ulam - have seriously
speculated, in the last few years, that the trend in mathematics itself may force a
change in its methodology and epistemology. If mathematical traditions themselves
incorporate the ambiguities of structures that are replete with undecidabilites in their
bread-and-butter research, it will only be a matter of time before such habits will
rub off on even the obdurate mathematical economist. Petty, our founding father,
wanted only to ‘express [himself] in number, weight or measure’. They need only to
be linked together by means of parametric Diophantine equations - as Luca Pacioli
knew when he devised that lasting contribution to mercantile practice: double-entry
bookkeeping. To get our ‘pluses’ and ‘minuses’ ordered, we do not need anything
more, once again, than parametric Diophantine equations. Through them we enter
the weird and wonderful world of undecidabilities and because of that we will happily,
in an economics for the future, return to the Linnean fold, to classify and systematise,
particular intractable accounting schemes.

24Even knowledgeable scholars persist in referring to retroduction as abduction, in spite of Peirce
explicitly stating: ‘....απαγωγη should be translated not by the word abduction, as the custom of the
translators is, but rather by reduction or retroduction ’. ([22], p.141; italics in the original)
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CHAPTER 6

Trans-Popperian Suggestions on Falsification and

Induction

1. Preamble

By these results [i.e., Hume’s answers to what Popper called Hume’s
‘logical’ and ‘psychological’ problems] Hume himself - one of the
most rational minds ever - was turned into a sceptic and, at the
same time, into a believer: a believer in an irrationalist epistemology.[12]

However,we persist in continuing to read this believer in an irrationlist epistemol-
ogy , puzzle over his paradoxical thoughts, ruminate over their unfathomable impli-
cations and debate, almost endlessly, about induction as Hume’s Problem, over two
centuries after that great man’s speculative thoughts were penned1. Should we be do-
ing this, particularly mulling over Hume’s Problem, almost three quarters of a century
after one of the great philosophers of the 20th century claimed he had solved it? The
opening lines of Objective Knowledge, [12], assert, with characteristic boldness and
without any sense of what may be suspected as false modesty:

I think I have solved a major philosophical problem: the problem
of induction. (I must have reached the solution in 1927 or
thereabouts). [12], p.1.

Almost half a century after he claimed to have ‘solved’ the problem of induction there
was, in the same opening pages of the above book, a rueful reflection of the seeming
failure of this ‘solution’ to have penetrated the philosophical discourse of the times:

However, few philosophers would support the thesis that I have
solved the problem of induction. Few philosophers have taken the
trouble to study - or even criticize - my views on this problem, or
have taken notice of the fact that I have done some work on
it.[12], p.1

1Popper has noted he may have been the first to give the name Hume’s Problem to ‘the problem
of induction’(after he had, in fact solved it): To my knowledge I was the first to call the problem of
induction ‘Hume’s problem; though of course there may have been others. I did so in ‘Ein Kriterium
des empirischen Charakters theoretischer Systeme’, Erkenntnis, 3, 1933, pp.426f., and in L.d.F.,
section 4, p.7 . . .
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It would seem possible that ‘few philosophers would support the thesis that [Popper
had] solved the problem of induction’ because they did not think he had solved it.
After all some of the philosophers who did not agree that he had solved the problem
of induction were not lesser giants of twentieth century philosophy, particularly of
the philosophy of science - Carnap, Quine, Putnam, Harré and, of course, Kuhn,
Feyerabend, Laudan and a legion of other giants of equal stature.

In my admittedly erratic reading of Popper’s massive and impressive writings I
have never managed to unearth any admission that some, at least, of the many distin-
guished philosophers who did not agree that he had ‘solved’ the problem of induction
may have been right. Formulating a famous problem, naming it famously and offering
a supposedly famous solution to it are all, by any conceivable standard, arduous en-
deavours. Popper’s irritation that the philosophers of his time did not pay attention
to his solution or, worse, did not agree that he had solved it, is understandable - if
he was an ordinary mortal. He, however, is supposed to be one of the giants of 20th
century western philosophy who, again famously2, propagated the credo that ‘we can
learn from our mistakes’, [10], p.vii.3, and argued passionately for open societies, [9].

I must admit that I detect something more than an irritation - indeed, an intol-
erance with his contemporaries, particularly of course with Carnap4, that his formu-
lation and solution of the problem of induction was not recognized universally and
unconditionally. This is brought out most vividly in Quine’s majestic description of
Popper’s contrived ‘clash of titans’ to bury Carnap’s alternative vision of the problem
of induction and its solution:

Popper was counting on a confrontation of Titans. Carnap’s latest
work was his ponderous one on induction. The first volume had
appeared and the second was in progress. Popper decried
induction, and he meant to settle the matter. I sensed that he was
deploying his henchman, Imre Lakatos and John Watkins, with
military precision as the three of them undertook preliminary
skirmishes. But the last scheduled session drew to an end without
the anticipated culmination. Popper accordingly declared an
additional session, next morning, for all who could see their way
to staying. It was strictly Popper vs. Carnap, with an audience of
twenty-odd in a seminar room. I was carried back to Carnap’s
confrontation of Lovejoy in Baltimore thirty years before. Again
he met vehemence with the mild but ready answer, the same old

2I am repeating the word advisedly and consciously
3But, of course, we do also ‘learn from our successes’ as John McCall wisely observed during

the presentation of his paper at the conference.
4In a private conversation in Los Angeles in the early 90s, Spiro Latsis mentioned, during a

discussion about the environment at LSE during his period there, that for Popper ‘the enemy was
Carnap’. This, surely, reflects the intrusion of an unnecessary personal dimension - I nearly said
‘subjective’ - into a serious philosophical issue.
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cool, unruffled reason. It is my splendid last memory of
Carnap.[17]p.3375

A similar story of almost passionate intolerance of disagreements with his visions,
views and theories can be told for those other great concepts with which we even,
indeed especially, as economists, associate Popper’s name, the Popperian credo and
a Popperian philosophy: falsifiability, the rational underpinnings of the growth of
scientific knowledge, the impossibility of discovering a method (an algorithm) for the
the logic of scientific discovery, just to name a few.

An example of this intolerance towards the possibility of falsifying his narrow and
logic-based theory and thesis on falsifiability, which I believe illustrates his inability
to apply his own precepts consistently, viewed by him to be a cardinal sin, is the way
he warned readers not to accept a particular challenge posed by Alan Turing6:

Turing [1950] said something like this: specify the way in which
you believe that a man is superior to a computer and I shall build
a computer which refutes your belief. Turing’s challenge should
not be taken up; for any sufficiently precise specification could be
used in principle to programme a computer.[13],p.208

Why should we not take up ‘Turing’s challenge’?7 Should we be afraid that the
challenge might ‘refute our beliefs’? Surely, the raison dêtre of a falsifiable credo,
buttressed by a philosophy wedded to an untrammelled8 ‘openness’, is to be chal-
lenged9and dethroned. Is this an intolerance or, perhaps, a subjective attachment
to personal theories compounded by a fear of some sort? After all, Carnap was ‘at-
tacked’ almost personally, as if his particular view of inductive probability could not
be separated from Carnap’s personality,

Above all, however, where I, coming from a Buddhist culture, a Hindu home and
a Western education, buttressed also by an undergraduate training in Japan, find a
narrowness of vision and a lack of a generosity of spirit, is in the lack of attention given

5Among the ‘titans’ present at this contrived ‘clash’ were, in addition to Carnap: Tarski, Bernays,
Church, Curry, Kreisel, Mostowski and Kalmar - all of them also ‘titans’ of recursion theory, of varying
degrees.

6Of particular relevance in this paper, given my recursion theoretic approach to problems of
induction, falsification and scientific discovery

7I had the pleasure of meeting Sir John Eccles, in Erice, Sicily, in August, 1987, when we both
attended one of the Ettore Majorana Summer Schools organised by Pofessor Antonino Zichichi. I
took a copy of his book with Popper ([13]) in which the above quote appears and showed it to him
and asked whether it was not slightly uncharacteristic of the vehement and impatient proponent of
falsifiability to make such a statement. He read it carefully, thought for a moment and acknowledged
that it was puzzling but that he had not paid much attention to it!

8I am sure any number of acolytes of Popper, in the unlikely event they happen to glance at this
paper, will take me to task for suggesting that the ‘openness’ was ‘untrammelled’.

9As Popper himself explicitly and provocatively stated: ‘[I]f you can design some experimental
test which you think might refute my assertion, I shall gladly, and to the best of my powers, help you
refute it.’[10]
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to alternative epistemologies, even if not philosophies 10. In Buddhist epistemology,
for example, there are clear precepts for inductive inference that eschew any reliance
on an underlying probabilistic framework. Moreover, as McGinn has recently pointed
out, in an extremely interesting essay [7], there is the necessity, in any Popperian
falsification exercise, to rely on an inductive inference:

But there is a worse problem for Popper’s philosophy: he is
committed to inductive verification himself. . . . Consider, too, that
falsifying experiments have to be repeatable so that other
researches can duplicate the alleged finding. We have to be able to
infer that if a falsifying result has been found in a given
experiment it will be found in future experiments. . . . [So]
falsification needs to be inductively justified if it is to serve as a
means of testing theories.

It is generally so justified, of course, but this is not something
that Popper can consistently incorporate into his conception of
science. [7], p.48.(italics added)

In Buddhist epistemology, however, the coupling of any falsification exercise with
inductive inference, is tackled in an extremely enlightened manner - enlightened in the
sense of trying to inculcate a sense of humility for the human condition in the face
of nature’s possible intransigence,although there is not that sharp dichotomy between
the human being and nature. Popper’s seemingly encyclopedic knowledge exhibits
no awareness of alternative epistemologies. His underpinnings are best described in
Toulmin’s brilliant characterization:

All the way across the field, from logic and mathematics to the
human sciences and the fine arts, the essential tasks of intellectual
and artistic activity were redefined in static, structural,
a-historical, non-representational, and wherever possible
mathematical terms.

Nowhere were the effects of this reformulation more
far-reaching than in the philosophy of science. . . . By the early
1920s it was an unquestioned presupposition for philosophers of
science that the intellectual content of any truly scientific theory
formed a timeless “propositional system,” like that of which
Russell and Whitehead had given a prototype in Principia
Mathematica.[19], p.56; first set of italics added.

In this paper I try to tackle and suggest some trans-Popperian solutions and ap-
proaches to the vexed problems of induction, inductive inference and falsifiability. The
point of view I take is that it is this predominance of redefining all human activity in
‘mathematical terms’ and forming a ‘timeless propositional system‘ that has bedevilled
Popperian epistemology. However, it is not that I disagree with this double-reliance;

10I accept Popper’s adherence to a mathematical methodology. However, here, too, there is a
narrowness of vision, to which I shall return in later parts of this paper
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but it is that there are many ways of relying on ‘mathematical terms’ and even more
ways of underpinning scientific theories on ‘propositional terms’ that are neither ‘a-
historical’ nor ‘timeless’.

Finally, to go back to my initial observation about Hume and our centuries old
obsession with his writings, the point I wish to make is the following: would we, at the
end of this century, still value the writings of Popper as those of one of the giants of
20th century philosophy and epistemology, or would he have been buried with other
transient giants, who dominated transitorily? Would his status become that of a
Herbert Spencer, a Larmarck, even a Lysenko or a Cyril Burt or would it be in that
pantheon of the other two great contemporary Austrians with whom he shared the
century and some of its fame11: Wittgenstein and Freud? Naturally, I do not know
and I am not sure I want to know, for if he is fated to share the company and fate of
the former, I may not have the courage to read his provocative and inspiring writings.

But, contrary to the other participants at this centennial to honour the great Man,
I come not to praise him. I am aware, of course, that Popper, had he been alive, would
have counter-punched with the ferocity that we have come to associate with him.

2. Introduction

[T]the method of falsification presupposes no inductive inference,
but only the tautological transformation of deductive logic whose
validity is not in dispute.[11],p.42; italics added.

Paradoxically, neither of these assertions are, of course, considered true, as the
21st century dawns - although the cognoscenti were aware of their dubious validity
long before even the twilight of the previous century set in.

Economic Methodology, explicitly and implicitly, has been deeply influenced by
three of Popper’s seminal ideas: falsifiability, the logic of scientific discovery and the
twin issues of induction and inductive inference.12 Of course, all three of the seminal
ideas are interlinked and the unified recursion theoretic approach I am able to use, to
tackle them analytically, substantiates that particular point. Underpinning them, in
almost all their ramifications, is the ubiquitous spectre of rationality and its concomi-
tants: rational behaviour, the rational scientist, the rational scientific enterprise and
the rationality of the autonomous processes of nature. All these seem to have fallen
on receptive ears, at various levels and practice, in the economic community.

Paradoxically, however, these three seminal Popperian conceptual contributions,
indeed pioneering research programs, come in the form of negative precepts. Foremost
of these negative precepts is, of course, that there is no such thing as a logic of
scientific discovery to discover; that theories can only be refuted and held, at most,

11But, apparently, nothing else!
12The excellent collection of essays: The Popperian Legacy in Economics, edited by Neil De

Marchi, [3], is a good place to get an organised guide to the pervasive influence of Popperian ideas
in economics.
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provisionally, waiting for them to be refuted; and, then, there was that insistence
about the impossibility of inductive probability.

Behind these vehement negative precepts there was, implicitly, the insistence that
the epistemologist was confronted by an environment that was lawful, about which
theories could be conjectured, albeit provisionally. As pointed out by Harré in his
surprisingly pungent ‘Obituary’ of Popper:

. . . Popper’s methodology of conjecture and refutation, based upon
the idea of of the rationality of rejecting hypotheses which have
been shown at a particular time and place to be false, also
depends upon an assumption of a form of the uniformity of
nature. In his case, it is the negative assumption that the universe
will not change in such a way as to make what was disconfirmed
today true tomorrow. Popper’s methodology of conjecture and
refutation makes no headway in the testing of that proposition.
His claim to have solved the problem of induction must now be
rejected.[5]

It was also the point made by Glymour, in a more specific sense:

Popper . . . agreed with Plato that knowledge requires a kind of
unalterability, but unlike Plato he did not think that the process
of science obtains knowledge.

I shall not address specific issues of economic methodology from any particular Pop-
perian point of view in this paper. Instead, I aim, hopefully, to provide less negative
visions of two of these great Popperian themes and help disseminate a more posi-
tive attitude towards the rich possibilities of pursuing an inductive methodology in
the search for laws of scientific discovery, buttressed by a dynamic, algorithmic, rein-
terpretation of the meaning of falsifiability. (Classical) recursion theory and applied
recursion theory, in the form of algorithmic complexity theory, will be my conceptual
and methodological tools in this adventure. Hence, I shall consider the message in this
paper fully within the program of research I initiated, about 20 years ago, and coined
the phrase ‘Computable Economics’ to describe it. If, therefore, there is any con-
structive contribution emanating from it, it will be towards the methodology of that
research program. In that specific sense, then, it is squarely within the scope of the
title of this volume: Popper and Economic methodology: Contemporary Challenges,
with the emphasis, almost exclusively, on ‘contemporary challenges’.

In his 1972 Addendum to the 1972 edition of The Logic of Scientific Discovery,
[11], Popper was quite explicit about the logical basis of falsifiability13:

13I have often wondered why the German original ‘Forschung’ was translated as ‘Scien-
tific Discovery’ ! I am sure there must be a perfectly ‘rational’ Popperian explanation for
the particular choice of words in English. Something like The Logic of Scientific Research or
The Logic of Scientific Investigation would have been a more faithful translation of the title (and
its contents). I shall, whenever I refer to this book, refer to it as LdF, even though it will be to [11]

128



. . . [T]he content or the testability (or the simplicity . . . ) of a
theory may have degrees, which may thus be said to relativize the
idea of falsifiability (whose logical basis remains the modus
tollens.)[11], p.135; italics in original.

Let me refresh possible rusty memories of unlikely readers aboutModus (Tollendo)
Tollens:

In Modus(Tollendo) Tollens, by denying - i.e., tollendo - the consequent of an
implication we deny - i.e., tollens - the antecedent. More formally:

∼ Q&(P⇒ Q)⇒∼ P
It is immediate that two dubious mathematical logical principles are implicitly

invoked in any falsifiability exercise based on Modus (Tollendo) Tollens : principium
tertium non datur or the law of the excluded middle and proof by contradiction. This
means an adherence to non-constructive methods in all cases involving infinite alterna-
tives. How experiments can be arranged and methods devised to test for falsifiability,
even abstracting away from inductive inferential problems, in a non-constructive envi-
ronment, escapes me. Indeed, how any method to test for falsifiability can be anything
other than constructive, in some sense, is beyond my understanding.

It is this kind of reliance on traditional logic and a limited knowledge of the vast
developments in mathematical logic in the 20th century that I find mysterious in a
philosopher who seemed to be encyclopedic in his awareness of so much else. I find
no evidence, in my perusal and attempted reading of as much as possible of Popper’s
voluminous writings, of any awareness, either, of the fact that mathematical logic had
itself branched off, in the 20th century, into four or five sub-disciplines and, in any
case, into: set theory, proof theory, recursion theory and model theory. This is the
kind of reason why Glymour, for example, was scathing in his criticism of a class of
philosophers in general, but of Popper, in particular:

With only a little logical knowledge, philosophers in this period
understood the verifiable and the refutable to have special logical
forms, namely as existential and universal sentences respectively.
There was, implicitly a positivist hierarchy . . . . Positivists such as
Schlick confined science to and meaning to singular data and
verifiable sentences; ‘anti-positivists’, notably Popper, confined
science to the singular data and falsifiable sentences. In both
cases, what could be known or discovered consisted of the singular
data and verifiable sentences, although there is a hint of
something else in Popper’s view.[4], p.268.

On the other hand, if one feels it is necessary to retain fidelity to Popper’s reliance
on Modus (Tollendo) Tollens as an underpinning for falsifiability exercises14, then it
seems to me that the best way to do so would be via formalizations using recursion

14Even although it is easy to show that it is neither necessary nor sufficient
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theory. Classical logical principles retain their validity but methods are given algorith-
mic content which makes them implementable devices in experimental design. This
is, therefore, the mathematical framework I shall invoke in this paper, in spite of the
fact that I believe that a thorough constructive approach is epistemologically superior
for numerical reasons.

The rest of the paper is structured as follows. In the next section I try to extract
recursion theoretic precepts from Popper’s own writings for their eventual formaliza-
tions in §4. I try to exploit the subtle differences between recursive and recursively
enumerable sets to give a broader, more dynamic, definition of falsifiability exercises.
Had space permitted, I would have expanded this subtle distinction to include recur-
sive separability, too; but that will have to be attempted in a different exercise.

In §4, I try to suggest that what I have, in other contexts and writings called
the ‘modern theory of induction’ is a perfectly adequate framework to justify and
solve Hume’s problem. This framework is based on (classical) recursion theory and,
hence, is an appropriate mathematical structure to encapsulate, formally, the heuristic
discussions in §3. Solving the induction problem recursion theoretically also, almost
as a by-product, solves the problems that have bedevilled Popper’s formalization of
falsifiability. But only a sketch is given,although there is enough for any serious reader
to complete the mathematical arguments.

In §5, the concluding section, I speculate, on the basis of the results and discussions
in the paper, of alternative visions and vistas and on trying to retain a sense of the
humble and the steadfast, in the wake of increasing specialisations, intolerances and
dogmas in all fields of human endeavour.

3. The Backdrop for Trans-Popperian Suggestions

Popper’s mistake here is no small isolated failing. What Popper
consistently fails to see is the practice is primary : ideas are not
just an end in themselves (although they are partly an end in them-
selves), nor is the selection of ideas to ‘criticize’ just an end in
itself.. . .

. . .
The method of testing ideas in practice and relying on the ones

that prove successful (for that is what ‘induction’ is) is not unjus-
tified. That is an empirical statement. The method does not have
a ‘justification’ - if by a justification is meant a proof from eter-
nal and formal principles that justifies reliance on the method. But
then nothing does - not even, in my opinion, pure mathematics and
formal logic.[16], pp.268-9, first and third set of italics added.

Popper does not seem to have paid much attention to the great achievements in
recursion theory, proof theory or model theory to substantiate his case for empirical
methodology or for falsification. As to why he did not seek recourse to recursion theory,
in the case of inductive inference or the logic of scientific discovery, could it, perhaps,
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be because such a framework may have cast doubts on his negative critique against
these thorny concepts? One can only speculate and I do speculate simply because
these three branches of modern mathematical logic provide literally the proverbial
‘tailor-made’ formalisms for empirically implementable mathematical structures for
falsifiability, the logic of scientific discovery and for induction in all its manifestations.
I shall discuss recursion theoretic formalisms for falsifiability in this section, but for
the logic of scientific discovery, due to space limitations, I must refer the vigilant
enthusiast to my writings on Simon.

There are two characteristically prescient Popperian observations very early on in
Ldf :

[I] am going to propose . . . that the empirical method shall be
characterized as a method that excludes precisely those ways of
evading falsification which . . . are logically possible. According to
my proposal, what characterizes the empirical method is its
manner of exposing to falsification, in every conceivable way, the
system to be tested. Its aim is not to save the lives of untenable
systems but, on the contrary, to select the one which is by
comparison the fittest, by exposing them all to the fiercest
struggle for survival.

. . . The root of [the problem of the validity of natural laws] is
the apparent contradiction between what may be called ‘the
fundamental thesis of empiricism’ - the thesis that experience
alone can decide upon the truth or falsity of scientific statements -
and Hume’s realization of the inadmissibility of inductive
arguments. This contradiction arises only if it is assumed that all
emprical scientific statements must be ‘conclusively decidable’,
i.e., that verification and their falsification must both in principle
be possible. If we renounce this requirement and admit as
empirical also statements which are decidable in one sense only -
unilaterally decidable and, more especially, falsifiable - and which
may be tested by systematic attempts to falsify them, the
contradiction disappears: the method of falsification presupposes
no inductive inference, but only the tautological transformations
of deductive logic whose validity is not in dispute.[11]15

Firstly, in what other way, if not by means of an algorithm, can we understand
the processes implied by implementing an empirical method?16.

Secondly, Popper endeavours to drive a wedge between verifiability and falsifiabil-
ity in terms of decidability - but, we know, based on Modus (Tollendo) Tollens. There

15The last part of this quotation formed the lead quote for the previous section
16I am simply paraphrasing Nozick’s analogous rhetorical query: ‘In what other way, if not

simulation by a Turing machine, can we understand the process of making free choices? By making
them, perhaps?’[8], p.303
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is, however, a much simpler way to drive this wedge and preserve the algorithmic
character of implementable empirical methods Moreover, it will not be necessary to
make the incorrect claim that ‘the method of falsification presupposes no inductive
inference’17.

Thirdly, there is the need to be precise about what is meant by a natural law and
a scientific statement, before even discussing the meaning of their truth or falsity.

I shall take it that Popper means by a natural law something as paradigmatic
as, for example, Newton’s Laws of Motion or, at a slightly more sophisticated level,
say, the General Theory of Relativity. As an economist, I have never felt that that we
have the equivalent of a natural law, in the above senses, in economic theory. Perhaps,
at a much lower level sophistication, we may, as economists, invoke one of the popular
theories of growth, say the Solow’s Growth Model.

Such natural laws, for example Newton’s Laws of Motion or at a much much
more down-to earth level, Solow’s Growth Model, are framed, when mathematized, as
formal dynamical systems. Of such systems we ask, or test, whether, when they are
appropriately initialised, they enter the definable basin of attraction of, say, a limit
point, a limit cycle, a strange attractor or, perhaps, get trapped in the boundaries
that separate a limit cycle and a strange attractor. In the case of the Solow Growth
Model, theory predicts that the dynamical system, for all economically meaningful
initial conditions enters the basin of attraction of a limit point. The theory and its
law can, in principle be ‘verified’.

However, it is for very few dynamical systems that we can answer the above type
of question unambiguously, i.e., ‘verifiably’. This is the key point made by Popper in
his almost lifelong quest for a kind of scepticism about theories and the natural laws
inherent in them. It is just that such a scepticism comes naturally to those accustomed
to formalizing in terms of proof theory, model theory and recursion theory - i.e., for
those working in the domain of the constructive, non-standard or computable numbers.

Moreover, a natural law in any of the above senses is, at least from Popper’s point
of view, which I think is the commonsense vision, is a scientific statement, as indeed
referred to as such by Popper in the above characterization. What, next, does it mean
to formalize the notion of a scientific statement? Clearly, in the form of something
like a well formed formula in some formal, mathematical, logic. Obviously, what is,
then, meant by ‘deciding upon the truth or falsity of scientific statements’, must also
be a commonsense interpretation; i.e., the ‘truth’ or ‘falsity’ of the implications of the
scientific statement which encapsulates the natural law. I shall assume, therefore, that
the set of meaningful scientific statements form an enumerable infinity.

Fourthly, Popper claims that the distinction between verifiability and falsifiabil-
ity depends on allowing for a certain kind of one-way decidability. More precisely,
verifiability is characterized by a ‘strong’ sense of decidability and falsifiability by a

17See above, the observation by Colin McGinn; however, as I proceed, I expect to be able to show
that McGinn’s doubts ‘this [i.e., inductive inference] is not something that Popper can consistently
incorporate into his conception of science’ is unwarranted. On the other hand I am not at all sure
Popper would approve of my solution to this problem!
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somewhat ‘weaker’ concept of decidability. In Popper’s case, of course, the underpin-
ning to formalize the distinction between a ’strong’ and a ’weak’ sense is Modus (Tol-
lendo) Tollens. I seek a more dynamic version of the possibility of such a distinction,
simply because many, if not most, meaningful natural laws are framed dynamically
or as dynamical systems. By ‘dynamically’, I mean, the implication of the theory,
when formulated as a natural law, and subject to experimental procedures, generates
a sequence of outcomes, usually numerical18, which has to be sequentially monitored
and tested.

Fifth, there is a need to be absolutely precise about what Popper means, formally,
by ‘exposing to falsification, in every conceivable way, the system to be tested’. How
many conceivable ways would there be, given an ‘experimental method’, to ‘expose to
falsification the system to be tested’? Suppose, as in conventional economic theory, the
domain of definitions is the real number system. Then, in principle, an uncountable
infinity of ‘conceivable ways’ would have to be devised for ‘the system to be tested’.
This is meaningless in any empirical system.

The best that can be attempted, in principle, is to enumerate a countable infinity
of empirical methods and for the case, for example, of natural laws formalized as
dynamical systems, to quantify the notion of every conceivable way by varying the
initial conditions in a precisely formalized countably infinite, enumerable, mode -
i.e., algorithmically - but not necessarily subject to the Church-Turing Thesis. In
other words, algorithmically could also be encapsulated within the broader canvas of
constructive mathematics (or also more narrowly than even recursion theory)19.

Finally, there is the need to be precise (and sensible) about what Popper could
have meant by ‘select the one which is by comparison the fittest, by exposing them
all to the fiercest struggle for survival’. It is here, contrary to enlightened Popperian
critics, that I find that inductive inference enters the Popperian world with almost a
vengeance. How does one formalize the selection criterion that is suggested by Popper?
What could be meant by ‘fittest’? Surely not some facile neo-Darwinian formalism
via, say, genetic algorithms in the conventional sense.

This is where Glymour and Harré, for example, presumably locate Popper’s ad-
herence to the Platonic assumption of the ‘unalterability of nature’. For, if not, we
cannot, of course, ‘expose them all ’ to any kind of test, let alone the more specific
test of ‘the fiercest struggle for survival’. By the time we come, say, to scientific state-
ment, say, #10948732765923, and the natural law implied by it, and say empirical
method #371952867 for testing it, there is no guarantee that our theoretical world
picture would not have changed - from the Ptolemic world vision to the Copernican
vision. This would mean some of the scientific statements had become meaningless
and others, not in the original enumerated list, become feasible candidates for testing.

18If not explicitly numerical then, in principle, codifable number theoretically using one of the
well-known procedures emanating from ‘Gödel Numbering’.

19I shall, however, work within the framework of classical recursion theory and, hence, subject
to the Church-Turing Thesis.
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I shall circumvent these issues by suggesting that we interpret Popper’s criterion
of the ‘fittest’ by the analogous criterion, in some precise sense formalizable notion, of
‘most likely’ or ‘most plausible’ by invoking yet another historical nemesis of Popper:
Ockham.

In concluding this section, it may be useful to record, at least for the sake of com-
pletion, one of Popper’s later, more formal, and rather harshly critical statements on
The Impossiblity of Inductive Probability. His joint paper with Miller, ([14]), begins
and ends in almost apocalyptic tones:

Proofs of the impossibility of induction have been falling
‘deadborn from the Press’ ever since the first of them (in David
Hume’s Treatise of Human Nature appeared in 1739. One of us
(K.P) has been producing them for more than 50 years.

. . . This result is completely devastating to the inductive
interpretation of the calculus of probability. All probabilistic
support is purely deductive: that part of a hypothesis that is not
deductively entailed by the evidence is always strongly
countersupported by the evidence - the more strongly the more
the evidence asserts. This is completely general; it holds for every
hypothesis h; and it holds for every evidence e, whether it
supports h, is independent of h, or countersupports h.

There is such a thing as probabilistic support; there might
even be such a thing as inductive support (though we hardly think
so). But the calculus of probability reveals that probabilistic
support cannot be inductive support.[14], pp. 687-8.

Mercifully for Popperian theories of falsifiability (and for theories of the growth
of scientific discovery), this particular ‘chronicle of a death foretold’ (pace Gabriel
Garcia Marquez) is as chimerical as many before it20. The recurring puzzle is the
following: why was it that Popper seemed to have been unaware of developments in
applied recursion theory - i.e., algorithmic complexity theory - that gave a new lease
of life to induction and inductive inference by returning to one of Popper’s earliest
preoccupations: that with the attempts he made to formalize the Richard von Mises
notion of the kollektiv, the frequency theory of probability and a formalization of the
notion or randomness without basing it on probability.

Perhaps his psychological commitment to an anti-inductivist stance overcame his
scientific predispositions? Even the Gods are fallible, at least in the Hindu mythologies
in which I was brought up!

20As Wise and Landsberg, in one of the responses to [14] put it, mildly and wisely:‘As this [i.e.,
the impossibility of inductive probability] would be a remarkable achievement, it is no criticism of
these authors that we raise this question again. In our view the answer is a clear “No”.
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4. Formalizations of Trans-Popperian Suggestions

Popper and the positivists agreed that there could not, in any case,
be an algorithm for carrying out scientific inquiry. Why not? . . . For
Popper - who quite confused a psychological question with a math-
ematical issue - it sufficed to quote Einstein to disprove the possibil-
ity of a discovery algorithm; for Carnap it sufficed to quote Popper
quoting Einstein. [4], pp.268-9.

I shall begin this section with a formal proposition which provides the starting
point for selecting, for any eventual falsifiability exercise, of a natural law which may
emerge from some scientific statement :

Proposition 13. An event with the highest probability of occurring is also that
which has the simplest description

The kind of analysis that leads to a formal demonstration of this proposition is
as follows. Consider a standard version of the Bayes rule subject to a denumerable
infinity of hypotheses, Hi, about the occurrences of events, E, with Probability, P :

(4.1) P (Hi | E) =
P (EHi)P (Hi)

ΣiP (E | Hi)P (Hi)

In the above relation, apart from absolutely standard, textbook interpretations of
all the variables and notations, the only explicit novelty is the assumption of a denu-
merable infinity of hypotheses. Thus, in a standard inverse probability or Bayesian
exercise, E, the class of ‘observed’ events and P (Hi) are given. What I would call the
standard induction problem is to find the ‘most probable’ hypotheses, Hi, that would
‘most probably’ lead to the observed event of relevance. There is no way Popper, if he
is to formulate his falsifiability exercise, along the lines he suggested in Ldf, can avoid
at least this aspect of the induction problem.

To get the Popperian perspective I need, let me first translate (1) into an equivalent
‘optimisation’ problem (Popper’s ‘fittest’ !) by simply rewriting it as:

(4.2) −log[P (Hi)E] = −logP (E | Hi)− logP (Hi) + logP (E)

In (2), the last term on the r.h.s is a short-hand expression for the denominator in (1)
which, in turn, is the normalising factor in any Bayesian exercise. Now, finding the
‘most probable hypothesis’ becomes equivalent to determining that Hi with respect to
(w.r.t) which (2) is minimised. But, in (2), logP (E) is invariant w.r.t Hi and, hence,
the problem is tominimise (w.r.t Hi):

(4.3) −logP (E | Hi)− logP (Hi)

However, it is clear that a problem of indeterminacy or circularity would remain
in any such formalizaion so long as we do not have a principle of the basis of which P
- the so-called prior - cannot be assigned universally; i.e., independent of any problem
cast in the inverse probability mode.
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Now let me backtrack and view the problem from a point of view that would lead
to the recasting of the induction problem as one in which Ockham’s Razor becomes
a kind of ‘dual’ to the Bayes rule. The ‘inductive enterprise’, even in any relevant
Popperian sense, is supposed to interpret a class of observations, events, data, etc., in
terms of a denumerable infinity of hypotheses in such a way that a general scientific
statement is formalized as a natural law from which, by deductive processes, the out-
comes with which one began are generated. This is why it is insufficient, inadequate
and even disingenious for Popper to claim that ‘the method of falsification presupposes
no inductive inference’.

As far as the requirements of the logic of the inductive method is concerned, I
shall assume that we need only formalise, at most, a denumerable infinity of outcomes
in an observation space. This particular assumption may well be the only one that
goes against a Popperian vision of the empirical world.21 As for the number of hy-
potheses, there is no incongruence with Popper’s visions and assumptions in assuming
a denumerable infinity as their upper limit (as argued for iin the previous section).

Thus the space of computable numbers is sufficient for this formalisation exercise.
Suppose, now, that every element in the outcome space and every potential hypothesis
- both being denumerably infinte - is associated with a positive integer, perhaps or-
dered lexicographically. More precisely and technically speaking, every outcome and
hypothesis is, normally, framed as a logical proposition (the former especially when
formalised for falsifiability purposes), particularly by Popper with his absolute and
almost fanatical faith in classical logic.

Every such proposition can be assigned one of the computable numbers - those
that form the domain of recursion theory. Such numbers can be processed by an
‘ideal computer’, the Turing Machine. The ‘ideal computer’, however, accepts input
in ‘machine language’, i.e., in binary code. Construct, therefore, the list of binary
codes for the denumerable elements of the elements of the outcome space and the
hypotheses. In other words, every hypothesis (i.e., scientific statement) - which, in
principle, underlies a potential general law that is the aim of an eventual falsification
exercise - has a computable number associated with it and the number is represented
in bits. It has, therefore, an unambiguous quantitative measure associated with it. A
similar association can be constructed for the elements of the outcome space. Then,
the basic result in what I have inother context called the modern theory of induction
is derived by operating the following rule:

Rule of Induction

• The ‘best theory’ is that which minimises the sum of:
(1) The length, in bits, of the number theoretic representation of the denu-

merable infinity of hypotheses;

21There are analytical ways to circumvent this assumption and allow for the possibility of a
continuum of observations, but I shall reserve that analysis for another exercise.
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(2) The length, in bits of the elements of the space of outcomes, which are
also, by assumption, denumerably infinite.22

The conceptual justification for this prescription is something like the following.
If the elements of the observation space (E in Bayes’s rule) have any patterns or regu-
larities, then they can be encapsulated as scientific statements implying natural laws,
on the basis of some hypothesis. The best law - i.e., Popper’s ‘fittest system’ - is that
which can extract and summarise the maximum amount of regularities or patterns
in E and represent them most concisely. The idea of the ‘maximum amount of regu-
larities ’ and their representation ‘most concisely captures the workings of Ockham’s
Razor in any inductive exercise. If two hypotheses can encapsulate the patterns or
regularities in the data equally well, in some sense, then the above prescription is
‘choose the more concise one’.

The final link in tis inductive saga is a formula for the universal prior in Bayes’s
rule in terms of recursion theoretic ‘regularities’:

Proposition 14. There exists a probability measure m(·) that is universal in the
sense of being invariant except for an inessential additive constant such that:

(4.4) log2m (·) ≈ K (·)

In Proposition 2, K(·) is the Kolmogorov-Chaitin algorithmic complexity of the
best theory - once again, Popper’s fittest system - generated in the operation of the
‘rule of induction’. All of the operations and formalisms that generate K(·) are known;
i.e., there are no probabilistic elements in any step that leads to a value for K(·). The
measurem(·) can be substituted for the P (·) in Bayes’s rule, for any inverse probability
problem.23

The above is a trans-Popperian suggestion on how not to avoid the inductive needs
of a falsification exercise. What of the falsification exercise itself? The trans-Popperian
suggestion for this formalism proceeds as follows. First, three definitions.

Definition 21. Recursive Set
S ⊆ ℵ is recursive iff ∃ a Turing Machine for deciding wether any given member of ℵ
belongs to S.

Definition 22. Decidable Set
A set S is decidable if, for any given property P (s), ∀s ∈ S, ∃ a Turing Machine such
that it halts iff P (s) is valid.

22I hope the careful reader will realise that the minmization is not over a denumerably infinite
sum!

23It is seen that induction and inductive processes are intrinsically ‘complex’ phenomena in a
precise sense. The complexity indicator is also a measure of the randomness of the phenomenon from
which the underlying probability structure can be derived (or inferred ). There is, thus, a kind of
‘duality’ between Bayes’s rule and Ockham’s Razor and, depending on the problem, the scientist can
opt for the logic of the one or the other.
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Definition 23. Recursively Enumerable Sets
S ⊆ ℵ is recursively enumerable (R.E) iff it is either empty or the range of a Turing
Machine (i.e., the range of a partial recursive function).

Thus, for any decidable set, we know there will be effective experimental methods
- i.e., algorithms - to characterize any member of the set. It is clear from the above
definitions that a recursive set is decidable. This is the universe of the verifiable.

Falsifiability and verifiability are methods, i.e., procedures to decide the truth
value of propositions. Popper claims, in view of his allegiance to classical logic and
Modus )Tollendo) Tollens that the only viable procedure in a scientific enterprise is
one which is capable of falsifying a law. This translates into the following: a set has
to exhibit undecidabilities. This means it is not sufficient to work with an outcome
space that is confined to recursive sets. A subtle modification of the definition of a
recursive set to allow for an open-endedness, suggested as a requirement by Popper,
will achieve it.

The intuitive idea is the following. Suppose the inferred scientific statement and
its implied natural law are formalized as the hypothesis that is to be experimentally
tested. The idea is that some implication of the hypothesis is to be verified or falsified.
If the set of outcomes of the implication forms a recursive set, then we know that it
is decidable and, hence, verifiable. Suppose, however, the set of outcomes of the
implications form a recursively enumerable set. Then, whether or not any particular
P (s) is valid is undecidable in the following precise sense. Given an arbitrary predicted
outcome of the experimental procedure of the law, say n ∈ ℵ, we test whether it is the
range of a Turing Machine. If it is, it can, eventually, be decided. If it is not, we will
never know. The next output of the experimental setup, after say output # 32786591
may well be the confirming instance. But there will be an open-endedness which
means such laws can, at best, be accepted provisionally if they meet other criteria of
adequacy.

There is a precise sense in which the above scheme generalises and meets objections
to Popper’s more classical definition of falsifiability. Even although recursion theory
is based on classical logic, the exclusive reliance on Modus (Tollendo) Tollens and
singular data and falsifiable sentences are removed to be special cases.To put it in a
different way, as Glymour did, the verifiable relied on the existential form for a testable
sentence (i.e., ∃x s.t S(x)); and the falsifiable relied on the universal quantifier (i.e.,
∀x, s.t S(x)).

In terms of Gödel’s results, my suggestions can be stated in yet another, equiva-
lent, form. The Gd̈el scheme shows how to transform any given proposition into one
about polynomials. Then, there exist arithmetical equations, linking two polynomials
representing propositions, preceded by some finite sequence of existential and univer-
sal quantifiers that are effectively undecidable. This is the sense in which there is no
longer any reliance on singular data or singular sentences.
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5. Transcending Dogmas and Intolerances

[I]n retrospect, a concern with systematizing inductive logic has
been the oldest concern of empiricist philosophers from Bacon on.
No one can yet predict the outcome of this speculative scientific
venture. But it is amply clear, whether this particular venture
succeeds or fails, that the toleration of philosophical and scien-
tific speculation brings rich rewards and its suppression leads to
sterility.[15],p.304; italics added.

von Mises and his valiant attempts to define place selection rules received consid-
erable attention in LdF, cf. [11], Ch.VIII, §50, ff. It is, therefore, somewhat surprising
that the evolution and remarkable development of that von Mises tradition at the
hands of Kolmogorov and a legion of recursion theorists and philosophers24 seemed to
have by-passed the eagle eyed Popper (but cf., [11],Appendix vi). It is particularly
surprising in view of the fact that success in resolving the difficulties with defining
place selection rules, admittedly on the basis of the Church-Turing Thesis and what I
have called, in citeve, the Kolmogorov-Chaitin-Martin-Lf̈ Thesis, resulted in the mod-
ern theory of induction. My trans-Popperian suggestion, particularly the first part of
the previous section, owes much to this development.

There is a further paradox in this saga. Popper defined, in his pursuance of a
resolution of the problem of defining place selection rules, the concept of ‘freedom
from after effect’ for a sequence of outcomes, say:

(5.1) x1, x2, x3, . . .

Where the outcomes take on binary values, o and 1. For such a sequence, Arthur
Copeland,citeco, some years earlier than Popper25, but also inspired by the von Mises
framework for a frequency theory of probability, defined the admissible numbers as
follows:
If, for any choice of integers,

(5.2) r1, r2, . . . , rk, s

where,

(5.3) 1 ≤ r1 < r2 < . . . < rk ≤ s

(5.4) lim
n→∞

1

n

n−1X
m=0

xr1+msxr2+ms . . .+ xrk+ms = pk

where p ∈ < and 0 ≤ p ≤ 1. Martin-Löf, whose excellent exposition I follow here,[6]
calls it the ‘success probability of the sequence’. Now, Copeland, [2], proves that for an
arbitrary p, 0 < p < 1, the set of admissible numbers has the power of the continuum.

24Some of them, like Alonzo Church and Hilary Putnam, wore both hats
25There is hardly a single serious reference to Copeland’s work in the mighty Popperian writings!
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In addition, if p is a computable real, Copeland’s proof seems to provide an effective
construction of an admissible number with success probability p.

Then, since Popper’s definition of a sequence free from aftereffect has been shown
to be equivalent to Copeland’s definition of the admissible numbers, the problem of
handling the possibility of the outcome space having the power of the continuum, as
required by many physical laws and almost all economic theories, may seem to be
solved, without sacrificing computable underpinnings.

However, such sequences as defined by Popper and Copeland are defined by a
mathematical law, such as given above, and von Mises objected that they cannot serve
as ‘idealizations of sequences obtained by actual coin tossing’, i.e., as truly random, i.e.,
impossibility of a gambling system which guarantees success. Popper himself stated
that his own aims in treading that early frequentist path was for different purposes
([11], p.361) and, furthermore:

I have meanwhile found that the ‘measure-theoretical approach’ to
probability is preferable to the frequency interpretation . . . , both
for mathematical and philosophical reasons26.

I feel that this preference, due also, naturally, to his adherence to his own, flawed,
‘propensity interpretation of probability’, blinded him to the possibilities of an en-
lightened view of the problem of induction, which would also have salvaged falsifia-
bility, even in a broader context than that tied to Modus (Tollendo) Tollens and the
universal quantifier. Perhaps it was also due to the seeming intransigence towards any
concept of induction and inductive procedures.

The point I am trying to make is that Popper had all the concepts and the ad-
vantages of the correct starting points to tackle falsifiability and inductive inference
in one fell swoop. Somehow, he avoided that path and, as a result, hie fertile concepts
and precepts have suffered interminable criticisms. I suppose all I have tried to do in
the previous two sections is to return to Popperian themes, with potential Popperian
concepts and tools to salvage the ruins!

I have left aside the third of the triptych that forms one set of the Popperian
scientific world vision: the logic of scientific discovery. For reasons of space I must
refer any interested reader, that perennially ‘elusive creature’, to two of my related
writings, [21], [22]. I can, however, add that in this case I find Popper’s nihilism
quite unwarranted and his criticism or non-criticism of attempts to forge, for example,
a (computational) theory of scientific discovery as intolerant and misguided as his
attitude towards Carnap and the induction problem.

One last technical point has to be faced. In the previous section I mentioned that
one assumption - that of a countably infinite observation space - may well be running
against the spirit of a Popperian vision of the natural world and its laws. How,
then, can a recursion theoretic resolution of the problem be attempted. The issue is
something like the following (cf, for example, [1]). Many are now aware of ways of
constructing simple dynamical systems with complex dynamics. For example, simple

26Almost the exact opposite path was taken by Kolmogorov
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‘laws’ generate extraordinary complex dynamics resulting in sets that are familiar
even to children palying around with computers: the Mandelbrot set, the Julia set,
and so on. In these particular cases the domain of definition happens to include the
complex plain and deciding whether a particular initial configuration of the ‘simple law’
which generates the Mandelbrot set retains its dynamics within the set will require
considerations of an outcome space that has the power of the continuum. Is there
a computable way to make such question decidable or, at least, make decidability
questions meaningful?

I think there are two ways to proceed. One is to adopt the point of view advanced
by Smale ([1]) and his co-workers and define computation over the reals. The other
is to remain within computable analysis and find ways to finesse the structure of the
computable reals. I prefer the latter alternative but any incursion into that domain,
even at an elementary level, is far beyond the scope envisaged for this paper. I should
just like to record my belief that nothing in the framework I have suggested in §will
need to be modified, except that some seemingly sophisticated mathematics may have
to be invoked. As I mentioned at the outset, I shall have to avoid going into a discussion
of issues like recursively inseparable sets so that this paper remains manageable.

Popper’s was a lifelong voice against intellectual intolerances and dogmas of any
sort. However, he does not seem to have been a great practitioner of his own precepts.
Putnam ([16]) perceptively noted:

Failure to see the primacy of practice leads Popper to the idea of
a sharp ‘demarcation’ between science, on the one hand, and
political, philosophical, and ethical ideas, on the other. This
‘demarcation’ is pernicious in my view ; fundamentally, it
corresponds to Popper’s separation of theory from practice, and
his related separation of the critical tendency in science from the
explanatory tendency in science. Finally, the failure to see the
primacy of practice leads Popper to some rather reactionary
political conclusions. Marxists believe that there are laws of
society; that these laws can be known; and that men can and
should act on this knowledge. It is not my intention to argue that
this marxist view is correct; but surely any view that rules this
out a priori is reactionary. Yet this is precisely what Popper does
- and in the name of an anti-a priori philosophy of
knowledge![16], p. 269; first set of italics, added.

The pernicious influence of ‘demarcationists’ has resulted in intolerances and dogmas
permeating all the affairs of society where the role of the narrow expert has been
extolled beyond limits envisaged by the sages and the saints. The walls, whether it
be the ones in Beijing or Berlin, Jerusalem or in the Ghettos of Warsaw, reflect the
demarcationist’s attitude in political ideology and practice. In the sciences, whole
theories have been rejected on unenlightened attitudes that smack of the demarca-
tionist: the rejection, for example, of Dirac’s delta Function, the controversy over
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hidden-variables in quantum mechanics and the fate meted out to that impeccably
erudite scientist of integrity, David Bohm. In economics, the continuing dominance of
a narrow application of a narrow and irrelevant part of mathematics to formalize eco-
nomic entities and derive momentous policy conclusions; and it is not too many years
since Lysenko and Cyril Burt ruled wholly different political societies with equally
dogmatic, demarcatioinst, visions.

I conclude with Edward Said’s poignant call, in the fourth of his BBC Reith Lec-
tures, for the intellectual to become, once again an amateur, thus reversing the trend
towards increasing specialisation, underpinned by the demarcationists philosophies
and epistemologies:

An amateur is what today the intellectual ought to be, someone
who considers that to be a thinking and concerned member of a
society one is entitled to raise moral issues at the heart of even
the most technical and professional activity as it involve one’s
country, its power, its mode of interacting with its citizens as well
as other societies. In addition, the intellectual’s spirit as an
amateur can enter and transform the merely professional routine
most of us go through, into something much more lively and
radical; instead of doing what one is supposed to do one can ask
why one does it, who benefits from it, how can it reconnect with a
personal project and original thought.[18].

The absence of the ‘amateur’ in Popper was, I think, the cause of much of the intol-
erance he displayed - in spite of advocating criticism and openness. These advocacies
were not graced by the soft touch of the amateur’s genuinely open mind.
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