
J.W.Goethe-Universität
Frankfurt am Main

Institut für Informatik

Prof. Dr. Rüdiger Brause

Nonlinear Feature Selection using the

General Mutual Information

Dipl.-Inform. Frank Heister

Satz

Reproduktionsfähige Vorlage vom Autor.
Gesetzt in LATEX.

vom Fachbereich Informatik und Mathematik der

Johann Wolfgang Goethe – Universität als Dissertation angenommen.

Dekan: Prof. Dr. K. Johannson

1. Gutachter: Prof. Dr. R. Brause

2. Gutachter: Prof. Dr.-Ing. R. Mester

Vorsitz: Prof. Dr. K. Waldschmidt

Protokoll: Prof. Dr. I. Timm

Datum der Disputation: 11. April 2008

Nonlinear Feature Selection using the

General Mutual Information

Dissertation

zur Erlangung des Doktorgrades

der Naturwissenschaften

vorgelegt beim Fachbereich Informatik und Mathematik

der Johann Wolfgang Goethe – Universität

in Frankfurt am Main

von

Dipl.-Inform. Frank Heister

aus

Wunsiedel im Fichtelgebirge

Frankfurt am Main, 2008

Meinen lieben Großeltern,
Karl und Liselotte Heister,

in tiefer Dankbarkeit und Liebe.

Danksagung

Die ursprüngliche Idee zu der vorliegenden Arbeit entstand im Rahmen
meiner Tätigkeit in der Forschungsabteilung der DaimlerChrysler AG. Da
das Leben aber immer die eine oder andere unvorhersehbare Prüfung für
uns bereit hält, mußte ich die Fertigstellung der Arbeit leider auf einen
späteren Zeitpunkt verschieben. Im Laufe dieser Zeit wurde ich bei der
Anfertigung der Arbeit von einer Reihe lieber Menschen begleitet und un-
terstüzt, denen ich an dieser Stelle herzlich danken möchte.

Mein besonderer Dank gilt Herrn Prof. Dr. Brause, der mich zur
Fortführung meiner Arbeit ermutigte und mich stets mit wertvollen Anre-
gungen und mit seiner konstruktiven Sichtweise unterstüzte.

Bei meinen beiden Diplomanden Sven Wahler und Alberto Ginestroni
möchte ich mich an dieser Stelle ebenfalls herzlich bedanken. Die mut-
tersprachlichen Fähigkeiten von Alberto Ginestroni erleichterten deutlich
die Kommunikation mit Professor Alessandro De Carli von der Universität
La Sapienza in Rom. Mein Dank gilt auch meinen ehemaligen Kollegen
Michael Fröhlich und Gregor Schock, auf deren Unterstützung ich immer
zählen konnte.

Ich bedanke mich ganz herzlich bei allen Menschen die am Gelingen dieser
Arbeit mitwirkten. Besondere Unterstützung während der Arbeit fand
ich bei meiner Familie und bei meinen Freunden. Sie ertrugen mit Fas-
sung und Liebe, manchmal aber auch mit einem beherzten Schmunzeln,
meine arbeitsbedingten Hoch- und Tiefpunkte und gaben mir dadurch die
notwendige Kraft und Ausdauer.

i

Danksagung

And now, the end is near;

And so I face the final curtain.

My friend, I’ll say it clear;

I’ll state my case, of which I’m certain.

I’ve lived a life that’s full;

I’ve travelled each and ev’ry highway.

And more, much more than this;

I did it my way.

Regrets, I’ve had a few;

But then again, too few to mention.

I did what I had to do;

And saw it through without exemption.

I planned each charted course;

Each careful step along the byway.

And more, much more than this;

I did it my way.

Yes, there were times, I’m sure you knew;

When I bit off more than I could chew.

But through it all, when there was doubt;

I ate it up and spit it out.

I faced it all and I stood tall;

And did it my way.

I’ve loved, I’ve laughed and cried;

I’ve had my fill; my share of losing.

And now, as tears subside;

I find it all so amusing.

To think I did all that;

And may I say - not in a shy way;

”Oh no, oh no not me,

I did it my way”.

For what is a man, what has he got?

If not himself, then he has naught.

To say the things he truly feels;

And not the words of one who kneels.

The record shows, I took the blows -

And did it my way!

(Frank Sinatra)

ii

Contents

1 Zusammenfassung 1

2 Introduction and Overview 7
2.1 Introduction . 7
2.2 Overview . 9

3 State-of-the-Art Feature Extraction and Selection 13
3.1 Principal Component Analysis 17
3.2 Non-linear Principal Component Analysis 19
3.3 Factor Analysis . 20
3.4 Independent Component Analysis 21

3.4.1 Motivation of the ICA 22
3.4.2 Estimation of the ICA 25

3.5 Non-linear Methods of Data Analysis 29
3.5.1 Non-linear Independent Component Analysis 29
3.5.2 Multidimensional Scaling 29
3.5.3 Regression Analysis 30
3.5.4 Kohonen’s Self-Organizing Feature Maps 30

3.6 Inducing Classification Models from Data 32
3.6.1 Basic Definitions . 34
3.6.2 The ID3 Algorithm 36
3.6.3 Information Gain Ratios 37
3.6.4 C4.5 Extensions . 38

3.7 Backward Elimination- and Forward Selection Techniques . 39

4 Identification of Technical Processes with Neural Networks 43
4.1 Network Components . 43
4.2 Network Topology . 48

4.2.1 Feedforward Structures 48
4.2.2 Recurrent Structures 49

4.3 Neural Training Algorithms 50

iii

Contents

4.3.1 Back Propagation 50
4.3.2 Back Propagation Through Time 53
4.3.3 Real Time Recurrent Learning 54
4.3.4 Extended Kalman Filter Training 58

5 Measuring the Information Flow for Feature Selection 61
5.1 Concept of Mutual Information 61
5.2 Theory of the General Mutual Information Iα 64
5.3 Estimating the General Mutual Information I2 69

5.3.1 Approximation of the Entropy Measure H2 69
5.3.2 Ranking of the Time Series 73
5.3.3 Efficient Matrix Calculus at Bit Level 75
5.3.4 Determination of the Coarseness Level 79

5.4 Algorithmic Complexity of the Estimation Procedure 81
5.5 Analysis of Nonlinear Dynamic Process Inputs with the GMI 83
5.6 GMI-Analysis of Nonlinear Process Data Sets with Missing

Values . 88

6 Optimal Feature Selection with the GMI 93
6.1 Theoretical Framework of Optimal Feature Selection 94

6.1.1 Effectiveness Considerations of Backward Elimination 95
6.1.2 Proof of the Monotone Convergence Property of For-

ward Selection . 98
6.2 Assessing Feature Selection Strategies with the GMI 100

6.2.1 Global Selection Strategy 102
6.2.2 Backward Elimination Strategy 107
6.2.3 Forward Selection Strategy 110

6.3 Feature Selection employing Forward Selection and the GMI 112
6.3.1 Forward Selection without the consideration of Time

Lags . 112
6.3.2 Forward Selection including Time Lags 117

7 Application Case Studies and Proof-of-Concept 121
7.1 Neural Identification of the Glass Melting Process 121

7.1.1 Industrial Glass Production 122
7.1.2 Neural Process Identification 124

7.1.2.1 Neural Training Setup 125
7.1.2.2 Identification Results 127

7.2 Neural Combustion Control in Automotive Environments . 131
7.2.1 Fundamentals of Motormanagement 131

7.2.1.1 Spark-ignition Engine 131
7.2.1.2 Combustion Process 140

iv

Contents

7.2.1.3 Structures of Modern Motormanagement . 143
7.2.2 Neural Combustion Control 147
7.2.3 Selection of the relevant Input Variables employing

Forward Selection and the GMI I2 150
7.2.4 Neural Identification of the Combustion Process con-

sidering the GMI Results 158
7.2.5 Neural Identification with the GMI selected features

in contrast to PCA- and ICA results 161
7.2.6 Real Time Neural Combustion Control in an Exper-

imental Automotive Setup 165

8 Conclusion 171

Appendix A Properties of I2(ξ, η) 177

Appendix B Algorithms 179
B.1 General Mutual Information I2 179
B.2 Backward Elimination . 182
B.3 Forward Selection . 183

Appendix C Feature Selection Strategies with the GMI 185
C.1 Global Selection Strategy 185
C.2 Backward Elimination Strategy 188
C.3 Forward Selection Strategy 191

Appendix D Application of the Forward Selection Strategy 195
D.1 Selection without the Consideration of Time Lags 195
D.2 Selection including Time Lags 197

Appendix E Neural Identification of the Combustion Process 201

Appendix F Curriculum Vitae 203

Bibliography 213

Index 221

v

Contents

vi

1 Zusammenfassung

Der Begriff der Transinformation wurde erstmals von Claude Elwood
Shannon im Kontext der Informationstheorie, einer einheitlichen mathe-
matischen Beschreibung technischer Kommunikationssysteme, geprägt. Die
Informationstheorie bildet heute die Grundlage vieler Anwendungen der
modernen Kommunikations- und Nachrichtentechnik und ist aus diesen
Bereichen nicht mehr wegzudenken.

Die vorliegenden Arbeit befasst sich vor diesem Hintergrund mit der Ent-
wicklung einer in der Praxis anwendbaren Methodik zur nichtlinearen
Merkmalselektion quantitativer, multivarianter Daten auf der Basis des
bereits erwähnten informationstheoretischen Ansatzes der Transinforma-
tion. Der Erfolg beim Übergang von realen Messdaten zu einer geeigneten
Modellbeschreibung wird maßgeblich von der Qualität der verwendeten
Datenmengen bestimmt. Eine qualitativ hochwertige Datenmenge besteht
im Idealfall ausschließlich aus den für eine erfolgreiche Modellformulierung
relevanten Daten. In diesem Kontext stellt sich daher sofort die Frage nach
der Existenz eines geeigneten Maßes, um den Grad des, im Allgemeinen
nichtlinearen, funktionalen Zusammenhangs zwischen Ein- und Ausgaben
quantitativ korrekt erfassen zu können. Mit Hilfe einer solchen Größe
können die relevanten Merkmale gezielt ausgewählt und somit von den
redundanten Merkmalen getrennt werden. Im Verlaufe dieser Arbeit wird
deutlich werden, dass die eingangs erwähnte Transinformation ein hier-
für geeignetes Maß darstellt und im praktischen Einsatz bestens bestehen
kann.

Ohne den Anspruch auf Vollständigkeit, existieren im wesentlichen zwei
Situationen, die eine Merkmalselektion motivieren. Einerseits wird eine
Merkmalselektion dann notwendig, wenn die praktische Berechenbarkeit
von Computermodellen aufgrund der großen Anzahl von vorhandenen
Merkmalen nicht mehr gewährleistet ist. Andererseits macht das Vorhan-
densein einer eingeschränkten Anzahl von Daten, mit einer Vielzahl von

1

1 Zusammenfassung

Merkmalen, ebenfalls eine Merkmalselektion notwendig. Im Laufe dieser
Arbeit werden Beispiele und Lösungen für beide Situationen vorgestellt.
Letztere Situation ist sehr eng mit dem sogenannten ”Fluch der Dimen-
sionen” verknüpft. Dahinter steckt letztendlich die Aussage, dass bei einer
eingeschränkten Anzahl verfügbarer Daten eine Reduktion deren Dimen-
sion erfolgen muß. Der Grund hierfür ist die Tatsache, dass bei einer festen
Anzahl von Datenpunkten die Überdeckungsdichte des Datenraumes expo-
nentiell mit dessen Dimension sinkt. Im Rahmen der Abbildung zwischen
Ein- und Ausgaberaum erreicht man dieses Ziel idealerweise durch Selek-
tion der, im betrachteten Kontext, wichtigen Merkmale.

Die ursprüngliche Motivation zur Erstellung der vorliegenden Arbeit hat
ihren durchaus praktischen Hintergrund in der Automobiltechnik. Sie ent-
stand im Rahmen eines komplexen Forschungsprojektes zur Ermittlung von
nichtlinearen, dynamischen Zusammenhängen zwischen einer Vielzahl von
messtechnisch ermittelten Sensorsignalen. Das Ziel dieser Aktivitäten war,
durch die Identifikation von nichtlinearen, dynamischen Zusammenhängen
zwischen den im Automobil verbauten Sensoren, sogenannte virtuelle Sen-
soren abzuleiten. Der Unterschied zwischen virtuellen- und realen Sen-
soren liegt in der Tatsache, dass virtuelle Sensoren selektiv auf bestimmte
messtechnische Problemstellung hin adaptiert werden können. Die konkrete
Aufgabenstellung bestand nun darin, die Bestimmung einer zentralen Mo-
torgröße so effizient zu gestalten, dass diese ohne zusätzliche Hardware
unter harten Echtzeitvorgaben berechenbar ist. Auf den zusätzlichen Ein-
satz von Hardware verzichten zu können und mit der bereits vorhandenen
Rechenleistung auszukommen, stellt aufgrund des resultierenden, enormen
Kostenaufwandes, insbesondere in der Automobiltechnik, eine unglaublich
starke Motivation dar. In diesem Zusammenhang trat immer wieder die
große Problematik zutage, eine praktisch berechenbare Methode zu finden,
die sowohl lineare- als auch nichtlineare Zusammenhänge zuverlässig quan-
titativ erfassen kann.

Wie eingangs bereits erwähnt, ist das Ziel dieser Arbeit die Entwicklung
einer flexibel anwendbaren Methodik zur nichtlinearen Merkmalselektion.
Ein wesentlicher Punkt hierbei ist die Gewährleistung der praktischen
Berechenbarkeit der entwickelten Methode, im Besonderen für hochdimen-
sionale Datenräume. Die Notwendigkeit zur Entwicklung der genannten
Methode ist ebenfalls durch die Tatsache motiviert, dass in realen technis-
che Anwendungen hochdimensionale Datenräume eher die Regel denn die
Ausnahme sind.

2

Um nun dieses Ziel zu erreichen, werden bereits existierende Methoden
miteinander kombiniert und in geeigneter Weise aufeinander abgestimmt.
Das verwendete Hautpkriterium zur Merkmalselektion basiert auf dem in-
formationstheoretischen Ansatz der Transinformation. Die Eigenschaft der
Transinformation, sowohl hinsichtlich linearer- als auch hinsichtlich nicht-
linearer statistischer Zusammenhänge, hohe Sensitivität und Spezifität zu
besitzen, macht diese zu einem hervorragenden Kriterium für die zu ent-
wickelnde Methodik der Merkmalselektion.

Im Verlauf dieser Arbeit werden nun unterschiedliche Selektionsstrategien
mit der Transinformation kombiniert und deren Eigenschaften miteinan-
der verglichen. In diesem Zusammenhang erweist sich die Kombination
von Transinformation mit der sogenannten Forward Selection Strategie
als besonders interessant. Es wird gezeigt werden, dass diese Kombina-
tion die praktische Berechenbarkeit für hochdimensionale Datenräume, im
Vergleich zu anderen Vorgehensweisen, tatsächlich erst ermöglicht. Im An-
schluss daran wird die Konvergenz dieses neuen Verfahrens zur Merkmal-
selektion bewiesen. Wir werden weiterhin sehen, dass die erzielten Ergeb-
nisse bemerkenswert nahe an der optimalen Lösung liegen und im Vergleich
mit einer alternativen Selektionsstrategie deutlich überlegen sind.
Parallel zur eigentlichen Selektion der relevanten Merkmale ist es mit
der in dieser Arbeit entwickelten Methode nun auch problemlos möglich,
eine nichtlineare Analyse der zeitlichen Abhängigkeiten von ausgewählten
Merkmalen durchzuführen. Eine anschließende dynamische Modellierung
kann somit wesentlich effizienter durchgeführt werden, da die entwickelte
Merkmalselektion zusätzliche Information hinsichtlich des dynamischen
Zusammenhangs von Eingangs- und Ausgangsdaten liefert. Mit der in
dieser Arbeit entwickelten Methode ist nun letztendlich gelungen was
vorher nicht möglich war. Das quantitative Erfassen der nichtlinearen
Zusammenhänge zwischen dedizierten Sensorsignalen, um diese in eine effi-
ziente Merkmalselektion einfließen zu lassen.
Im Gegensatz zur Merkmalsextraktion, hat die in diese Arbeit entwickelte
Methode der nichtlinearen Merkmalselektion einen weiteren entscheiden-
den Vorteil. Insbesondere bei sehr kostenintensiven Messungen können
diejenigen Variablen ausgewählt werden, die hinsichtlich der Abbildung
auf eine Ausgangsgröße den höchsten Informationsgehalt tragen. Neben
dem rein technischen Aspekt, die Selektionsentscheidung direkt auf den
Informationsgehalt der verfügbaren Daten zu stützen, kann die entwickelte
Methode ebenfalls im Vorfeld kostenrelevanter Entscheidungen herangezo-
gen werden, um Redundanz und die damit verbundenen höheren Kosten
von vornherein gezielt zu vermeiden.

3

1 Zusammenfassung

Eine Übersicht der gängigen Techniken zur Merkmalsextraktion und Merk-
malselektion wird in Kapitel 3 gegeben. Die Zusammenstellung beinhaltet
neben den Standardmethoden wie Principal Component Analysis, Factor
Analysis und der Independent Component Analysis auch eine Reihe von
nichtlinearen Techniken der Datenanalyse. Die sog. Entscheidungsmodelle
und deren Algorithmen werden in einem eigenen Abschnitt vorgestellt.
Im weiteren Verlauf, wird schließlich auf einige dieser Standardmetho-
den Bezug genommen. Hierbei wird ein Vergleich mit der vorgeschlage-
nen GMI basierten Methodik durchgeführt, dessen Ergebnisse anschließend
dargestellt und diskutiert werden.

Der in dieser Arbeit eingesetzte Modellierungsansatz basiert auf neuronalen
Netzen als datengetriebene, nichtlineare Approximationsmethode. Ein de-
taillierter Überblick über diesen universell anwendbaren, neuronalen Mo-
dellierungsansatz wird in Kapitel 4 gegeben. Dieser beinhaltet sowohl die
Komponenten neuronaler Netze, als auch verschiedene Netzwerktopolo-
gien und Trainingsalgorithmen. Es werden einige, zu einem späteren
Zeitpunkt, verwendete Trainingsalgorithmen vorgestellt, um den Zusam-
menhang zwischen der Komplexität der verwendeten Netzwerktopolo-
gie und dem damit verbundenen, überproportional steigenden Berech-
nungsaufwand hervorzuheben. Da der Berechnungsaufwand mit der Di-
mension des Eingangsvektors in unmittelbarem Zusammenhang steht, mo-
tiviert dieser nun seinerseits die Notwendigkeit einer gezielten Dimen-
sionsreduktion, um die praktische Berechenbarkeit der resultierenden neu-
ronalen Netze im realen Feldeinsatz gewährleisten zu können.

Der theoretische Hintergrund der Rényi-Entropiemaße und des daraus
abgeleiteten Begriffes einer verallgemeinerten Transinformation wird in
Kapitel 5 ausführlich beschrieben. Nach der Einführung der verallgemein-
erte Transinformation wird eine Matrixschreibweise zur effizienten Berech-
nung derseben vorgestellt. Im Anschluss daran, wird die algorithmische
Komplexität der vorgeschlagenen Methode ermittelt und einige Aspekte
der Implementierung auf modernen Rechnersystemen betrachtet. Um das
Leistungsvermögen und die Einsatzmöglichkeiten der Transinformation
isoliert zu untersuchen, erfolgt zunächst die Analyse eines nichtlinearen,
dynamischen Prozesses. Hierbei wird die Fähigkeit der Transinformation
demonstriert, implizite strukturelle- und zeitliche Abhängigkeiten einzig
aufgrund der beobachteten Prozessdaten zu identizifieren. In einem weit-

4

eren Schritt werden diese Daten nun mit einem Anteil von fehlenden
Werten versehen und analysiert, um das Verhalten der Transinformation
hinsichtlich sogenannter missing values zu untersuchen.

Kapitel 6 behandelt die theoretischen Grundlagen der optimalen Merk-
malselektion. Vor diesem Hintergrund werden verschiedene Selektions-
strategien in Verbindung mit der verallgemeinerten Transinformation un-
tersucht. Von besonderem Interesse erweist sich in diesem Kontext die
Forward Selection Strategie, deren monotone Konvergenz anschließend
gezeigt werden wird. In einem separaten Abschnitt wird die Anwendung
der Transinformation um die zeitliche Komponente erweitert und deren
Berechenbarkeit anhand von realen Messdaten überprüft und diskutiert.

Der Nachweis für die praktische Anwendbarkeit der verallgemeinerten
Transinformation zur Merkmalselektion aus Realdaten erfolgt schließlich in
Kapitel 7. Um das breite Spektrum der Einsatzmöglichkeiten zu verdeut-
lichen, wird die vorgeschlagene Methode zur Lösung von Aufgabenstellun-
gen aus völlig unterschiedlichen technischen Bereichen angewandt.
In der ersten Anwendungsstudie wird die Transinformation zur Ana-
lyse von Prozessdaten der Glasherstellung verwendet. Das Ziel hierbei
ist es, aus dem vorhandenen Datenbestand diejenigen Prozessvariablen
auszuwählen, die für eine anschließende Identifikation mit neuronalen Net-
zen den höchsten Informationsgehalt aufweisen.
Der zweite Anwendungsfall beinhaltet eine sehr komplexe Aufgabenstel-
lung aus der Automobiltechnik. Hierbei steht der Aufbau einer echtzeitfähi-
gen Verbrennungsregelung für einen Otto-Motor im Fokus der Entwick-
lung. Der zentrale Punkt einer Verbrennungsregelung ist die neuronale
Signalauswertung des Zylinderdruckverlaufes, um die Effizienz der einzel-
nen Verbrennungsvorgänge bestimmen zu können. Die Transinformation
wird hierbei erfolgreich eingesetzt, um die Stützstellen der Zylinderdruck-
kurve festzustellen, die den größten Informationsgehalt hinsichtlich der
Bestimmung eines vorgegebenen Motor-Effizienzkriteriums beinhalten.

In Kapitel 8 werden schließlich die Hauptpunkte der Arbeit in kompri-
mierter Form zusammengefasst und Schlussfolgerungen aus den erhaltenen
Ergebnissen gezogen. Kapitel 8 schließst mit einigen kritischen Reflexio-
nen, über die in dieser Arbeit entwickelte Methodik, und gibt Ausblicke
auf mögliche Weiterentwicklungen der gewonnenen Ergebnisse.

5

1 Zusammenfassung

6

2 Introduction and Overview

2.1 Introduction

In the context of information theory, the term Mutual Information has first
been formulated by Claude Elwood Shannon. Information theory is the
consistent mathematical description of technical communication systems.
To this day, it is the basis of numerous applications in modern communi-
cations engineering and yet became indispensable in this field.

This work is concerned with the development of a concept for nonlinear
feature selection from scalar, multivariate data on the basis of the mutual
information. From the viewpoint of modelling, the successful construction
of a realistic model depends highly on the quality of the employed data. In
the ideal case, high quality data simply consists of the relevant features for
deriving the model. In this context, it is important to possess a suitable
method for measuring the degree of the, mostly nonlinear, dependencies
between input- and output variables. By means of such a measure, the
relevant features could be specifically selected. During the course of this
work, it will become evident that the mutual information is a valuable and
feasible measure for this task and hence the method of choice for practical
applications.

Basically and without the claim of being exhaustive, there are two possible
constellations that recommend the application of feature selection. On the
one hand, feature selection plays an important role, if the computability of
a derived system model cannot be guaranteed, due to a multitude of avail-
able features. On the other hand, the existence of very few data points
with a significant number of features also recommends the employment of
feature selection. The latter constellation is closely related to the so called
”Curse of Dimensionality”. The actual statement behind this is the neces-
sity to reduce the dimensionality to obtain an adequate coverage of the
data space. In other word, it is important to reduce the dimensionality of

7

2 Introduction and Overview

the data, since the coverage of the data space exponentially decreases, for
a constant number of data points, with the dimensionality of the available
data. In the context of mapping between input- and output space, this goal
is ideally reached by selecting only the relevant features from the available
data set.

The basic idea for this work has its origin in the rather practical field
of automotive engineering. It was motivated by the goals of a complex
research project in which the nonlinear, dynamic dependencies among a
multitude of sensor signals should be identified. The final goal of such
activities was to derive so called virtual sensors from identified depen-
dencies among the installed automotive sensors. The difference between
virtual- and real sensors is the fact that virtual sensors can be adapted
to specific measurement-technology tasks. The particular task consisted
in the efficiency optimization for the computation of an essential variable
of motor-management. This enables the real-time computability of the re-
quired variable without the expenses of additional hardware. The prospect
of doing without additional computing hardware is a strong motive force
in particular in automotive engineering. In this context, the major problem
was to find a feasible method to capture the linear- as well as the nonlinear
dependencies.

As mentioned before, the goal of this work is the development of a flexibly
applicable system for nonlinear feature selection. The important point here
is to guarantee the practicable computability of the developed method even
for high dimensional data spaces, which are rather realistic in technical en-
vironments.
For specifically accomplishing this task, I combine and suitably integrate a
creditable method of information theory with various selection strategies.
The employed measure for the feature selection process is based on the
sophisticated concept of mutual information. The property of the mutual
information, regarding its high sensitivity and specificity to linear- and
nonlinear statistical dependencies, makes it the method of choice for the
development of a highly flexible, nonlinear feature selection framework.

In the course of this work, various selection strategies are combined with
the mutual information, its properties are assessed and discussed. In this
context, the combination of the so called forward selection strategy with the
mutual information turns out to be of particular interest to meet the goals
of this work. It will be shown that this combination allows for the practica-
ble computability for high dimensional data spaces in the first place. In a

8

2.2 Overview

next step, the monotone convergence of this feature selection algorithm is
proved. As a matter of fact, it will be shown that the obtained results are
remarkably close to the optimal solution and deliver better results than an
alternative selection strategy.
In addition to the mere selection of relevant features, the developed frame-
work is also applicable for the nonlinear analysis of the temporal influ-
ences of the selected features. Hence, a subsequent dynamic modelling can
be performed more efficiently, since the proposed feature selection algo-
rithm additionally provides information about the temporal dependencies
between input- and output variables.
In contrast to feature extraction techniques, the developed feature selec-
tion algorithm in this work has another considerable advantage. In the case
of cost intensive measurements, the variables with the highest information
content can be selected in a prior feasibility study. Hence, the developed
method can also be employed to avoid redundance in the acquired data
and thus prevent for additional costs.

2.2 Overview

A detailed overview of the state-of-the-art techniques in feature extraction
and feature selection is presented in Chapter 3. Apart from standard meth-
ods like the Principal Component Analysis, the Factor Analysis and the
Independent Component Analysis, this compilation contains also a consid-
erable number of nonlinear data analysis techniques. Finally, the classifi-
cation models, which are also known as decision models or decision trees,
are presented in a separate section.

Since neural networks have been chosen as a data-driven, nonlinear mod-
elling approach for the proof-of-concept in this work, Chapter 4 intents to
give a thorough overview of this matter. This includes the network com-
ponents, as well as different network topologies and neural training algo-
rithms.
The applied algorithms, like Real Time Recurrent Learning or the sophis-
ticated Extended Kalman Filter, will be introduced to demonstrate the
correlation between the complexity of the employed network topology and
the hence tremendously increasing computational complexity. This increase
in computational expense, also motivates the necessity for reducing the in-
put dimension to maintain the practical computability of the networks for
real world applications.

9

2 Introduction and Overview

The theoretical background of the employed family of Rényi-Entropies and
the derived generalized mutual information is introduced in Chapter 5. Af-
ter the introduction of a well defined measure for the generalized mutual
information, an efficient matrix calculus and its implementation aspects on
modern computers systems are discussed. Besides the proof of the prop-
erties of this sophisticated information measure, an efficient estimation
procedure is derived, which is particularly tailored to the presented ma-
trix calculus. The algorithmic complexity class of the proposed method is
evaluated in a separate section. Finally, the GMI is employed for the an-
alysis of the implicit structural- and temporal dependencies in nonlinear
dynamic process data. Finally, the performance of the GMI with respect
to the presence of missing values is also investigated in this chapter.

The theoretical aspects of backward feature elimination, based on the idea
of Markov blankets, are addressed in Chapter 6. The quintessence of this
theoretical reflection states that once a feature has been considered irrel-
evant, it can be removed and does not need to be reconsidered again. In
the opposite case of forward feature selection, a proof will be developed
to show the monoton convergence of this feature selection algorithm. The
monoton convergence property justifies the formulation of the proposed
feature selection strategy as so called greedy algorithm.
The new point in this context is the employment of Shannon’s model of an
abstract communication channel for the direct measurement of informa-
tion as a physical quantity. Different from the application of PCA, ICA or
regression models, the GMI operates directly on the raw data without the
necessity of assuming any a priori dependence between input- and output.
With the background above, the facts from earlier chapters are brought
together to derive a constructive and practicable new method for optimal
feature selection. In a separate section, the applicability of the mutual in-
formation is extended to the identification of time delays. The feasibility
of this approach is assessed on the basis of real measurement data.

The proof-of-concept, for the employment of the general mutual informa-
tion for feature selection, is finally given in Chapter 7. In order to demon-
strate the wide applicability of this method, it is used to solve complex
tasks in utterly distinct technical disciplines.
In the first application case study, the mutual information is employed for
the analysis of glass melting process data. The goal is to select the process
variables with the highest information content for a successive neural sys-
tem identification.

10

2.2 Overview

The second application case study is concerned with a rather complex
task in the field of automotive engineering. In this context, the goal is
to construct a real time capable closed loop combustion controller for a
spark-ignition engine. The goal of combustion control is the neural signal
processing of the in-cylinder pressure curve to determine the efficiency of
the individual combustions. In this case, the general mutual information is
applied to determine the sample points of the in-cylinder pressure curve,
which deliver the highest information content with respect to the determi-
nation of a predefined combustion-efficiency criterion.

In Chapter 8, the objectives of this work are presented in a condensed
form and conclusions are drawn from the obtained results. Chapter 8 closes
with some critical reflections about the developed methods while giving an
inspiration for further research work.

11

2 Introduction and Overview

12

3 State-of-the-Art Feature

Extraction and Selection

The tremendous advances in data collection and storage capability in the
past decade led to an information overload in almost every scientific disci-
pline. Research engineers working in diverse fields faced the hard fact that,
due to the advances in data acquisition, simulation- and internet technol-
ogy, not only the number of observations but also the dimensionality of the
collected data rapidly increased over the past years and yet continues to
evolve.

In the context of signal processing, the dimension of the data is the number
of variables that are measured with each observation. The problem when
handling high-dimensional data sets is, that not all variables are equally
important with respect to the underlying process e.g. the combustion pro-
cess in automotive engineering or the industrial glass production process,
as we will discus later in this work.

In this context an important issue has to be mentioned, the so called curse
of dimensionality [Bis99]. The term curse of dimensionality was first verbal-
ized by BELLMAN [Bel61] and refers to the exponential growth of hyper-
volume as a function of the input dimensionality.
Neural networks can be regarded as nonlinear mappings between an input-
and the corresponding output space. Thus, loosely speaking, a neural net-
work needs to cover or represent every part of its input space equally in
order to determine how this part should be mapped properly to the output
space. Covering the input space takes resources, i.e. the weights which are
the adjustable parameters of the neural network. The resources required to
maintain an equal coverage of the entire input space grows exponentially
with its dimension.
A partial remedy for this problem is to preprocess the input in the right
way, for example by selecting the input components according to their de-

13

3 State-of-the-Art Feature Extraction and Selection

gree of statistical independence. Alternatively, the input variables could
be chosen due to their importance with respect to the underlying implicit
mapping function.
This a-priori information implies a quantitative measure of information
content. It is obtained by the so called general mutual information or GMI.
This method can help to cope with the curse of dimensionality and will be
introduced separately in Chapter 5.
Certain computationally very expensive methods like adaptive algorithms,
including neural networks and genetic algorithms, are capable of construct-
ing accurate models from high-dimensional data. However, it is still of in-
terest in many technical applications, especially in real-time environments,
to reduce the dimension of the original data prior to any modelling activity.

The fundamental assumption to justify the dimension reduction is that the
measured data actually describes a, mostly nonlinear, manifold of lower di-
mension of the original data space. The goal of dimension reduction is to
find a representation of that manifold, i.e. an adequate coordinate system,
that will allow to map the data vectors on it and obtain a low-dimensional,
compact representation of the original data.

In mathematical terms, the problem of dimension reduction can be stated

as follows. Given a p-dimensional random variable ~ξ = (ξ1, ..., ξp)T , find
a random variable ~π = (π1, ..., πk)T , with k ≤ p. The new multivariate

random variable ~π is a lower dimensional representation of ~ξ and does
capture the content of the original data. The elements of ~π are sometimes
also called the hidden components. In statistics, the components of such a
multivariate random vector are mainly called variables. In other fields like
in computer science and machine learning they are referred to as attributes
or features.

This chapter is intended to provide a survey of traditional- and current
state-of-the-art dimension reduction techniques. This includes the intro-
duction into principal component analysis, the so called non-linear prin-
cipal component analysis, factor analysis and of course the independent
component analysis. At the end of this chapter, further non-linear dimen-
sion reduction methods are also referenced.

In general, there exist two major types of dimension reduction methods,
linear and non-linear [Fod02]. Characteristic for linear techniques is that
the components of the previously mentioned new random variable ~π, are in

14

fact defined to be a linear combination of the components of the random

variable ~ξ:
πi = wi,1ξ1 + ...+ wi,pξp, i = 1, ..., k (3.1)

or in matrix notation:0BBB� π1

π2

...
πp

1CCCA =

0B�w1,1 ... w1,p

...
. . .

...
wk,1 ... wk,p

1CA0BBB� ξ1
ξ2
...
ξp

1CCCA , (3.2)

where W is the weight matrix of the linear transformation.

Throughout this chapter, it will be assumed that we have n observations
in total. Each observation is regarded as a realization of the p-dimensional

random variable ~ξ with mean ~µ = E[~ξ] = (µ1, ..., µp)T and the (p × p)-

covariance matrix Σ = E[(~ξ − ~µ)(~ξ − ~µ)T].

The observations of ~ξ are grouped by the so called observation matrix:

X =

0B�x1,1 ... x1,n

...
. . .

...
xp,1 ... xp,n

1CA , (3.3)

where the columns of X represent the p-dimensional realizations of ~ξ. Fur-
thermore, it is assumed that the rows of X consists of standardized data
with zero mean and standard deviation one. This is a prerequisite for the
application of dimension reduction techniques like the principal component
analysis.

In terms of the (p× n) observation matrix X, the transformation can now
be formulated as:

si,j = wi,1x1,j + ...+ wi,pxp,j , i = 1, ..., k, j = 1, ..., n (3.4)

or in matrix notation:0B�s1,1 ... s1,n

...
. . .

...
sk,1 ... sk,n

1CA =

0B�w1,1 ... w1,p

...
. . .

...
wk,1 ... wk,p

1CA0B�x1,1 ... x1,n

...
. . .

...
xp,1 ... xp,n

1CA , (3.5)

15

3 State-of-the-Art Feature Extraction and Selection

where the si,j represent the j-th realization of the random variable πi and
xi,j represent the j-th realization of ξi.

There are numerous articles and books in statistical literature on various
techniques for the analysis of multivariate data sets. A profound introduc-
tion into this interesting topic can be found in [MKB95], [Rip96], [Jol86]
and [Lee01].

In Section 3.1 and 3.3 the principal component- and the factor analysis
are reviewed. They represent the two most widely used linear dimension
reduction methods based on second-order statistics. In the case of normal
distributed random variables, the previously introduced covariance matrix
contains all necessary information about the data. Second-order dimension
reduction techniques are fairly simple to implement, as they require stan-
dard methods and matrix calculus from linear algebra.
However, many data sets are not realizations of the Gaussian distribution.
In this case higher-order linear methods, employing information not con-
tained in the covariance matrix, are appropriate to be used. Such a method,
is the independent component analysis. This powerful, linear dimension re-
duction technique which is based on higher order statistical information,
is reviewed in Section 3.4. In Section 3.2, the so called non-linear principal
component analysis, which can be considered as a special case of the inde-
pendent component analysis is also presented. It uses non-linear objective
functions to determine the optimal weight matrix. However, the resulting
variables are still linear combinations of the original variables. Finally, fur-
ther non-linear dimension reduction techniques are shortly presented in
Section 3.5.

16

3.1 Principal Component Analysis

3.1 Principal Component Analysis

The principal component analysis (PCA) is the best linear dimension re-
duction method in the mean-square error sense [Jac91], [Jol86]. It is a
second order method, since it is based on the covariance matrix of the
variables. This method is also known as the singular value decomposition
method (SVD), the Karkunen-Loève-Transform or the empirical orthogo-
nal function (EOF).
In essence, principal component analysis seeks to reduce the dimension
of the input space by finding linear combinations, i.e. the principal com-
ponents, of the original variables as depicted in Equation 3.2 and 3.4.
The first principal component s1 is the linear combination of the variables
ξi, i = 1, ..., p with the largest variance. The second principal component
found is orthogonal to the first one and has the second largest variance,
and so on. Since there are as many principal components as the number of
original variables, principal component analysis results in a set of orthogo-
nal and thus uncorrelated input variables. To reduce the dimension of the
original input data, only those principal components are kept that explain
most of the total variance of the data set.
As the empirical variance depends on the scale of the variables, it is impor-
tant to standardize each variable to have zero mean and standard deviation
one. After standardization, the original variables with possibly different
scale units are all comparable as mentioned in the definition of the obser-
vation matrix X in Equation 3.5. Assuming standardized input data with
the empirical covariance matrix

Σ =
1

n
XXT , (3.6)

the spectral decomposition theorem can be used to write Σ as

Σ = UΛUT , (3.7)

where Λ = diag(λ1, ..., λp) is a diagonal matrix containing the ordered
eigenvalues λ1 ≤ ... ≤ λp of the covariance matrix Σ. The (p × p)-matrix
U contains the according eigenvectors.
It is shown in [MKB95], that the desired principal components are obtained
as the p rows of the (p× n)-matrix S, where

S = UTX. (3.8)

When comparing Equation 3.8 with Equation 3.5, it can be seen that
the linear transformation matrix W is equivalent to UT . It is also shown

17

3 State-of-the-Art Feature Extraction and Selection

in [MKB95], that the subspace spanned by the k eigenvectors has the small-
est mean square deviation from X among all subspaces of dimension k.

Another property of the eigenvalue decomposition is that the total variation
is equal to the sum of the eigenvalues of the covariance matrix

pX
i=1

V ar(PCi) =

pX
i=1

λi (3.9)

and that

1

trace(Σ)

kX
i=1

λi (3.10)

gives the cumulative proportion of the variance explained by the first k
principal components. By plotting the cumulative proportions in Equa-
tion 3.10 as a function of k, one can select the appropriate number of
principal components to keep, which explain a certain percentage of the
overall variation.

1 2 3 4 5 6 7
[Principal Components]

0

10

20

30

40

50

60

70

80

90

100
[Variance Explained]

Figure 3.1: Scree plot of percent variability explained by each principal
component

18

3.2 Non-linear Principal Component Analysis

In statistical literature, such diagrams are called scree plots. An exemplary
scree plot in depicted in Figure 3.1. However, the number of principal com-
ponents to be kept can also be determined by defining a fixed threshold
λ0. Only those eigenvectors with a corresponding eigenvalue greater than
λ0 are selected to be kept.

The interpretation of the obtained principal components can be difficult at
times. Although the results are uncorrelated variables, which are defined
to be linear combinations of the original variables, they do not necessarily
correspond to meaningful physical quantities. In some cases, this lack of
interpretability, due to the linear transformation of the original variables,
is unacceptable to the systems engineer. Anyway, since the principal com-
ponent analysis provides linear transformations of the original data, this
method does not meet the requirements of a nonlinear analysis method. In
Section 6.2.3, a sophisticated feature selection method will be suggested,
which naturally preserves the interpretability of the original variables. The
required theoretical background for this will be thoroughly presented in
Chapter 5.

3.2 Non-linear Principal Component

Analysis

Nonlinear principal component analysis does introduce nonlinearity in the
objective function, but the resulting components are still linear combina-
tions of the original variables. This method can also be seen as a spe-
cial case of independent component analysis in Section 3.4. As mentioned
in [KPO98], there exist various formulations of the non-linear PCA.
A non-linear PCA criterion for the random data vector ~x = (x1, ..., xp)T

searches for the components ~s = (s1, ..., sp)T in the form of ~s = WT~x by
minimizing

J(W) = E[| ~x−Wg(WT~x) |2], (3.11)

with respect to the p × p weight matrix W , where g(~y) denotes the
component-wise application of the non-linear function g to the elements
of the vector ~y. Common choices for the non-linear function g are odd
functions like g(~y) = tanh(~y) and g(~y) = ~y 3. The optimization in Equa-
tion 3.11 can be carried out either by stochastic gradient descent algo-
rithms with the learning parameter c or by an approximate recursive least
square algorithm. The recursive least square algorithm converges much

19

3 State-of-the-Art Feature Extraction and Selection

faster than the corresponding gradient descent method with a good final
accuracy but a higher computational expense. However, before applying
the mentioned algorithms, the data needs to be pre-whitened. Although
the nonlinear principal component analysis introduces a nonlinearity in
its objective function, this method does not meet the requirements for a
nonlinear data analysis method.

3.3 Factor Analysis

The presentation of factor analysis in this section follows the description
in [MKB95]. Factor analysis is, like the principal component analysis in
Section 3.1, also a linear method based on second-order statistical infor-
mation. First suggested by psychologists, factor analysis assumes that the
measured variables are dependent on some unknown, and often unmeasur-
able, common factors.
A typical example for the application of factor analysis are random vari-
ables defined as various test scores of individuals. Such scores are assumed
to be related through a common ”intelligence” factor. The goal of factor
analysis is to unveil such relations, which can then be used further to re-
duce the dimension of the data set, following the factor model.

The zero-mean p-dimensional random vector ~x with the according covari-
ance matrix Σ satisfies the so called k-factor model if

~x = Λ~f + ~u (3.12)

holds, where Λ is a (p × k)-matrix of constants, ~f is a (k × 1)-vector de-
scribing the random factors and ~u is a (p×1)-vector describing the specific
factors. Furthermore, the factors are all uncorrelated and the random com-
mon factors are standardized to have zero mean and variance one.

E(~u) = 0, Cov(ui, uj) = 0, i 6= 1,

Cov(~f, ~u) = 0,

E(~f) = 0, V ar(~f) = I, (3.13)

Under these assumptions, the diagonal covariance matrix of ~u can also be
written as Cov(~u) = Ψ = diag(ψ1,1, ..., ψp,p).

If the data covariance matrix Σ can be decomposed as

Σ = ΛΛT + Ψ, (3.14)

20

3.4 Independent Component Analysis

it can be shown that the previously mentioned k-factor model holds. Since
xi can be written as

xi =

kX
j=1

λi,jfj + ui, i = 1, ..., p, (3.15)

its variance may be decomposed and written as

σi,i =
kX

j=1

λ2
i,j + ψi,i = h2

i + ψi,i, (3.16)

where the first part h2
i is called the communality and represents the vari-

ance of xi common to all variables. The second part ψi,i is called the
specific- or unique variance and expresses the contribution in the variability
of xi due to its specific part ui, which is not shared by other variables. The
term λ2

i,j measures the magnitude of the dependence of xi on the common
factor fj . If several variables xi have high loadings λi,j on a given factor
fj , the implication is that those variables measure the same unobservable
quantity. Those variables are therefore considered to be redundant.
Unlike the previously presented principal component analysis, the factor
model does not depend on the scale of the variables. It is scale-invariant
and also holds for orthogonal rotations of the factors.

Two instances of factor analysis are used to derive estimates for the model
parameters Λ and Ψ in Equations 3.12 and 3.13. The two methods are
known as principal factor analysis and maximum likelihood factor analysis.
Both are described in detail by MARDIA [MKB95].
Since factor analysis is based on a linear model assumption, this methods
are again not suitable for nonlinear data analysis.

3.4 Independent Component Analysis

The independent component analysis is a powerful state-of-the-art
data analysis method that incorporates higher-order statistical informa-
tion [Hyv99]. It seeks linear projections, not necessarily orthogonal to each
other, that are as close to statistical independence as possible. Since statis-
tical independence is a much stronger requirement than uncorrelatedness, it
involves not only second-order but all higher-order statistical information.
Formally, the random variables (ξ1, ..., ξp)T are mutually uncorrelated if

21

3 State-of-the-Art Feature Extraction and Selection

the following holds:

Cov(ξi, ξj) = E[(ξi − µi)(ξj − µj)] = 0, 1 ≤ i, j ≤ p, i 6= j. (3.17)

In contrast to uncorrelatedness, statistical independence requires the com-
pound probability density function f(ξ1 ..., ξp) to factorize into a product
of p terms so it can be written as

f(ξ1 ..., ξp) = f(ξ1) · ... · f(ξp). (3.18)

For non-gaussian distributed random variables independence always im-
plies uncorrelatedness, but naturally not vice versa.

3.4.1 Motivation of the ICA

In order to provide the motivation that lies behind the independent com-
ponent analysis, the following example is presented. Imagine you are in a
room where two people are speaking simultaneously. Two arbitrarily dis-
tributed microphones with different orientations are recording two time
dependent signals which are denoted by x1(t) and x2(t). Each of these
recorded signals is a weighted sum of the original speech signals s1(t) and
s2(t) emitted by the two speakers. This situation could be expressed by
the following system of linear equations

x1(t) = a1,1 s1(t) + a1,2 s2(t) (3.19)

x2(t) = a2,1 s1(t) + a2,2 s2(t), (3.20)

where a1,1, a1,2, a2,1 and a2,2 are some parameters that depend on the dis-
tance of the microphones from the speakers, the attenuation of the original
signals and of the acoustic properties of the room itself.
It would now be very useful, if one could estimate the two original speech
signals s1(t) and s2(t), using only the recorded signals x1(t) and x2(t). This
is commonly known as the cocktail party problem. Since no information
about the source signals s1(t) and s2(t) is available, the technique for the
solution of the cocktail party problem is called blind source separation.

Actually, if the parameters ai,j were all known, Equation 3.19 and 3.20
could be easily solved by classical methods of linear algebra. However, the
point is that neither the parameters ai,j nor the source signals si(t) are
known by the time, the signals x1(t) and x2(t) are recorded. This is what
makes the problem considerably more difficult, since the missing source

22

3.4 Independent Component Analysis

signals prevent us from accomplishing a standard linear system inversion.

The formal definition of independent component analysis employs the sta-
tistical ”latent variables” model [JH91] [Com94]. This assumes that at least
p linear mixtures x1, ..., xp of p independent components s1, ..., sp are ob-
served. In Equation 3.21, the time indices t are omitted, since each mixture
xj as well as each independent component si now represents a random vari-
able, instead of a proper time signal. The value xj(t), e.g. a microphone
signal in our cocktail party problem, is a sample of this particular random
variable at a specific time.

xj = aj,1 s1 + aj,2 s2 + ...+ aj,p sp, j = 1, ...,m (3.21)

Since vector-matrix notation is much more convenient, the above mixing
model can also be written in the form

~x = A ~s. (3.22)

The statistical model in Equation 3.22 is called independent component an-
alysis model or in short: ICA model. The ICA model is a generative model
which describes how the observed data xj is generated by the process of
mixing the components si. In this context, the independent components si

are also called latent variables, since they cannot be observed directly.
In this context, it should be mentioned again that the independent com-
ponent analysis is based on a linear model assumption. Regardless of its
amazing properties, this method is not sensitive to nonlinear dependencies
and cannot be employed for nonlinear data analysis.
Due to the fact that ICA is a rather new research topic, there exist various
definitions in literature. Perhaps the most general definition of ICA can be
given as follows.

Definition 3.1
Independent component analysis (ICA) of the random vector ~x consists of
finding a linear transform ~s = W~x so that the components si are as inde-
pendent as possible, in the sense of optimizing some function F (s1, ..., sp)
that measures the degree statistical independence.

The identifiability of the ICA model in Equation 3.22 has been treated
extensively by COMON [Com94]. By imposing the following fundamental
restrictions, in addition to the basic assumption of statistical independence,
the identifiability of the model can be assured.

23

3 State-of-the-Art Feature Extraction and Selection

1. All independent components si must have non-gaussian distribution.

2. The number of observed linear mixtures m must be at least as large
as the number of independent components p.

3. The parameter matrix A must be of full column rank.

Usually, it is also assumed that the realizations of ~x and ~s in Equation 3.22
are centered, which is no restriction, since this can always be accomplished
by subtracting the mean of the particular random variable from the ac-
cording data samples.

The first restriction in the above list, referring to non-gaussian distribu-
tions, is necessary for the identifiability of the ICA model [Com94]. For
gaussian random variables, the mere uncorrelatedness already implies sta-
tistical independence.
The second restriction, that m ≥ p must hold to assure the identifiability
of the ICA model, may be relaxed in cases where only the mixing matrix
A is of interest. Even if m < p, the mixing matrix A seems to be identi-
fiable [Car91]. The drawback here is the unavailability of the independent
components due to the noninvertibility of A. Since most of existing theory
for independent component analysis is not valid in this case, the second
assumption is usually made for practical applications. Recent results for
the case m < p, which is also called ICA with overcomplete basis, can be
found in [HCO99], [LS98b],[LS98a].
While the second restriction assures the existence of the mixing matrix
A, the third restriction implies the existence of its inverse or at least its
pseudo-inverse.

A rather insignificant indeterminacy of the ICA model is that the columns
of A and thus the independent components si can only be estimated up to a
multiplicative constant. This is the case, because any constant multiplying
an independent component in Equation 3.22 could be canceled by dividing
the corresponding column of the mixing matrix A by the same constant.
In this context, it is convenient to predefine the independent components
si to have unit variance. This makes the independent components unique,
up to an algebraic sign which could be different for each component si.

As mentioned above, independent component analysis is very closely re-
lated to the method called blind source separation or blind signal sepa-
ration. The term ”source” refers to an independent component, which is
equivalent to the original signal, e.g. the speaker in the previously described

24

3.4 Independent Component Analysis

cocktail party problem. ”Blind” means that very little to nothing is known
about the mixing matrix and the according source signals.
When employing ICA for feature extraction, the random variables si are
referred to as the features. The elements of the mixing matrix A are repre-
senting the contribution of the according features to the observation vari-
ables xj .

In contrast to the principal component analysis described in Section 3.1,
the above definition of the ICA does not imply a proper order of the inde-
pendent components. In the case, when ICA is be used as an instrument
for redundancy reduction or feature extraction, the existence of such an
order is essential. One way to define such a particular order among the
independent components might be the norms of the columns of the mixing
matrix, which could be interpreted as the contributions of the indepen-
dent components si to the variance of the observed mixtures xj . Ordering
the components si according to the descending norm of the corresponding
columns in the mixing matrix A, could establish an ordering similar to that
of a principal component analysis. The dimension reduction could then be
performed in the way, which is described in Section 3.1.
In many applications however, the presence of measurement noise would be
more realistic. As a consequence, this would result in an additional noise
term in the ICA model. However, for the sake of simplicity of this overview,
any noise terms are omitted in the formulation of the model. Since describ-
ing the estimation of a noise-free model is already a challenging task, this
approach seems to be sufficient for the mere description of the ICA method.

3.4.2 Estimation of the ICA

The estimation of the ICA model is performed by the minimization or
maximization of a so called objective function. Often such a function is
also called a contrast function, a loss function or a cost function by some
authors. Basically, this refers to any function that enables the estimation of
the parameters of the ICA model by implementing a measure of statistical
independence, as previously mentioned in Definition 3.1.
In this context, it is about to mention that the ICA method is highly
dependent on the formulation of the objective function and the accord-
ing optimization algorithm. In the case of explicitly formulated objective
functions, almost any of the classical optimization methods can be used
for optimizing the objective function. The statistical properties of the ICA
method, e.g. consistency, asymptotic variance and robustness, depend on
the choice of this objective function. The algorithmic properties like con-

25

3 State-of-the-Art Feature Extraction and Selection

vergence speed, memory requirements and numerical stability depend on
the employed optimization algorithm itself.

The choice of the objective function depends on the intention how the ICA
model should be identified. On the one hand, the independent components
could successively be estimated one by one. This implies the use of so called
single-unit objective functions. On the other hand, the data model, i.e. all
independent components, could be estimated at the same time. In this case,
multi-unit objective functions have to be employed for optimization.

Multi-unit objective functions

If the independent components of the ICA model in Equation 3.22 are all
to be estimated at the same time, multi-unit objective functions are used.
In the following, various commonly used multi-unit objective functions are
presented.

1. Maximum Likelihood
A very popular approach for the solution of the ICA model is the
maximum likelihood estimation. For the noise-free data model in
Equation 3.22, it is possible to formulate a likelihood function and
then estimate the model by a maximum likelihood method [PGJ92].
The log-likelihood function appears to have the following form:

L =

TX
t=1

mX
i=1

log fi(~w
T
i x(t)) + T log | det W |, (3.23)

where W = (~w1, ..., ~wm)T denotes the inverse mixing matrix A−1.
The probability density functions fi of the independent components
si are assumed to be known and ~x(t), t = 1, ..., T are the realizations
of the multivariate random vector ~x which represents the observa-
tion data.
The great advantage of the maximum likelihood approach is its
asymptotic efficiency, which is a well-known result from estimation
theory [Sch95]. However, there are also some major drawbacks of
this approach. First, that probability density functions of the inde-
pendent components are required prior to estimation. The second
drawback is the sensitivity of the maximum likelihood method to
outliers, since the probability density functions of the independent
components are assumed to have certain shapes. However, robustness
against outliers should be an essential property of any estimator.

26

3.4 Independent Component Analysis

2. Mutual Information
Theoretically the most satisfying objective function in the multi-unit
case of the ICA is the mutual information. Analog to the definition
in Section 5.1, the mutual information I between m scalar random
variables yi, i = 1, ...,m is defined as the sum of entropies

I(y1, ..., ym) =
X

i

H(yi) −H(y). (3.24)

The mutual information is a natural measure of dependence between,
possibly multivariate, random variables. This fact will be presented
in detail, however in another context, in Chapter 5. It is always
non-negative, and zero if and only if the variables are statistically
independent. Thus the mutual information takes into account the
whole dependence structure of the random variables.
Finding a transformation that minimizes the mutual information
between the components si is a natural way to estimate the ICA
model [Com94] and to abide by Definition 3.1. The drawback of this
measure of dependence is the computational expense to assess the
mutual information, especially for multivariate random variables.

3. Non-linear cross-correlation
Since the paper published by JUTTEN [JH91], several authors have
used the principle of canceling non-linear cross-correlations to ob-
tain the independent components [JH91], [CHL96]. Such non-linear
cross-correlations are of the form E[g1(yi) g2(yj)], where g1 and g2
are some suitably chosen odd non-linearities. If yi and yj are inde-
pendent, these cross-correlations are zero – on the condition that
yi and yj have symmetric probability densities. The objective func-
tion may be only formulated implicitly and an explicit formulation
may not even exist. In that case, the non-linearities must be chosen
according to the probability density functions of the independent
components [Lam96], [LWB95], [TJ91].

Single-unit objective functions

The expression single-unit objective function is used to indicate any func-
tion whose optimization enables the estimation of a single independent
component. Instead of estimating the complete ICA model all at once,
only one vector w is determined. Thus, the linear combination wTx corre-
sponds to one independent component si. This procedure can be iterated
to find more independent components successively.

27

3 State-of-the-Art Feature Extraction and Selection

The use of single-unit objective functions is motivated by the fact, that
in many applications it is enough to find some of the independent compo-
nents. Prior knowledge of the number of independent components is not
needed, since they can be estimated one by one. In the following, some
examples of single-unit objective functions are presented.

1. Negentropy
From the viewpoint of information theory, the most natural one-unit
objective function is the negative normalized entropy or negentropy.
Regarding Equation 3.24, one might conclude that the independent
components correspond to directions in which the differential entropy
of wTx is minimized. This turns out to be approximately right. How-
ever, a modification has to be made, since differential entropy is not
invariant for scale transformations. To obtain a linear invariant form,
the negentropy J is defined as

J(y) = H(ygauss) −H(y), (3.25)

where ygauss is a Gaussian random vector with the same covariance
matrix as y. The negentropy J is always non-negative and it is zero
if and only if y has a Gaussian distribution [Com94].

2. General objective functions
In order to generalize the existing objective functions and to avoid
their drawbacks, new single-unit objective functions for ICA have
been proposed [Hyv98], [Hyv97]. These objective functions combine
good statistical properties with plain algorithmic implementation
and require no prior knowledge about the densities of the indepen-
dent components, in contrast to the maximum likelihood estimation.
The generalized objective functions are without exception measures
non-normality [Com94]. A family of such measures of non-normality
could be constructed by employing any continuous function G and
considering the difference between the expectation of G for the ac-
tual data and its expectation for Gaussian data. In the following
definition, the objective function J measures the non-normality of a
zero-mean random variable y employing an even, on-quadratic and
sufficiently smooth function G

JG(y) = | Ey[G(y)] − Eν [G(ν)] |p, (3.26)

where ν is a standardized Gaussian random variable, y is assumed to
be normalized to unit variance and the exponent is typically p = 1, 2.

28

3.5 Non-linear Methods of Data Analysis

3.5 Non-linear Methods of Data Analysis

This section is intended to provide some further aspects of the rather wide
range of non-linear methods which can also be employed for the purpose of
feature extraction or -selection. It should be mentioned, that most methods
are not directly intended to serve as a tool for this purpose and need more
or less additional modification to suit the imposed requirements.

3.5.1 Non-linear Independent Component Analysis

In contrast to the previously presented independent component analysis,
the non-linear ICA replaces the linear mixing matrix A by a non-linear
vector-valued function f .

Given a p-dimensional zero-mean and non-Gaussian random variable ~x,
the non-linear ICA model substitutes the linear transformation in Equa-
tion 3.22 by the following:

(x1, ..., xp)T = f(s1, ..., sk)T , (3.27)

where f is a p-dimensional vector-valued function. The problem of iden-
tifiability of a general non-linear ICA model makes its estimation rather
difficult. Few publications, considering estimation of special cases of non-
linear ICA models are presented in [Hyv99]. An overview of the problem,
along with a maximum likelihood and a Bayesian ensemble method for
estimation can be found in [Kar00].

3.5.2 Multidimensional Scaling

With n data points in a p-dimensional space and an (n×n)-matrix of prox-
imity measures among these points, multidimensional scaling produces a
k-dimensional representation of the original data set, with k ≤ p. The
distances between the data points in the k-dimensional space reflect the
proximity relations among the original data points in p-dimensional space.
In general, a distance measure like the Euclidian distance, the Manhattan-
or the Maximum-Norm is employed to model the similarity among the data
points.
Multidimensional scaling is typically used to transform higher dimensional
data into two- or three-dimensional representations. After transformation,
the data can be visualized to unveil hidden structures in the data. A rule
of thumb to determine the maximum number of k, is to ensure that there

29

3 State-of-the-Art Feature Extraction and Selection

are at least twice as many pairs of data points as there are parameters to
be estimated.

Given the data points {xi}
n
i=1 ∈ IRp and a symmetric distance matrix

∆ = {δi,j}, i, j = 1, ..., n, the result of a k-multidimensional scaling will
be the set of points {yi}

n
i=1 ∈ IRksuch that the distances di,j = d(yi,yj)

are as close as possible to a function f of the corresponding proximities
f(δi,j) in the original data set. A detailed presentation of multidimensional
scaling and its application can be found in [CC01] and [MKB95].

3.5.3 Regression Analysis

Regression methods can be used for dimension reduction when the goal
is to model a response variable y in terms of a set of variables xi. The
identified regression function can be linear or non-linear. In statistics, the
variables xi are traditionally called the independent or explanatory vari-
ables, while y is the response- or dependent variable. In the regression
context, it is generally assumed that the variables xi are carefully selected,
uncorrelated and relevant for the explanation of y. However, in current data
mining applications those assumptions barely hold. Prior variable-selection
or dimension-reduction is therefore needed.

A well-known statistical variable selection method is the so called step-wise
regression, where different models are fit using all possible subsets of the
explanatory variables. The results are then compared by calculating vari-
ous quality measures. The subset showing the best quality measure is then
chosen. It contains the explanatory variables with the reduced dimension.
A similar approach, selecting the most relevant features by evaluating ran-
dom subsets of the original features, is called the wrapper method in the
machine learning community [KJ98].

3.5.4 Kohonen’s Self-Organizing Feature Maps

Self-organizing neural network models generate mappings from D-
dimensional signal spaces to L-dimensional topological structures. These
mappings preserve the neighborhood relations in the input data and have
the property to represent regions of high signal density on corresponding
large parts of the topological structure. This makes them interesting for
applications in various disciplines ranging from speech recognition [Koh88]
to data compression [Sea91].

30

3.5 Non-linear Methods of Data Analysis

One possible application objective is feature selection, i.e. finding a low-
dimensional subspace of the input vector space containing most or all of the
information of the original input data. Linear subspaces can be computed
directly by principal component analysis, as it is demonstrated in Sec-
tion 3.1. The Kohonen feature map allows the projection onto non-linear,
discretely samples subspaces with previously chosen lower dimensionality.
A detailed description of this very interesting method and its extensions
can be found in [Koh90], [Fri94].

Let {~tk}
K
k=1 ∈ IRD be samples of data space and let {~µm}M

m=1 ∈ IRD define
the randomly initialized reference vectors of the feature map. For a given
data sample ~tk, the feature map network identifies the index of the winning
neuron i∗ by calculating

i∗ = arg min
m=1,...,M

| ~tk − ~µm |D, (3.28)

where | · |D typically defines the Euclidean distance in IRD.

Instead of updating only the reference vector ~µi∗ of the winning neuron
i∗, all neurons in its neighborhood j ∈ Ni∗(d) of radius d are updated
according to

~µ new
j = ~µ old

i + α(~tk − ~µj), (3.29)

where the neighborhood is defined as Ni∗(d) = {j | dist(i∗, j) < d}.
The distance measure dist(i, j) defines the distance between the neurons
i and j in the previously mentioned L-dimensional topological structure
onto which the mapping is performed. The learning rate α and the radius
d of the neighborhood are usually simulation time dependent and decrease
with the number n of iterations performed.
After a number of iterations with randomly chosen data vectors ~tk and
convergence, the feature map network depicts the distribution and topol-
ogy of the input vectors it has been trained on.
Although Kohonen’s self-organizing feature maps are useful in many ap-
plication, they have two drawbacks. The general convergence property of
the algorithm depends mainly on the choice of the learning rate α and
the neighborhood function Ni(d)). Since there is no rule, these parameters
have to be set based on empirical values.
Finally, the major drawback is the absence of an explicitly formulated
measure to be optimized, like e.g the well defined mutual information in
Chapter 5.

31

3 State-of-the-Art Feature Extraction and Selection

3.6 Inducing Classification Models from

Data

Classification models, which are also known as decision models or decision
trees, are used to divide data objects into a predefined set of categories or
classes. Each data object has the same structure, consisting of a number
of attributes. One of these attributes represents the so called category of
the object.

Attribute Values

Outlook sunny, overcast, rain
Humidity 0% - 100%
Windy true, false
Play yes, no

Table 3.1: Structure of a data object including the non-category attributes
Outlook, Humidity, Windy and the category attribute Play of a
decision model for playing golf.

Table 3.1 depicts the structure of data records reporting on weather con-
ditions, which might be used as inputs for the decision of playing golf. The
categorical attribute Play in the last line, specifies whether to play or not,
depending on the non-categorical attributes Outlook, Humidity and Windy.
Usually, the category attribute only represents binary values like {yes, no},
{true, false} or something equivalent. In any case, one of its values will de-
termine a required decision.
The task is now to construct a decision tree that, on the basis of answers to
questions about the non-category attributes, correctly predicts the value
of the category attribute.

In the eighties and nineties, QUINLAN [Qui86], [Qui93] introduced algo-
rithms to obtain such decision trees from data sets. In this context, the
most important algorithms to be mentioned for the deduction of decision
trees are ID3 and C4.5. The ID3-Algorithm employs the so called entropy,
a concept of information theory, as a heuristic function for the construction
of decision trees.

32

3.6 Inducing Classification Models from Data

The basic conceptual ideas behind the ID3-Algorithm are:

• Each node of the decision tree corresponds to a non-categorical at-
tribute. Each edge of the tree is associated to a possible value of that
attribute.

• A leaf specifies the expected value of the categorical attribute, which
is described by the path from the root of the tree to this particular
leaf.

• Each node of the decision tree should be associated to the most
informative non-categorical attribute among all attributes not yet
considered in the current path from the root.

• Entropy1 is used to measure the previously mentioned importance
of a non-categorical attribute.

C4.5 is an extension of the ID3-Algorithm. It accounts for missing values,
continuous attribute value ranges, the pruning of decision trees and the
derivation of rules from the latter.

Outlook Humidity Windy Play

sunny 85 false no
sunny 90 true no
overcast 78 false yes
rain 96 false yes
rain 80 false yes
rain 70 true no
overcast 65 true yes
sunny 95 false no
sunny 70 false yes
rain 80 false yes
sunny 70 true yes
overcast 90 true yes
overcast 75 false yes
rain 80 true no

Table 3.2: Training data set the golf example

Table 3.2 depicts the training set for the golf decision model. Notice that in

1Entropy is an important concept in communication theory and has been introduced
by SHANNON[Sha48].

33

3 State-of-the-Art Feature Extraction and Selection

this example the non-categorical attribute Humidity has continuous range.
Since ID3 does not directly handle continuous range attributes, the exten-
sions of the C4.5-Algorithm will be also introduced below.

3.6.1 Basic Definitions

As mentioned above, the entropy is employed to measure the importance of
a non-categorical attribute when inducing a decision tree. The basic defini-
tions, required to understand the decision tree algorithms, are given in this
section. However, a detailed description of information theory is presented
in Chapter 5. Let ξ be a discrete random variable with the probability
distribution

P (ξ = xm) = {pm}M
m=1, (3.30)

where M is the number of possible realizations of the random variable ξ.
In the sense of information theory, this random variable characterizes an
information source producing realizations of ξ = xm with probability pm.
The entropy, which measures the information conveyed by this distribution,
is an integral measure for the uncertainty about the realizations of ξ. The
most commonly known entropy measure is the so called Shannon-Entropy
which is defined as

H(ξ) = −
MX

m=1

pm log2 pm. (3.31)

Note that the more uniform a probability distribution is, the higher is its
degree of uncertainty and hence its assumed information content.
For example, let us consider the distribution P (ξ) = {0.67, 0.33}. Accord-
ing to Equation 3.31, its entropy is H(ξ) = 0.92. A uniform distribution
P (ξ) = {0.5, 0.5} has the entropy H(ξ) = 1.0 and thus is assumed to con-
tain a higher amount of information, from the viewpoint of information
theory.

If a set T of data records is partitioned into disjoint classes {C1, ..., CM} on
the basis of the value of a categorical attribute, then the information needed
to identify the class of an element of T is defined as: Info(T) = H(ξ), where
ξ is the random variable characterizing the partition {C1, ..., Ck} with its

probability distribution P (ξ = Cm) = { |Cm|
|T |

}.

In the golfing example, we have the distribution P (ξ) = { 9
14
, 5

14
} and thus

Info(T) = 0.94.

34

3.6 Inducing Classification Models from Data

If the set T is partitioned in advance on the basis of the value of a non-
categorical attribute X into sets {T1, ..., Tn}, then the information needed
to identify the class of an element of T becomes

Info(X,T) =

nX
i=1

|Ti|

|T |
Info(Ti). (3.32)

The application of Equation 3.32 regarding the non-categorical attribute
Outlook in the golf data set in Table 3.2 yields

Info(Outlook, T) =

5

14
H

��
3

5
,
2

5

��
(sunny)

+
4

14
H

��
4

4
, 0

��
(overcast)

+
5

14
H

��
2

5
,
3

5

��
(rain)

= 0.694. (3.33)

Consider furthermore the quantity Gain(X,T) defined as

Gain(X,T) = Info(T) − Info(X,T). (3.34)

It represents the difference between the information needed to identify an
element of T , and the information needed to identify an element of T after
the value of non-categorical attribute X has been obtained. This quantity
specifies the information gain due to attribute X.
For the attribute Outlook in the golfing example, the information gain
is: Gain(Outlook, T) = 0.94 − 0.694 = 0.246. If the attribute Windy
is considered instead, it can be seen that Info(Windy, T) is 0.892 and
Gain(Windy, T) is 0.048. Thus, the attribute Outlook offers a greater in-
formation gain than the attribute Windy.
The quantity Gain(X,T) can be used to sort the non-categorical attributes
due their information gain. Thus, it can also be used to build decision trees,
where each node is associated with the attribute showing the greatest gain
among all attributes not yet considered in the path from the root of the
tree.

35

3 State-of-the-Art Feature Extraction and Selection

3.6.2 The ID3 Algorithm

Let T be a training data set, similar to the set of records in Table 3.2.
Given a categorical attribute C and a set of non-categorical attributes R,
the ID3 algorithm is used to build decision trees. In the following, the ID3
algorithm is rendered in pseudo code notation.

Algorithm 3.1 (ID3)

function Tree = ID3 (R: set of non-categorical attribute,
C: categorical attribute,
T: training set)

begin
If T is empty,

return a single node with value Failure;

If all records in T have the same value for
the categorical attribute,

return a single node with that value;

If R is empty,
return a single node with the value of the most
frequent categorical attribute values in T;

Let D be the attribute with highest Gain(D,T)
among all attributes in R;

Let {dj |j = 1, ...,m} be the values of attribute D;

Let {Tj |j = 1, ...,m} be subsets of T consisting
of records with value dj for attribute D;

Return a tree with root labeled D and
edges labeled d1, ..., dm connecting to the subtrees
ID3(R− {D}, C, T1), ..., ID3(R− {D}, C, Tm);

end

The algorithm recursively builds a decision tree from a given training data
set T . Since the attributes with the highest gain are removed from the re-
cursive calls to the function, the most important attributes appear nearest
to the root of the final decision tree.

36

3.6 Inducing Classification Models from Data

3.6.3 Information Gain Ratios

The quantity gain in Equation 3.34 tends to favor attributes that have a
large number of distinct values. For instance, if an attribute D has distinct
value in each record of the data set T , then Info(D,T) becomes zero and
thus Gain(D,T) is maximal. To compensate for this, QUINLAN [Qui93]
suggested to use the following quantity instead.

GainRatio(X,T) =
Gain(X,T)

SplitInfo(X,T)
, (3.35)

where SplitInfo(X,T) is the information due to the split of T on the basis
of the value of the attribute X. The quantity SplitInfo(X,T) is defined
as

SplitInfo(X,T) =
nX

i=1

H(Ti), (3.36)

where {T1, T2, ..., Tm} is the partition of the training data set T due to the
values of the attribute X.

In the case of the golfing example, the non-categorical attributes Outlook
and Windy yield

SplitInfo(Outlook, T) = H

��
5

14
,

4

14
,

5

14

��
= 1.577,

SplitInfo(Windy, T) = H

��
6

14
,

8

14

��
= 0.985. (3.37)

(3.38)

Finally, the quantity GainRatio(Outlook, T) is 0.156, compared to
Gain(Outlook, T) = 0.246. The gain ratio for the attribute Windy is
GainRatio(Windy, T) = 0.049, instead of Gain(Windy, T) = 0.046.

37

3 State-of-the-Art Feature Extraction and Selection

3.6.4 C4.5 Extensions

Compared to the original ID3 algorithm, C4.5 introduces a number of ex-
tensions accounting for the previously mentioned deficiencies of ID3.

• In building a decision tree, C4.5 can deal with training sets contain-
ing records with unknown attribute values. This is done by evaluating
the required gain, or the gain ratio, for those records in the data set,
where that attribute is actually defined.

• In using a decision tree, records with unknown attribute values can
also be processed by estimating the probability of the various possi-
ble results.
Considering the decision tree of the golfing example in Figure 3.2,
a new record with Outlook = sunny and unknown value for the at-
tribute Humidity is processed as follows:
Since the value of Outlook is known, the edge labeled sunny is fol-
lowed from root node Outlook to its child node Humidity. At that
point, the value of Humidity is unknown. However, if Humidity ≤
75% it can be observed in the training data set, that there are two
records where the categorical attribute Play = yes. If Humidity >
75%, there are three records with Play = no. Thus the answer for
this record, with respect to the question about the probability for
playing golf, is 0.4 for ”Play” and 0.6 for ”Don’t Play”.

• In the case of continuous range attributes, C4.5 performs a
global search to determine the maximum information gain. Let
Ri be an attribute of continuous rage and let A1, ..., Am be
all its values in the training set. For each value Aj with
j = 1, ...,m the set of training records T is partitioned into
subsets Tj,1 = {t ∈ T |Ak ≤ Aj , k = 1, ...,m} and
Tj,2 = {t ∈ T |Ak > Aj , k = 1, ...,m}. For each of this partitions, the
gain or the gain ratio is computed. The partition which maximizes
this quantity is finally chosen.
In the golfing example, the best partition for the attribute Humidity
is determined to be at 75%. In the decision tree, the range intervals
for this attribute then become]−∞, 75] and]75,+∞[. Notice that
this method involves a substantial number of computations, depen-
dent on the number of records in the training data set.

38

3.7 Backward Elimination- and Forward Selection Techniques

In the case of the golfing example, the following decision tree is finally ob-
tained.

Outlook

overcast
sunny

rain

Don’t
Play

Humidity

≤75% >75%

Play Don’t
Play

Windy

true false

Don’t
Play

Play

Figure 3.2: Decision tree induced from the golf example data set.

The introduced classification models in this section, employ an entropy
measure for the derivation of its classification trees. With respect to nonlin-
ear feature selection, we want go one step further and utilize the generalized
mutual information, which will be defined in Chapter 5.

3.7 Backward Elimination- and Forward

Selection Techniques

In the previous sections, an overview of various state-of-the-art techniques
of feature extraction and -selection has been presented. In this context,
feature extraction is always associated with a transformation of the avail-
able measurement variables.
Feature selection, in contrast, preserves the original data sequences and
delivers a mere subset of the actual relevant features. This is in particu-
lar interesting for questions where data collection is extremely cost inten-
sive, e.g. in clinical practise. Against the background of cost efficiency in
health-care systems, it would be unjustifiable from the payer’s perspective
to collect large data sets of partially redundant clinical parameters. Besides
that, patients would be unnecessarily stressed due to additional physical
examinations.

Since the focus of this work is on the analysis of high dimensional, multi-
variate data, a feasible framework with a wide rage of applicability has to

39

3 State-of-the-Art Feature Extraction and Selection

be developed. In this context, the feature selection techniques Backward
Elimination and Forward Selection, will be combined with the so called
general mutual information. In this section, the two selection algorithms
will be formally introduced. Against the background of a flexible feature
selection framework for high dimensional, multivariate data, its advantages
and drawbacks will be anticipated.

In order to simplify matters at the moment, let us define both selection
methods with an abstract function I(x, y). This function measures the
degree of importance or information content of variable x for the deter-
mination of variable y. Since this function will guide the feature selection
process, both variables are supposed to be multivariate. In Chapter 5, a so-
phisticated nonlinear measure of statistical dependence will be introduced
on the basis of information theory.

Backward Feature Elimination

Let us suppose we have to perform feature selection on a set ofN input vari-
ables. The backward elimination algorithm starts out with a complete set
of input variables and successively removes specific variables. A mathemat-
ical outline of the iterative backward elimination strategy for d = N, ..., 2
is given in the following:

xback(d) = {x1, ..., xd} ,

xback(d− 1) = xback(d) \ arg min
vk

[I(xback(d), y1) − I(vk, y1)] , (3.39)

where vk is defined as vk = {xi | xi ∈ xback(d)\{xik
}, xik

∈ xback(d)} and
k = 1, ..., d.

The removal of variables is done due to the policy described in Equa-
tion 3.39. In each iteration, every variable in xback(d) is temporarily re-
moved and the information content I(vk, y1) of the remaining variables is
calculated. After this, the variable which implies the least information loss
with respect to I(xback(d), y1) is chosen to be removed for good, yielding
xback(d−1). Finally, the iteration process stops if the set of input variables
contains just one single variable.
The order, in which the variables are removed during the iteration, implies
their relative importance. Since the variables are removed in such a way

40

3.7 Backward Elimination- and Forward Selection Techniques

that a minimum loss of information is generated from iteration to itera-
tion, the most unimportant variables are removed right at the beginning.
In other words, the variables providing the smallest information gain are
removed first, while those with the highest information gain are removed
at last. The consequence of this approach is that the elimination process
has to be completed before the most relevant variables can be identified.
A detailed outline of the backward elimination algorithm in pseudo-code
is given in Appendix B.2.

The major drawback of the backward elimination strategy is, that it has
to start out with the maximum dimension and run through all iterations
before the final result can be obtained. In particular, this could cause con-
siderable restrictions when analyzing high dimensional input data, such
as demonstrated in Section. 7.2.3. In order to avoid such imponderability,
the forward selection strategy has been considered as a feasible alternative
approach.

Forward Feature Selection

In contrast to backward elimination, the forward selection strategy starts
out with an empty set and successively adds the selected features. The for-
ward selection strategy is in this context a fairly straightforward approach,
because it employs the idea of maximizing the information gain as an es-
sential criterion for feature selection.

Suppose that we have to identify d dimensional feature subsets from an N
dimensional superset of available input variables. A mathematical outline
of the iterative forward selection strategy for d = 1, ..., N is given in the
lines below

xforw(0) = { } ,

xforw(d) = xforw(d− 1) ∪ arg max
vk

[I(vk, y1)] , (3.40)

where vk is defined as vk = {xi | xi ∈ xforw(d− 1) ∪ {xk}}. The subindex
k = 1, ..., N indicates the temporarily added variable.

The forward selection strategy commences with the empty feature set
xforw(0) to which the selected variables are added. In each iteration d, ev-
ery available variable xk is temporarily added to the current set of features
and the related degree of information I(vk, y1) is calculated. The variable
with the highest information value also generates the utmost information

41

3 State-of-the-Art Feature Extraction and Selection

gain with respect to the preceding iteration (d−1). This particular variable
is then concluded to be a valuable feature and is therefore added to the
feature set xforw(d). An explicit outline of the forward selection algorithm
is presented in Appendix B.3.

Since forward selection starts out with an empty set, this strategy does
not necessarily need to run through the complete iteration process to pro-
duce a final result. The termination criterion can thus be formulated very
flexible with respect to the underlying problem. There are several possible
alternatives to formulate a termination criterion for the forward selection
strategy.

Depending on the way of looking at a specific problem, the forward selection
procedure might be carried out until either

• the maximum information gain in each iteration drops below some
predefined value or

• a previously defined threshold for the total information content is
reached or

• a predefined threshold for the number of selected features is reached.

In this chapter, various data analysis techniques for feature extraction and
-selection have been presented to provide a detailed overview over this
field. In the course of this work, it will be shown how the mentioned gen-
eral mutual information can be employed to implement an effective feature
selection procedure. The basic principle of this sophisticated and power-
ful method are described in detail in Chapter 5. Its application will be
demonstrated and thoroughly discussed in Chapters 6 and 7.

42

4 Identification of Technical

Processes with Neural

Networks

This chapter provides definitions of terms concerning neural network com-
ponents, various network topologies and appropriate training algorithms.
Neural networks will be used as a modelling framework for system identi-
fication and the Proof-of-Concept of the outcomes of the GMI-method in
Chapter, and will thus be introduced in this section.
In the first section the basic elements of neural networks are presented.
The successive section provides a brief survey of commonly used network
topologies. Section 4.2 is dedicated to the presentation of various training
algorithms for neural structures. For a profound introduction to the sub-
ject of neural networks, the interested reader is referred to the publications
of BISHOP [MB99] or ZELL [Zel94].

4.1 Network Components

Inspired by the incredible complex structures of biological systems, neural
networks are massively parallel information processing systems that rely on
dense arrangements of interconnections and surprisingly simple processors.
In the following, all elements of neural networks are explained in detail.

Neurons

Neurons are the basic computing elements of neural networks. Figure 4.1
depicts an extended structure of the mathematical neuron model proposed
by McCULLOCH and PITTS [MP43]. It receives the output of other neu-
rons as input via weighted connections wx

i,j , with x ∈ {f, r}. If a weight is

43

4 Identification of Technical Processes with Neural Networks

P
xj(n)

yj(n+ 1)

j

z−1

z−1

wf
k,j

wf
2,j

wf
1,j

wf
0,j

wr
j,m

wr
j,j

uj(n)

y1(n)

y2(n)

yk(n)

Figure 4.1: Internal structure of a computing neuron.

delaying the information propagated along its path, the weight is referred
to as a recurrent weight connection. In the case of static networks, no re-
current weights are present.

A computing neuron includes a propagation function, an internal state and
a nonlinear activation function. The inputs from other neurons together
with the external input uj(n) to neuron j are mapped to the internal
state xj(n) with a so called propagation function. The activation function
σ(xj(n)) relates the internal state xj(n) to the neuron output yj(n+ 1) in
the next time step.

Weights

A directional, weighted edge wx
i,j from neuron i to neuron j is denoted

a neural weight connection or simply weight in the terminology of neural
networks. It can be interpreted as the cohesion between two neurons and
represents a very crude mathematical analogy to the synaptic strengths in
biological structures.
The artificial neural networks in this work incorporate two types of weights,
feedforward and recurrent weights. The recurrent weights wr

j,j and wr
j,m in

Fig. 4.1 are associated with the block z−1 indicating a time delay. Any
information passing through a recurrent weight connection is delayed for
a certain amount of time before reentering the same or different neurons

44

4.1 Network Components

of the network. Since the states xj(n) of the neural structure evolve in
time, the response of the network is now also depending on the network
states from previous time steps. Hence, introducing recurrence in general
is the major key for the ability to model dynamic behavior with neural
networks. For the purpose of classification or nonlinear function approx-
imation, no dynamic behavior has to be modelled and thus no recurrent
weight connections are required.

Propagation Function

The propagation function maps the inputs to a neuron j to its internal
state xj(n). This is commonly done by computing the weighted sum of all
inputs in the current time step:

xj(n) =

kX
i=1

(wx
i,j yi(n)) + uj(n), (4.1)

where:

yi(n) : output of neuron i in time step n
uj(n) : external input to neuron j in time step n
wx

i,j : weight connection from neuron i to neuron j.

It should be mentioned that more propagation functions than the weighted
sum of inputs do exist in literature. They have been thoroughly investigated
by the neural community over the past decades. One particular interesting
neural network uses so called (Σ − Π) neuron model ([NS96]). Since this
work is only concerned with the introduced neuron model according to
Fig. 4.1, the interested reader is referred to the specific literature.

Activation Function

The activation- or squashing function σ(·) maps the internal state xj of a
neuron to its according output yj . Figure 4.2 depicts the four most com-
monly used activation functions. For the neuron model introduced above,
any non constant, monotone increasing, bounded and continuously differ-
entiable nonlinear function σ : IR 7→ IR is a reasonable choice.
It has to be mentioned that for other networks types, eg. Radial Basis Func-
tion (RBF) Networks, the characteristics of the mapping function might
be different from those stated in this section.

45

4 Identification of Technical Processes with Neural Networks

−1

0

+1

−2

0

+2

−1

0

+1

−1

0

+1

−2 0 +2 −2 0 +2

−2 0 +2 −2 0 +2

(a) Linear activation (b) Linear activation
with saturation

(c) Hyperbolic Tangent (d) Fermi-Function

Figure 4.2: Activation functions for artificial neurons.

The linear activation function in Fig. 4.2(a),

σlin(x) = ax+ b, a, b ∈ IR, (4.2)

is extensively used for input neurons in order to scale an external input
to a standard interval. This prevents involuntary weighting of the input
signal according to its absolute value.

Figure 4.2(b) shows a linear activation function with saturation,

σsat(x) =

8<: −b : x < −a
b
a
x : −a ≤ x ≤ a, a, b ∈ IR+

0

b : x > a,
(4.3)

This function is not continuously differentiable within its entire domain.
Since training algorithms like Back-Propagation or Real Time Recurrent
Learning (see [Zel94]) are gradient descent methods and require the deriva-
tive of the employed activation functions to be computed, this choice yields
quite cumbersome formulations in learning algorithms. The advantage of

46

4.1 Network Components

this type of function is the relatively high sensitivity around zero and its
bounded range.

The most commonly used activation functions for computing neurons,
i.e. neurons in hidden- or output layers, are depicted in Fig.4.2(c) and
Fig.4.2(d). The hyperbolic tangent in Fig.4.2(c),

σtanh(x) =
a

2
tanh

�x
θ

�
+ b, a, b, θ ∈ IR, (4.4)

is differentiable in its entire domain and bounded in range. Differentiation
with respect to the function variable x ∈ IR yields

σ′
tanh(x) =

2a

θ
�
e

x
θ + e−

x
θ

�2 , a, θ ∈ IR. (4.5)

Figure 4.2(d) depicts the Fermi-function

σfermi(x) =
a�

1 + e−
x
θ

� + b, a, b, θ ∈ IR. (4.6)

Like in the case of the hyperbolic tangent, the Fermi-Function is continu-
ously differentiable and its derivative is easily determined to be

σ′
fermi(x) =

a

θ

�
1

1 + e−
x
θ

��
1 −

1

1 + e−
x
θ

�
, a, θ ∈ IR. (4.7)

To meet the requirements of special training problems, the range and the
translational displacement of both activation functions can be adjusted
with the parameters a and b. The parameter θ controls the shape of the
employed squashing functions. Usually the range of the hyperbolic tan-
gent and the Fermi-Function is restricted to the interval [−1, 1] and [0, 1],
respectively.

47

4 Identification of Technical Processes with Neural Networks

4.2 Network Topology

Based upon the definitions in Sec.4.1, neural structures are constructed by
connecting the basic computing elements with forward or recurrent weights.
In general, a neural network can be regarded as a directed, weighted and
possibly cyclic graph. The neurons are interpreted as nodes and the weight
connections wx

i,j correspond to the directed edges of the graph. Over the
past years of research in neural computing, numerous network topologies
have been developed and investigated. Basically all existing topologies can
be classified into two categories — feedforward- and recurrent neural struc-
tures. In the following, some representative examples of the network topolo-
gies which are employed in this work will be introduced.

4.2.1 Feedforward Structures

A feedforward neural network has no cycles or loops in its graph represen-
tation. The neurons are grouped into layers and only non delaying weight
connections exist between neurons of successive layers.

(a) Simple Feedforward Network

L1

L2

L3

(b) Multilayer Perceptron

L1

L2

L3

Figure 4.3: Graph Representations of Feedforward Neural Networks.

Figure 4.3(a) depicts an exemplary representation of a simple feedforward
neural network. The information is propagated from the input layer L1

through the hidden layer L2 to the output layer L3. In Fig. 4.3(b), a Mul-
tilayer Perceptron (MLP) with one hidden layer is shown. The neurons of
successive layers are completely interconnected with feedfoward weights. It
can be proved that MLPs with at least one hidden layer are able to approx-
imate any continuously differentiable and Borel-measurable function with

48

4.2 Network Topology

theoretically unlimited accuracy [HSW89]. In practice however, the quality
of approximation depends on various factors, e.g. the number of comput-
ing neurons, a proper training set with reasonably chosen input vectors
and the employed learning algorithm. Since feedforward neural structures
do not have recurrent weight connections among internal neurons, the re-
sponse of the network in the next time step does not depend on the current
state of the neurons. Hence this class of network is not capable of identify-
ing dynamic processes without the additionally introducing the aspect of
time, eg. through tapped delay lines or the application of specific learning
algorithms.

4.2.2 Recurrent Structures

Dynamic neural structures differ from conventional feedforward networks
in the way of how previous output is reused as a part of the input signal
in successive time steps. Due to the recurrent weight connections, the in-
ternal state and thus the output of each neuron shows a time depended
behavior. When confronted with the same input in different time steps,
each particular neuron and hence the entire neural network will respond
with different outputs.

L1

L2

L3

(a) Simple recurrent network

L1

L2

L3

external
recurrence computing layers

(b) Recurrent Multilayer Perceptron

Figure 4.4: Graph representations of dynamic neural structures.

49

4 Identification of Technical Processes with Neural Networks

In Fig. 4.4, two types of recurrent neural structures are depicted.
Figure 4.4(a) depicts an example of a simple recurrent network with no lay-
ered structure and thus no specific information propagation order. A special
network topology, known as Recurrent Multilayer Perceptron (RMLP), is
shown in Fig. 4.4(b). Similar to feedforward networks, this type shows a lay-
ered structure which defines the flow of information through the network.
Recurrent Multilayer Perceptrons have been proposed by PUSKORIUS
and FELDKAMP [PF94] for the identification and control of dynamic,
nonlinear systems.
A RMLP consists of three different types of connections: forward, recur-
rent and external recurrent weights. The nodes of consecutive layers are
connected with forward weights, while neurons belonging to one particu-
lar layer are fully interconnected with recurrent weights. In addition, the
response of the global network can be fed back into the input layer along
external recurrent weight connections.
Due to the introduction of recurrent connections, this class of neural struc-
tures is capable of learning time dependent behavior without further modi-
fication. Since recurrent networks are oscillatory structures, this might lead
to unstable behavior during training and application. Along with the grow-
ing complexity, the employed training algorithms become very expensive
with respect to computational costs. In the following section, various algo-
rithms are presented for the training of feedforward- and recurrent neural
networks.

4.3 Neural Training Algorithms

This section is dedicated to the presentation of some commonly used algo-
rithms for supervised gradient descent training based on the neural model
introduced above. Depending on the class and internal structure of the
underlying network, different algorithms have to be applied. The intention
of this section is to show the rapidly increasing complexity of the learning
algorithms when it comes to recurrent neural structures. In a later chap-
ter, a new learning algorithm will be proposed which will work for both –
feedforward and recurrent neural networks.

4.3.1 Back Propagation

Back Propagation is the classical gradient based training algorithm for
neural networks. The conceptual basis of Back Propagation was first pre-
sented in 1960 by ROSENBLATT [Ros60], then reinvented by David Parker

50

4.3 Neural Training Algorithms

in 1982, and finally presented to a wide readership in 1986 by RUMMEL-
HART and McCLELLAND [RM86]. Early applications of of Back Propa-
gation were done by Sejnowski and Rosenberg at Johns Hopkins University.
Typically, Back Propagation is applied for MLP networks with one or more
hidden layers.

The output of a particular neuron in a MLP is governed by the following
equation:

yj = σ(xj) = σ

 X
i

wi,j yi

!
. (4.8)

In Equation 4.8, the output yj of neuron j is the weighted sum of all inputs
to this neuron, passed through the activation function σ.
All gradient descent algorithms are based on the minimization of a cost-
or error function

E =
1

2

X
j

(tj − yj)
2 , (4.9)

where tj is the target- and yj is the actual output value of the j-th neuron
in the output layer. The output and thus the error of an output neuron de-
pends on the weights of the neural network. The adaption of one particular
weight wi,j is proportional to the negative gradient of the error function
and a factor η depicting the learning rate.

∆wi,j = −η
∂E

∂wi,j

(4.10)

Application of the chain rule to the error function E yields

∂E

∂wi,j

=
∂E

∂xj

∂xj

∂wi,j

. (4.11)

The second factor in Equation 4.11 is determined by executing the differ-
entiation of xj with respect to a particular weight wi,j :

∂xj

∂wi,j

=
∂

∂wi,j

 X
i

wi,j yi

!
= yi. (4.12)

The first factor of Equation 4.11 is defined as the error value δj of neuron
j. During training, this value will be propagated back through the neural
network.

δj = −
∂E

∂xj

∂xj

∂yj

(4.13)

51

4 Identification of Technical Processes with Neural Networks

The second partial derivative in Equation 4.13 is determined by differenti-
ating Equation 4.8 with respect to xj :

∂oj

∂xj

=
∂(σ(xj))

∂xj

= σ(xj)
′. (4.14)

The only term left to be determined is now the first factor of Equation 4.13.
In order to computed the sensitivity of the error function E with respect
to the actual output yj of a particular neuron, two cases have to be distin-
guished.

• Neuron j is part of the output-layer:

∂E

∂yj

=
∂

∂yj

1

2

X
k

(tk − yk)2
!

= (tj − yj). (4.15)

• Neuron j is part of a hidden layer. In this case the required partial
derivative can only be determined indirectly:

∂E

∂yj

= −
X

k

∂E

∂xk

∂xk

∂yj

=
X

k

δk
∂

∂yj

X
i

wi,k yi =
X

k

δk wj,k (4.16)

Finally, utilizing the results of Equations 4.11, 4.12 and 4.13 in Equa-
tion 4.10, the online update rule for a particular weight wi,j can be formu-
lated as

∆wi,j = η yi δj , (4.17)

where

δj=

8<: σ′(xj) (tj − yj), Neuron j is part of the output layer

σ′(xj)
P
k

δk wj,k, Neuron j is part of a hidden layer.

After each propagation of an input pattern, the output error of every neu-
ron is determined as the difference between the target- and the output
pattern. Figure 4.5 depicts the back propagation of the error value δj while
updating the weight connections according to Equation 4.17.

52

4.3 Neural Training Algorithms

u1

u2

u3

input
pattern

y1

y2

output
pattern

t1

t2

target
pattern

δ1

δ2δj

Figure 4.5: The standard back propagation algorithm.

4.3.2 Back Propagation Through Time

Back Propagation in its basic version can only be applied to feedforward
networks. If the employed networks show recurrent weight connections, a
modification called Back Propagation Through Time (BPTP) has to be
used.

(a) (b)

w2,1

w1,2

1w1,1 2 w2,2

u1(n) u2(n)

time step

k+1

k

2

1
1,1 2,1

1,2 2,2

1,k 2,k

1,k+1 2,k+1

w1,1 w2,2

w1,1 w2,2

w1,2 w2,1

w1,2 w2,1

Figure 4.6: Recurrent neural network and its feedforward equivalent.

Figure 4.6(a) depicts a small recurrent network with two computing nodes.
The neuron dynamics is governed by the following equation:

yj(n+ 1) = σ(xj(n+ 1)) = σ

 X
i

(wi,jyi(n) + uj(n+ 1))

!
. (4.18)

53

4 Identification of Technical Processes with Neural Networks

MINSKY and PAPERT [MP88] showed that every recurrent network can
be transformed into an equivalent feedforward network by a technique
known as unfolding in time. In order to perform this transformation, the
length of the training sequence has to be known a priori. In every instant
of time, neurons and weights of the original recurrent structure are sub-
stituted with additional components, yielding the feedforward network in
Fig. 4.6(b). The neurons in layer k are now reflecting the neuron states of
the original network in time step k. Since identical weights in Fig. 4.6(b)
correspond to a particular weight connection in Fig. 4.6(a), they have to
be set to identical values. In order to perform training on the transformed
network, the weight changes are accumulated and applied after the pre-
sentation of the entire training set. For a detailed outline of the BPTT
algorithm refer to ZELL [Zel94].
The major drawbacks of this algorithm are the restriction to a fixed number
of time steps and the considerable amount of memory for the transformed
network. Assuming a time horizon of length m and a network comprised
of n neurons, the memory requirement is in the complexity class O(mn2).
Since a general framework is required for dynamic neural structures, train-
ing algorithms with true online capability have to be considered.

4.3.3 Real Time Recurrent Learning

Real Time Recurrent Learning (RTRL) is, as well as Back Propagation, a
gradient based learning algorithm for layered neural networks. It is a vari-
ant of Back Propagation for recurrent networks, which has been proposed
by WILLIAMS and ZIPSER [WZ89].

The output of a particular neuron is defined in Equation 4.18. Similar
to Equation 4.10 this yields, in conjunction with Equation 4.9, for the
adaption of a particular weight wi,j :

∆wi,j(n) = −η
∂E(n)

∂wi,j

= −η
∂

∂wi,j

1

2

X
k

(Ek(n))2
!

= −
1

2
η
X

k

∂
�
(tk(n) − yk(n))2

�
∂wi,j

= η
X

k

Ek(n)
∂yk(n)

∂wi,j

, (4.19)

where k is referencing the output neurons of the network.

54

4.3 Neural Training Algorithms

Depending on the structure of the underlying network, two methods for de-
termining the partial derivatives in Equation 4.19 are presented. If layered
recurrent networks with arbitrarily connected neurons are employed, the
required derivatives can be obtained directly by differentiation of Equa-
tion 4.18 with respect to a particular weight wi,j .

∂yk(n)

∂wi,j

=
∂

∂wi,j

σ

 X
m

wm,kym(n− 1) + uk(n)

!!
= σ′(xk(n))

"
∂

∂wi,j

 X
m

wm,kym(n− 1)

!
+
∂(uk(n))

∂wi,j

#
= σ′(xk(n))

"X
m

∂(wm,k)

∂wi,j

ym(n− 1) +
X
m

wm,k
∂(ym(n− 1))

∂wi,j

#
= σ′(xk(n))

"
δ∗k,j yi(n− 1) +

X
m

wm,k
∂(ym(n− 1))

∂wi,j

#
(4.20)

In Equation4.20, δk,j denotes the Kronecker symbol:

δ∗k,j =:

�
1, k = j
0, else.

(4.21)

When employing RMLPs, a specific but rather complex method for obtain-
ing dynamic derivatives is used. PUSKORIUS and FELDKAMP [PF94]
presented an effective approach for the computation of the required partial
derivatives. Since the RMLP in Fig. 4.4(b) can be seen as a concatenation
of consecutive subnetworks, the spatial dependencies between particular
neurons can be taken into account for the derivation of a learning algo-
rithm.
The output yi,j(n) of a particular neuron j in layer i is a function of the
output vector ~yi−1(n) of the preceding layer in time step n, the output
vector ~yi(n−1) of the actual layer in time step n−1 and the weight vector
~wi of subnetwork i.

The neuron dynamics in a RMLP network are now given by the following
equation:

yi,j(n) = F (~yi−1(n), ~yi(n− 1), ~wi) , (4.22)

55

4 Identification of Technical Processes with Neural Networks

where

F (~yi−1(n), ~yi(n− 1), ~wi) = σ

0�Ni−1X
p=1

wf,i
p,jyi1,p(n) +

NiX
p=1

wr,i
p,jyi,p(n− 1)

1A
(4.23)

and

~yi−1(n) is the output vector of subnet i− 1 at time step n,

~yi(n− 1) the output vector of subnet i at time step n− 1,

~wi the weight vector of subnet i,

yi,j the output of neuron j in layer i,

wr,i
k,j the recurrent weight from neuron k to neuron j in

layer i and

wf,i
k,j the feedforward weight from neuron k in layer i− 1

to neuron j in layer i.

Similar to Equation 4.19, the rule for the adaption of a particular weight
wx,g

k,j can be formulated as:

∆wx,g
k,j = −η

∂E(n)

∂wx,g
k,j

= η

NlX
p=1

Ep(n)
∂yl,p(n)

∂wx,g
k,j

, (4.24)

where Nl is the number of neurons in the output layer of the RMLP and

x =

�
r, for recurrent weights
f, for forward weights.

Since the dynamics of the employed neurons take into account the spa-
tial dependencies among the elements of a RMLP, the determination of
the required partial derivatives is rather complex. Differentiation of Equa-
tion 4.23 with respect to a particular weight wx,g

k,j and application of the
general chain rule yields:

∂yi,j(n)

∂wx,g
k,j

=
∂ (F (~yi−1(n), ~yi(n− 1), ~wi))

∂wx,g
k,j

=
∂ (F (~yi−1(n), ~yi(n− 1), ~wi))

∂~yi−1(n)

∂~yi−1(n)

∂wx,g
k,j

+

+
∂ (F (~yi−1(n), ~yi(n− 1), ~wi))

∂~yi(n− 1)

∂~yi(n− 1)

∂wx,g
k,j

+

56

4.3 Neural Training Algorithms

+
∂ (F (~yi−1(n), ~yi(n− 1), ~wi))

∂ ~wi

∂ ~wi

∂wx,g
k,j

=
∂yi,j(n)

∂~yi−1(n)

∂~yi−1(n)

∂wx,g
k,j

+
∂yi,j(n)

∂~yi(n− 1)

∂~yi(n− 1)

∂wx,g
k,j

+
∂yi,j(n)

∂ ~wi

∂ ~wi

∂wx,g
k,j

=

Ni−1X
p=1

∂yi,j(n)

∂yi−1,p(n)

∂yi−1,p(n)

∂wx,g
k,j

+

NiX
p=1

∂yi,j(n)

∂yi,p(n− 1)

∂yi,p(n− 1)

∂wx,g
k,j

+

+δg,i
∂yi,j(n)

∂wx,g
k,j

. (4.25)

In the last term of Equation4.25, the symbol δg,i denotes the Kronecker

symbol. The partial derivatives
∂yi,j(n)

∂yi−1,p(n)
,

∂yi,j(n)

∂yi,p(n−1)
and δg,i

∂yi,j(n)

∂w
x,g
k,j

in

Equation 4.25 are found to be:

∂yi,j(n)

∂yi−1,p(n)
=
∂(σ(xi,j(n)))

∂yi−1,p(n)

= σ′(xi,j(n))
∂

∂yi−1,p(n)

0�Ni−1X
t=1

yi−1,t(n)wf,i
t,j +

NiX
t=1

yi,t(n)wr,i
t,j

1A
= σ′(xi,j(n))wf,i

p,j , (4.26)

∂yi,j(n)

∂yi,p(n− 1)
= σ′(xi,j(n))wr,i

p,j and (4.27)

δg,i
∂yi,j(n)

∂wx,g
k,j

=

(
0 , if g 6= i

∂

∂w
r,g
k,j

(σ(xi,j(n))) , if g = i

=

(
0 , if g 6= i

σ′(xi,j(n)) ∂

∂w
r,g
k,j

(neti,j(n))) , if g = i

=

�
0 , if g 6= i

σ′(xi,j(n))yi,k(n) , if g = i.
(4.28)

Since the employed training sequences can be of arbitrary length, the pre-
sented version of RTRL depicts a true online learning algorithm for layered
recurrent neural networks.

57

4 Identification of Technical Processes with Neural Networks

4.3.4 Extended Kalman Filter Training

Apart from pure gradient descent algorithms, the training of neural net-
works can also be performed by using methods from estimation theory.
The basic Kalman Filter (KF) is designed for parameter- or state estima-
tions in linear, dynamic systems. If the system turns out to be nonlinear,
a linearization around the current point of estimate has to be performed,
yielding the Extended Kalman Filter (EKF). For a detailed derivation and
outline of the EKF refer to CHUI [CC87] or LOFFELD [Lof90]. In the fol-
lowing, the EKF and its applicability to neural networks will be presented.

~u(n)

nonlinear

dynamic system

~x(n)

~y(n)

Figure 4.7: General description of a nonlinear dynamic system model.

Figure 4.7 generally depicts the model of a time discrete nonlinear dynamic
system of the form:

~x(n+ 1) = f [~x(n), ~u(n)] + ~ξ(n), (4.29)

~y(n) = g[~x(n), ~u(n)] + ~η(n). (4.30)

Here the vector ~x(n) is the state of the dynamic system at time n, ~u(n) is
the input and ~y(n) the observation at the system output. The system and

the observation noise ~ξ(n) and ~η(n) are assumed to be zero mean Gaussian
white noise sequences. The nonlinear vector functions f(·) and g(·) depict
the state transition- and the observation function of the dynamic system.
The EKF is commonly used as a stochastic observer in physical system
models, e.g. in radar tracking systems, for the optimal estimation of not
directly measurable system variables. With this approach, a neural net-
work during training is regarded as a dynamic system and its weights
as the parameters to be estimated. For this constellation, SINGHAL and
WU [SW89] showed the applicability of the Extended Kalman Filter as a
training algorithm for neural structures. Compared to conventional gradi-
ent based training algorithms, the EKF successively estimates the weights

58

4.3 Neural Training Algorithms

based on the deviation [~d(n) − h(~bw(n), ~u(n))] of the neural structure from

the desired output ~d(n) [HM99]. This statistical method minimizes the ex-

pectation value of the squared error between the estimated weight vector ~̂w
and the weight vector solving the training problem. The EKF is proved for
linear systems to provide an optimal estimate for the weight vector which
satisfies

lim
n→∞

E

��
~w(n) − ~bw(n)

�T

· S ·
�
~w(n) − ~bw(n)

��
= 0. (4.31)

This states that the expectation value of the squared error between the
required weight vector and its estimate converges to zero. For nonlinear
systems like neural networks, linearization around the current point of es-
timate has to be performed. Due to this fact, one can only expect to find

a weight estimate ~bw, which yields a local minimum of Equation 4.31.

The EKF equations utilized for the weight estimation of neural networks
are:

P (n+ 1) =P (n) −K(n) ·HT (n) · P (n) +Q(n)

K(n) =P (n) ·H(n) ·
�
(η(n) · S(n))−1 +HT (n) · P (n) ·H(n)

�−1

~bw(n+ 1) = ~bw(n) +K(n) ·
�
~d(n) − h(~bw(n), ~u(n))

�
, with

(4.32)

~d(r) =

0BBB� d1(r)
d2(r)

...
dm(r)

1CCCA is the desired output vector of the
neural network in time step r.

h(~bw(r), ~u(r))=

0BBBB� h1(~bw(r), ~u(r))

h2(~bw(r), ~u(r))
...

hm(~bw(r), ~u(r))

1CCCCA describes the output vector of
the neural network, depending
on the estimation of the weight

vector ~bw(r) in time step r. h(·)
represents the response of the
neural network.

~bw(r) =

0BBB� bw1(r)bw2(r)
...bwn(r)

1CCCA is the estimation of the weight
vector in time step r, comprising all
weights of the neural network.

59

4 Identification of Technical Processes with Neural Networks

H(r) =

0BB� ∂y1(r)
∂w1(r)

... ∂ym(r)
∂w1(r)

...
. . .

...
∂y1(r)
∂wn(r)

... ∂ym(r)
∂wn(r)

1CCA depicts the Jacobian matrix, which
serves as a linear approximation of
the neural network around the cur-
rent point of estimate.

K(r) =

0B�k1,1(r) ... k1,m(r)
...

. . .
...

kn,1(r) ... kn,m(r)

1CA is the Kalman-Gain matrix, used
for updating the covariance matrix
P (r).

P (r)=

0B�p1,1(r) ... p1,n(r)
...

. . .
...

pn,1(r) ... pn,n(r)

1CA represents the error covariance ma-
trix. The elements of P (r) describe
the covariance among the weights,
based on all previous estimation er-
rors.

Q(r)=

0B�q1,1(r) ... 0
...

. . .
...

0 ... qn,n(r)

1CA is the driving noise matrix, adding
noise to prevent the estimation pro-
cess from getting stuck in local min-
ima. qi,i ∈

�
10−6, 10−2

�
, i = 1, ..., n

S(r)=

0B� s1,1(r) ... s1,m(r)
...

. . .
...

s1,m(r) ... sm,m(r)

1CA is a user defined, positive definite,
symmetric matrix. S(r) defines, in
conjunction with η(·), the learning
rate of the neural network.

The elements of the Jacobian matrix are obtained through Equation 4.20
or Equation 4.25. In spite of the necessity of performing a linearization, the
EKF algorithm obtains considerably better solutions after fewer iterations
than purely gradient based learning methods. The major drawback of the
EKF is its computational complexity. The computational efforts of this
algorithm include the computation of the Jacobian matrix in addition to
the application of the EKF equations. Since the elements of the Jacobian
matrix are identical to the gradients delivered by the RTRL algorithm, the
computational expenses of this complex algorithm is extended by the EKF
equations.

60

5 Measuring the Information

Flow for Feature Selection

In Chapter 3, several feature extraction and -selection methods have been
presented. This chapter is intended to introduce the concept of mutual in-
formation as the basis of an optimal feature selection framework [PFX00],
[SPP06].
One of the basic postulates of information theory is that information can be
treated like a measurable physical quantity, such as density or mass. This
theory has been widely applied by communication engineers and some of
its concepts have found application in other fields of research. Whenever
entities of the real world interact, a more or less abstract flow of informa-
tion occurs. Quantifying this flow of information is of vital interest for the
determination of potential causalities. The concept of mutual information1

is based on the family of Rényi-Entropies [RB61], which include Hart-
ley’s [Har28] and the well known Shannon-Entropy2 [Sha48]. This chapter
is concerned with the theoretical background of a general mutual informa-
tion which is based on the second order Rényi-Entropy H2.

5.1 Concept of Mutual Information

Information theory provides us with a sophisticated methodology for ana-
lyzing the statistical dependencies in scalar or multivariate time series. The
mutual information I(ξ, η) can be interpreted as the quantity of informa-
tion that is obtainable about a random variable η, from the prior knowl-
edge of another random variable ξ. I(ξ, η) can be also seen figuratively as
a conjunction of two information sets, where H((ξ, η)) is the entropy of
the compound random variable (ξ, η). Figure 5.1 depicts the case where

1An alternative notation for mutual information is relative information or synentropy.
2Shannon used the term rate of transmission, instead of mutual information.

61

5 Measuring the Information Flow for Feature Selection

H(ξ) I(ξ, η) H(η)

H((ξ, η))

Figure 5.1: Mutual Information I(ξ, η).

I(ξ, η) < min(H(ξ), H(η)). In this case η could be determined only partly
from ξ. On the one hand, if both random variables are statistical indepen-
dent, the mutual information is equal to the empty set. On the other hand,
if I(ξ, η) = H(η) the mutual information I(ξ, η) reaches its maximum. In
this case, η depends completely on ξ and can hence be determined solely
from the latter.

Two, possibly multivariate, signals {xn} and {yn} can be interpreted as
realizations of the random variables {ξn} and {ηn}. In this case, the mutual
information is employed for measuring the flow of information and hence
the degree of statistical dependency between both measurement signals.
However, the mutual information does not deliver any statement about
the cause or the path of information flow. For each application, this has to
be determined in a separate modelling step. In our case, neural networks
will be employed as a unified modelling framework.

H(ξ)

{xn}

H(η)

{yn}

I(ξ, η) = H(ξ) +H(η) −H((ξ, η))

H((ξ, η)) −H(ξ)

H((ξ, η)) −H(η)

Irrelevance

EquivocationChannel

Figure 5.2: Shannon’s model for the flow of information through an ab-
stract, symmetric message channel contaminated with noise.

62

5.1 Concept of Mutual Information

Shannon introduced the concept of mutual information for the quantitative
description of an abstract message channels. Figure 5.2 depicts Shannon’s
model for the flow of information through an abstract, symmetric message
channel contaminated with noise. The received information H(η) is com-
prised of the mutual information I(ξ, η) and the irrelevanceH((ξ, η))−H(ξ)
resulting from disturbances. H((ξ, η)) −H(η) represents equivocation, i.e.
the part of information which is actually lost by the channel and is never
received.
In contrast to other methods of nonlinear time series analysis, based on
ergodic theory like the estimation of metric entropies, fractal dimensions
and Lyapunov-Exponents, the mutual information is rather universally ap-
plicable [Pom97].

For a discrete random variable ξ with probability distribution {pm}, Shan-
non introduced the entropy measure H as

H(ξ) = −
X
m

pm log pm, (5.1)

and formulated an interpretation from the viewpoint of coding theory.
Later, CHINTSCHIN [Chi61] and FADDEJEW [Fad56] presented an ax-
iomatic characterization of H.

The mutual information for two discrete random variables ξ and η is then
defined as

I(ξ, η) = H(η) − [H((ξ, η)) −H(ξ)] , (5.2)

where H(η) is a measure for the A-priori uncertainty of η and H((ξ, η)) −
H(ξ) is a measure for its remaining A-posteriori uncertainty, if ξ is known.
The quantity I(ξ, η) represents the amount of information about the ran-
dom variable η, if ξ is known. Since the converse holds also, the mutual
information is symmetric with respect to its arguments. An alternative
formulation of Equation 5.2 is

I(ξ, η) = I(η, ξ) = H(η) −H(η|ξ), (5.3)

where H(η|ξ) is the conditional entropy of η under the condition that ξ is
already known.

63

5 Measuring the Information Flow for Feature Selection

5.2 Theory of the General Mutual

Information Iα

RÉNYI [RB61], [Rén77] introduced a more general family {Hα(ξ)} of en-
tropy measures, where α ∈ IR. Let ξ be a discrete random variable with
the probability distribution

P (ξ = xm) = {pm}M
m=1.

It should be mentioned, that RÉNYI considered also probability distribu-
tions with

PM

m=1 pm ≤ 1. Throughout this work, only normalized and com-

plete probability distributions are assumed:
PM

m=1 pm = 1, with pm ≥ 0.

The Rényi-Entropy of order α ∈ IR, α ≥ 0 generalizes the Shannon-
Entropy. This family of entropy measures is defined as:

Hα(ξ) = Hα({pm}M
m=1) =

8>><>>: 1
1−α

log2

�
MP

m=1

pα
m

�
: α ≥ 0, α 6= 1

−
MP

m=1

pm log2 pm : α = 1,

(5.4)
with 00 := 0 and 0 log2 (0) := 0. In order to obtain a measure for the mu-
tual information in units of bits, the binary logarithm log2 is commonly
used3.

If α is set to zero, Hartley’s entropy measure is obtained:

H0(ξ) = log2 (|{ξ = xm : P (xm) 6= 0)}|) ,

where |{·}| is the set cardinality of the non vanishing realizations of the ran-
dom variable ξ. In case of α = 1, the Shannon-Entropy H1(ξ) is obtained,
which is continuously embedded4 into the set of general information mea-
sures described by Equations 5.4.

3One bit can be regarded as the information or uncertainty, obtained from a random
experiment with two outcomes of equal probability:
H({ 1

2 , 1
2}) = 1

1−α
log2 ((1

2α + 1
2α)) = 1

1−α
log2 21−α = 1 [bit].

4L’Hospital: lim
α→1

Hα(ξ) = −
MP

m=1
pm log2 pm

64

5.2 Theory of the General Mutual Information Iα

Let further be η another discrete random variable with the probability
distribution

P (η = yn) = {qn}
N
n=1,

and let
P ((ξ = xm, η = yn)) = {sm,n}

M,N
m=1,n=1

be the probability distribution of the compound random variable (ξ, η).
Regarding the Rényi-Entropies, introduced in Equations 5.4 for α = 1, the
term

I1(ξ, η) = H1(η) − [H1((ξ, η)) −H1(ξ)]

is considered. This yields the mutual information which is based on the
Shannon-Entropy:

I1(ξ, η) =

M,NX
m=1,n=1

sm,n log2

sm,n

pmqn

. (5.5)

In order to be able to use the mutual information I1(ξ, η) as a measure for
the statistical dependencies among realizations of random variables, it has
to show the following properties.

Theorem 5.1 (Properties of the Mutual Information I1(ξ, η))
The mutual information depicted in Equation (5.5) has the following prop-
erties:

1. Symmetry:

I1(ξ, η) = I1(η, ξ)

2. Limitation:

0 ≤ I1(ξ, η)

3. Independency:

I1(ξ, η) = 0 ⇐⇒ ξ and η are statistical independent.

65

5 Measuring the Information Flow for Feature Selection

4. Determination:

I1(ξ, η) = H1(η) ⇐⇒ η is exclusively determined by ξ,
I1(ξ, η) = H1(ξ) ⇐⇒ ξ is exclusively determined by η.

For a proof of the above properties see [Rén77].

Property 3 states, that if and only if no statistical dependency between both
variables ξ and η exist, the mutual information disappears. Compared to
the conventional coefficient of correlation ρ, the statistical independence
of two random variables cannot be concluded from ρ = 0 for arbitrary
distributed random variables.
Property 4 denotes, that the mutual information reaches its maximum if
and only if sm,n∗ = pm, for exactly one n∗ ∈ {1, ..., N} and hence sm,n = 0
holds for all n 6= n∗. From this follows the functional dependency η = f(ξ).

The mutual information I1(ξ, η) is apparently a reasonable measure for
all statistical dependencies among random variables. The question is now,
whether the properties of Theorem 5.1 hold as well for the general mu-
tual information (GMI) Iα(ξ, η), with α > 0, α 6= 1. Unfortunately, this
assumption is not met generally for arbitrary distributions S of the com-
pound random variable (ξ, η).

Theorem 5.2 (Limitation of the GMI Iα(ξ, η))
Let S be the finite, discrete distribution of the compound random variable
(ξ, η). For all α ≥ 0, α 6= 1 a distribution S exists for which the quantity
Iα(ξ, η) adopts negative values.
For an arbitrary distribution S, Iα(ξ, η) ≥ 0 holds only if α = 0 or α = 1.

A detailed proof of this theorem is given in [Rén77].

In this work, the general mutual information I2(ξ, η) is of particular in-
terest. It can be estimated much more efficiently for time series of finite
length than the mutual information I1(ξ, η) based on the Shannon-Entropy
measure. An efficient estimation algorithm for I2(ξ, η) will be introduced in
Sec. 5.3. Hence, the focus of interest is set on cases in which I2(ξ, η) can be
utilized as a measure for statistical dependencies. The following theorem
specifies the conditions under which I2(ξ, η) has the required properties.

66

5.2 Theory of the General Mutual Information Iα

Theorem 5.3 (Properties of the GMI I2(ξ, η))

Let P = {pm}M
m=1, Q = {qn}

N
n=1 and S = {sm,n}

M,N
m=1,n=1 be probability

distributions of the random variables ξ, η and (ξ, η), respectively.
Let at least η be uniformly distributed, with qn = N−1 for n = 1, ..., N .
The general mutual information

I2(ξ, η) = H2(ξ) +H2(η) −H2((ξ, η)) (5.6)

has the following properties:

1. Symmetry:

I2(ξ, η) = I2(η, ξ)

2. Limitation:

0 ≤ I2(ξ, η)

3. Independency:

I2(ξ, η) = 0 ⇐⇒ ξ and η are statistical independent.

4. Determination:

I2(ξ, η) = H2(η) ⇐⇒ η is solely determined by ξ, (5.7)

I2(ξ, η) = H2(ξ) ⇐⇒ ξ is solely determined by η.

The proof for this theorem is given in Appendix A.

For statistical independent random variables ξ and η it holds that I2(ξ, η) =
0 even if η is arbitrarily distributed. For the converse to hold, the uniform
distribution of at least η is essential, as expressed in Theorem 5.3.
As an immediate consequence of Equation 5.7, the general mutual infor-
mation can be normalized to fit the interval [0, 1], using:

0 ≤
I2(ξ, η)

H2(η)
≤ 1. (5.8)

It will be shown in Section 7.2.3 how this normalized GMI can be used for a
nonlinear analysis of real process data to obtain optimal data sets for neu-
ral network training. This normalized GMI can be used as an alternative

67

5 Measuring the Information Flow for Feature Selection

I0 I1 I2 C2

η arbitrarily distrib.:

”measure ≧ 0” + + − +
”measure = 0” ⇒ independence − + − −
”measure = 0” ⇒ uncorrelated − + − +
independence ⇒ ”measure = 0” − + + +
uncorrelated ⇒ ”measure = 0” − − − +

η uniformly distrib.:

”measure ≧ 0” + + + +
”measure = 0” ⇒ independence − + + −
”measure = 0” ⇒ uncorrelated − + + +
independence ⇒ ”measure = 0” + + + +
uncorrelated ⇒ ”measure = 0” − − − +

+: true −: false

Table 5.1: Comparison of the properties of various mutual information
measures Iα between two random variables ξ and η with the
properties of the squared coefficient of correlation C2.

to the coefficient of correlation, which describes a normalized covariance in
the interval [−1, 1]. The major drawback of correlation analysis is its lim-
itation to mere linear statistical dependencies for arbitrarily distributed
random variables.

Table 5.1 has been extracted from [Pom98]. It compares the properties of
various mutual information measures Iα with the properties of the squared
coefficient of correlation C2. The mutual information I1 and I2 are the only
correlation measures that allow for the conclusion of statistical indepen-
dence from a value of zero.
For an actual computation of the GMI, the requirement of a uniformly dis-
tributed random variable η might appear quite restrictive. We will see that
this requirement is not as restrictive as it appears, since the estimation
algorithm deals with preprocessed time series instead of the original data.
In the following section, an efficient estimation algorithm for the GMI will
be introduced.

68

5.3 Estimating the General Mutual Information I2

5.3 Estimating the General Mutual

Information I2

In the previous section, the general mutual information I2(ξ, η) has been
introduced from a theoretical viewpoint as a measure for linear and non-
linear statistical dependencies among random variables. Its employment
is highly motivated by the existence of an efficient estimation algorithm
for the second order Rényi-Entropy H2. The basic ideas have been devel-
oped by TAKENS [Tak83]. Later GRASSBERGER [GSC91] estimated the
fractal dimensions from finite time series of dynamic systems. These ideas
have been combined for the estimation of the GMI by POMPE [Pom93].
The efficiency of this method is based on the fact that the GMI algo-
rithm takes preprocessed time series instead of the original data. In the
following, we will take a closer look at the more practical implementation
aspects of the estimation algorithm. However, since the entire theoretical
background goes far beyond the scope of this work, the interested reader
is referred to [Pom97], [Pom98] and [PH95] for further reading.

5.3.1 Approximation of the Entropy Measure H2

Let ~ξ := (ξ1, ..., ξD) be a D-dimensional multivariate random variable and
let ~ε := (ε1, ..., εD) be a multidimensional vector defining the so called
coarseness levels. With respect to εd, the variables ξd can be interpreted
as discrete random variables [ξd]εd

, with d = 1, ..., D. The discrete random

vector ~ξ can now be written as

[~ξ]~ε = ([ξ1]ε1 , ..., [ξD]εD
),

with its according probability density distribution

{pm} = {pm1...mD
}.

For the sake of generality, a separate quantization level εd is used for each

random variable ξd. Hence, pm ≡ pm1...mD
is the probability of ~ξ adopting

a value in a multidimensional box Bm ≡ Bm1...mD
⊆ IRD. If [~ξ]~ε depicts

a D-dimensional measurement vector, pm can be estimated from its finite
set of realizations

{~x(m)}K
m=1 = {x1(m), ..., xD(m)}K

m=1,

69

5 Measuring the Information Flow for Feature Selection

by employing

pm ≈ c~ε,K(m) =
|{k : ‖ ~x(m) − ~x(k) ‖< 1

2
~ε }|

K
, k = 1, ...,K. (5.9)

Equation 5.9 depicts the well known method for estimating the probability
densities from finite data sets, the so called naive density estimator. The
variable c~ε,K(m) is the relative frequency that arbitrary realization of the
D-dimensional time series ~x(k) are within the D-dimensional interval de-
fined by ~ε. For time series of finite length, c~ε,K(m) is an approximation for
the probability pm that a box Bm around a selected point ~x(m) contains
an arbitrary realization of ~x(k). Figure 5.3 illustrates the determination of
this relative frequencies for a one dimensional, time discrete time series of
finite length K.
The quality of approximation depends on the smoothness of the under-
lying density function to be determined and also on the maximum εmax

of the corresponding box sizes. Assuming time series of infinite length,
and an infinitesimal small maximum box size εmax, the relative frequency
cεmax,K(m) converges to its corresponding probability pm.

pm = lim
εmax→0

lim
K→∞

cεmax,K(m), εmax = max{εD, ..., ε1}. (5.10)

Since data sets of finite length are considered, the limit in Equation 5.10
cannot be executed for the practical issues of an estimation algorithm.
Hence, for time series of finite length, the relative frequencies c~ε,K(m) will
have to be used instead.

Figure 5.3 illustrates the determination of the required relative frequencies
for a one dimensional time series of finite length. The absolute range of
the time series is divided into equally spaced intervals of length ε1. The
relative frequency cε1,K(m1) of a particular interval m1 is then determined
as the number of value in this interval with respect to the total length of
the investigated time series.

Fig. 5.4 illustrates the estimation of the relative frequencies for a two di-
mensional signal ~x(k) ⊆ IR2. In the case of multidimensional random vari-
ables, different coarseness levels εd have to be used for each component.

Considering the Rényi-Entropies from Equation 5.4 and the estimated
probabilities in Equation 5.9, POMPE [Pom97] presumably employs the

70

5.3 Estimating the General Mutual Information I2

cε1,K(m1)

...

ε1

K

x(k)

Figure 5.3: Estimation of the relative frequencies cε1,K(m) for a one di-
mensional time series x(k) ⊆ IR1.

x1(k)

x2(k)

Kε1

ε2

c~ε,K(m1)
...

··
·

Figure 5.4: Estimation of the relative frequencies c~ε,K(m) of a two dimen-
sional signal ~x(k) ⊆ IR2.

following approximation:X
m

pα
m ≈

1

K

X
m

pα−1
m , for α ≥ 0, α 6= 1

pm log2 pm ≈
1

K
log2 pm, for α = 1. (5.11)

71

5 Measuring the Information Flow for Feature Selection

When using the terms on the right side of Equations 5.11, the entropy mea-

sures Hα(~ξ) can be approximately derived with the following expressions:

Hα(~ξ) ≈

8>><>>: 1
1−α

log2
1
K

KP
m=1

cα−1
~ε,K (m) : α ≥ 0, α 6= 1

− 1
K

KP
m=1

log2 c~ε,K(m) : α = 1.

(5.12)

For further investigation, only the entropy measure H2(~ξ) will be consid-
ered. With respect to POMPE [Pom97], this measure turns out to be most
suitable for the formulation of an efficient estimation algorithm.
Due to the finite length of the underlying time series, the desired entropy

measure H2(~ξ) can finally be approximated by the expression

H2(~ξ) = lim
εmax→0

lim
K→∞

−log2

1

K

KX
m=1

c~ε,K(m)

!
≈ −log2

1

K

KX
m=1

c~ε,K(m).

(5.13)

In Equation 5.13, the term

C~ε,K =
1

K

KX
m=1

c~ε,K(m) (5.14)

might be interpreted as a correlation integral of the underlying time series.
It will be shown in Section 5.3.3 how this term can be very efficiently esti-
mated. The algorithm which will be presented uses a binary representation
of the underlying, possibly multidimensional, time series and appropriate
elementary binary operations.

Considering another time series {~y(k)}K
k=1, its correlation integral C~ε⋆,K

and the integral C(~ε,~ε⋆),K of the compound random variable (~ξ, ~η) can also
be determined with the procedure presented above. With Equation 5.6 and

Equation 5.13, a measure for the general mutual information I2(~ξ, ~η) can
thus be approximated using

I2(~ε,~ε⋆)
(~ξ, ~η) ≈ − log2 C~ε⋆,K − log2 C~ε,K + log2 C(~ε,~ε⋆),K . (5.15)

The main task is now to compute these quantities from real time series of
finite length. In the following, an efficient method for the computation of
the required correlation integrals will be presented.

72

5.3 Estimating the General Mutual Information I2

5.3.2 Ranking of the Time Series

For the interpretation of the quantity I2(~ξ, ~η) as a measure for the gen-
eral mutual information, the realizations of all components of the random
variable ~η have to be uniformly distributed over the unity interval [0, 1].
In order to meet the requirements of Theorem 5.3, only preprocessed time
series are employed instead of the original raw data. When exemplary re-
garding a particular component ηi of a random variable ~η with arbitrarily
distributed realizations, the transformation process is performed with its
cumulative distribution function.

y1 yM

0.0

0.5

1.0
Fi(ym)

P (ηi = ym)

Figure 5.5: Probability density function P (ηi = ym) and its cumulative
distribution function F (ym) = P (ηi ≤ ym).

Figure 5.5 depicts the probability density function P (ηi = ym) and the
according cumulative distribution function Fi(ym) of the random variable
ηi. This cumulative distribution function is used for the transformation
of the arbitrarily distributed random variable ~ηi to a uniform distribution.
All components of the multidimensional random variable ~η are successively
transformed into a uniform distribution by mapping them through their
according cumulative distribution function Fi(ηi).
Figure 5.6 depicts the transformation of arbitrarily distributed real mea-
surement data to uniform distribution. The probability density function of
the original and the transformed signal is depicted at the right edge of the
signal plots. When performing this operation, the dynamic characteristics
of the original times series are maintained. In the end, the obtained signals
are uniformly distributed over the interval [0, 1].
However for practical aspects, this transformation can be realized more
efficiently by computing the rank numbers of the underlying original time
series [Pom98]. Equation 5.16 describes the ranking of an original time

73

5 Measuring the Information Flow for Feature Selection

ymin

ymax

1 1700

1.0

0.0
ymin ymax

Fi(ηi)

0.0

1.0

1 1700

Figure 5.6: Nonlinear transformation of an arbitrarily distributed signal to
relative ranks with a uniform distribution.

series to its absolute rank numbers Ri(m) or alternatively to its relative
ranks ri(m).

xi(m) 7→ Ri(m) = |{k : xi(k) ≤ xi(m), k = 1, ...,K}|,

m = 1, ...,K

ri(m) =
Ri(m)

K
(5.16)

Using the transformation to absolute- or relative ranks, the characteristic
of the obtained sequence is equivalent to the characteristic of the time se-
ries on the right-hand side of Fig. 5.6.
In the following presentation of a low level matrix calculus for the deter-
mination of the desired correlation integrals C~ε,K , only the relative ranks
ri(m) will be considered.

74

5.3 Estimating the General Mutual Information I2

5.3.3 Efficient Matrix Calculus at Bit Level

In order to formulate a fast estimation algorithm for the general mutual

information I2(~ξ, ~η), an efficient method for computing the correlation in-
tegrals in Equation 5.14 is required. For this purpose an appropriate low
level matrix calculus is presented, which could be most efficiently imple-
mented at bit level [Pom97].

Let {~r(m)}K
m=1 be a (D+1)-dimensional sequence of relative rank numbers.

The according ((D+1)×K)-dimensional rank matrix has the following form:

{~r(m)}K
m=1 =

0BBB� r0(1) r0(2) ... r0(K)
· · ·
· · ·
· · ·

rD(1) rD(2) ... rD(K)

1CCCA . (5.17)

In order to compute the required correlation integral, all vectors
{rd(m)}K

m=1, d = 0, ..., D of the above matrix have to be considered.

The (D + 1) rank-distance matrices are defined by

∆d =

0BBB� δd,(1,1) δd,(1,2) ... δd,(1,K)

· · ·
· · ·
· · ·

δd,(K,1) δd,(K,2) ... δd,(K,K)

1CCCA , (5.18)

with
δd,(i,j) = ‖ rd(i) − rd(j) ‖, i, j = 1, ...,K

are introduced for each d = 0, ..., D. The K2 entries of matrix ∆d represent
the relative distances between all pairs of rank numbers in the particular
sequence {rd(m)}K

m=1.

The matrix ∆d has the following essential properties:

• ∆d is symmetric with respect to its main diagonal,

δd,(i,j) = δd,(j,i).

75

5 Measuring the Information Flow for Feature Selection

• The diagonal elements of ∆d are all zero,

δd,(j,j) = 0.

• Every row {δd,(i,j)}
K
j=1 of ∆d depicts a permutation of

{Rd(m) − 1, Rd(m) − 2, ..., 1, 0, 1,K −Rd(m)}.

• Every column {δd,(i,j)}
K
i=1 of ∆d depicts a permutation of

{Rd(m) − 1, Rd(m) − 2, ..., 1, 0, 1,K −Rd(m)}.

• For a particular sequence {Rd(m)}K
m=1, K! permutations exist. This

implies the existence of K!/2 distinct matrices ∆d, since the two
sequences {Rd(m)}K

m=1 and {1 +K −Rd(m)}K
m=1 produce identical

matrices

Furthermore, let εd be the coarseness level, with 0 < εd ≪ 1. The entries
of a so called binary rank distance matrix

Bd =

0BBB� bd,(1,1) bd,(1,2) ... bd,(1,K)

· · ·
· · ·
· · ·

bd,(K,1) bd,(K,2) ... bd,(K,K)

1CCCA . (5.19)

are computed according to the rule

bd,(i,j) :=

�
1 : δd,(i,j) < εd

0 : else.
(5.20)

The resulting binary matrix Bd has the following properties:

• Bd is symmetric with respect to its main diagonal,

bd,(i,j) = bd,(j,i). (5.21)

• The diagonal elements of Bd are all one,

bd,(j,j) = 1. (5.22)

76

5.3 Estimating the General Mutual Information I2

• For rd(m) ≥ εd

2
, the weight5 of the m-th row of Bd is at most

K (εd − 1
K

). The same holds for the m-th column of Bd.

In consequence of the symmetry of Bd, only the upper triangular matrix
is considered for further calculations.

The left-hand side of Figure 5.7 shows the binary rank distance matrix of
the signal depicted in Fig. 5.6. Since the diagonal elements are permanently
equal to one, they can also be factored out for the sake of performance.

0

1700
0 1700

0

1700
0 1700

(a) (b)

Figure 5.7: (a) Binary rank distance matrix Bd of the signal depicted in
Fig. 5.6. (b) Binary matrix of a white noise process, showing no
statistic dependencies. In this image representation, the binary
ones are depicted as black dots.

The binary matrices still contain all information about the statistic de-
pendencies6 of the considered time series, with respect to a predefined
coarseness level εd. In the case of a D + 1 time series, the desired binary
rank distance matrix is computed as the conjunction of the binary ma-
trices for each dimensionality. The procedure for the determination of the
coarseness levels is described in Section 5.3.4.

5The weight of a binary vector or matrix is defined as the sum of binary ones.
6Binary rank distance matrices of signals without statistic dependencies are equally

gray (Fig. 5.7b). The gray level increases if the coarseness level εd decreases.

77

5 Measuring the Information Flow for Feature Selection

Definition 5.1 (Conjunction of Binary Matrices)
Let B0, ..., BD, D ∈ IN be binary matrices as introduced in Equation 5.19.
The conjunction of multiple binary matrices is defined as follows:

D̂

d=0

Bd = (b0,(i,j) ∧ ... ∧ bD,(i,j)), i, j = 1, ...,K. (5.23)

The question of interest is how this binary matrix calculus can be employed
to determine the desired correlation integral C~ε,K in Equation 5.14. This
question can be answered by taking a closer look at the terms c~ε,K(m) in
Equation 5.14 and the according definitions in Equation 5.9. The correla-
tion integral C~ε,K can thus be written as

C~ε,K =
1

K2

KX
m=1

|{k : ‖ ~r(m) − ~r(k) ‖<
1

2
~ε }|, (5.24)

with k,m = 1, ...,K. The vectors ~r(m) depict the relative ranks series.

On the one hand, the correlation integral can be computed as the sum of
the presented set cardinalities with respect to the squared length of the
underlying time series. On the other hand this sum is equal to the weight
of the corresponding binary matrix which has been obtained using Equa-
tion 5.20. For a time series of dimension D+1 however, a prior conjunction
of all component binary matrices has to be performed.

Hence, the correlation integral in Equation 5.14 can be obtained as the
relative weight of the resulting binary matrix with respect to the squared
length of the underlying time series.

C~ε,K =
1

K2

KX
i,j=1

D̂

d=0

Bd

!
=

1

K
+

2

K2

X
i<j

D̂

d=0

Bd

!
. (5.25)

Finally, the approximation for the entropy measure H2(ξ) of a (D+1)-
dimensional random variable is found to be

H2(~ξ) ≈ − log2(C~ǫ,K) = − log2

1

K
+

2

K2

X
i<j

D̂

d=0

Bd

!!
. (5.26)

Since this method is mainly based upon comparisons and logical oper-
ation at bit level, the computation of the above entropy measure could

78

5.3 Estimating the General Mutual Information I2

be most efficiently implemented on dedicated hardware. With respect to
cost and performance, the combination of Field Programmable Gate Ar-
rays (FPGA) and Digital Signal Processors (DSP) might be employed for
this task. Due to some inconsistencies found in literature, the algorithmic
complexity of the presented method is investigated in the section 5.4.

5.3.4 Determination of the Coarseness Level

An important issue, when employing the GMI estimation algorithm on
the basis of the binary matrix calculus described in Section 5.3.3, is the
determination of the dimension specific estimation parameters ~ε. In Sec-
tion 5.3.1, the vector ~ε has been defined to contain the coarseness levels of
the entropy approximation algorithm. As described in [BDSL91], various
approaches for the determination of the coarseness levels can be found in
literature. Besides all that, a feasible alternative approach for the determi-
nation of this important estimation parameters has been developed in this
work and will be presented in the following.

As depicted in Equation 5.9, the values of the coarseness level vector ~ε
describe a D-dimensional box around a selected point ~x(m). When con-
sidering Equation 5.10, the multidimensional box can also be defined as
~ε = (ε1, ..., εD), with ε = ε1 = ... = εD, without loss of generality. The
edge ε of this multidimensional cube is now determined in such a way, that

the binary matrix for the compound variabel (~ξ, ~η) contains an average of
Kp binary ones with respect to the length K of the time series.

Hence, the concrete value of ε is determined iteratively through nested
intervals with the stopping criterion

H2((~ξ, ~η), ε) = − log2(p). (5.27)

In the case of convergence, this yields in conjunction with Equation 5.13
to the following:

H2((~ξ, ~η), ε) = − log2(p) = −log2
1

K

KX
m=1

c~ε,K(m)

79

5 Measuring the Information Flow for Feature Selection

⇔ p =
1

K

KX
m=1

c~ε,K(m)

⇔ K · p =
1

K

KX
m=1

|{k : ‖ ~x(m) − ~x(k) ‖<
1

2
~ε }|,

(5.28)

where ~ε = (ε1, ..., εd) with ε = ε1 = ... = εD.

The right side of the above equation describes the average number of ones
in the according binary matrix. We can see clearly that, at the end of the
iteration procedure, the average number of binary ones is equal to the frac-
tion p with respect to the total length K of the time series.

0.0

0.2

0.4

0.6

0.8

1.0

[ε/−]

0.0

2.0

4.0

6.0

8.0

10.0

[H2/−]

1 2 3 4 5 6 7 8 9 10
[n/Iterations]

ε(n)

H2((~ξ, ~η), ε(n))

Figure 5.8: Values of the coarseness level ε(n) and the according entropy

H2((~ξ, ~η), ε(n)) during iteration. The dashed lines represent the
boundaries of the contractive interval for the search of ε, with
p = 0.02.

Figure 5.8 depicts the values of the coarseness level ε(n) and the accord-

ing entropy H2((~ξ, ~η), ε(n)) during the course of the iteration process. The
dashed lines represent the contractive interval for the search of ε with
p = 0.02. After ten iterations, the value of ε fulfills the stopping criterion
in Equation 5.27. At this point the iteration process is terminated and the

80

5.4 Algorithmic Complexity of the Estimation Procedure

current value for ε is used for further computations of the mutual informa-
tion.
Finally, one might raise the question how the value of the constant p
is determined anyway. The constant p has been empirically determined
through various experiments. The best results are obtained for values
0.02 ≤ p ≤ 0.05.

5.4 Algorithmic Complexity of the

Estimation Procedure

One important point, with respect to an efficient implementation of the
above estimation method for the entropy measure H2(·) and thus for the
mutual information I2(ξ, η), is the question of its algorithmic complexity.
Since the required amount of memory depends on the machine representa-
tion of the investigated time series, we are only interested in the complexity
class of the computational costs as a function of the length K of the inves-
tigated time series.

In general, the mutual information has to be determined for a D-
dimensional input sequence

{~x(m)}K
m=1 =

0B�x1(m)
...

xD(m)

1CA
and a G-dimensional output sequence

{~y(m)}K
m=1 =

0B�y1(m)
...

yG(m)

1CA .

The number of subtractions and comparisons to be carried out for obtaining
the binary matrix of one particular time series is

K(K − 2)

2| {z }
subtractions

+
K(K − 2)

2| {z }
comparisons

.

81

5 Measuring the Information Flow for Feature Selection

For the determination of all binary matrices Bd and Bg, with d = 1, ..., D
and g = 1, ..., G subtractions and comparisons are necessary.

(D +G)
K(K − 2)

2| {z }
subtractions

+ (D +G)
K(K − 2)

2| {z }
comparisons

= (D +G)K(K − 2) ∈ O(K2)

The number of logical AND operations to be carried out for obtaining the
matrices

VD

d=1Bd,
VG

g=1Bg and (
VD

d=1Bd) ∧ (
VG

g=1Bg) is

D
K(K − 2)

2| {z }V
D
d=1

Bd

+G
K(K − 2)

2| {z }
(
V

G
g=1 Bg

+
K(K − 2)

2| {z }
(
V

D
d=1

Bd)∧(
V

G
g=1 Bg)

= (D +G+ 1)
K(K − 2)

2
∈ O(K2).

The number of counter increments in order to determine the weights of the
binary matrices

VD

d=1Bd,
VG

g=1Bg and (
VD

d=1Bd) ∧ (
VG

g=1Bg) is

K(K − 2)

2| {z }
(
V

D
d=1

Bd)

+
K(K − 2)

2| {z }
(
V

G
g=0 Bg)

+
K(K − 2)

2| {z }
(
V

D
d=1

Bd)∧(
V

G
g=1 Bg)

=
3

2
K(K − 2) ∈ O(K2).

The transformation of the arbitrarily distributed time series to its corre-
sponding series of rank numbers is realized as sorting operation. Since the
Quicksort algorithm has been used, the complexity class for obtaining the
ranked time series is O(K logK).

Finally, the algorithmic complexity class of the entire estimation algorithm
is therefore O(K2). Considering the representation of the time series as se-
quences of absolute rank numbers, this algorithm could be most efficiently
implemented at bit level on dedicated hardware, as mentioned above.

82

5.5 Analysis of Nonlinear Dynamic Process Inputs with the GMI

5.5 Analysis of Nonlinear Dynamic Process

Inputs with the GMI

In this section, the GMI will be employed for the first time to identify the
relevant inputs of a nonlinear dynamic process. In order to demonstrate the
capability of the GMI to identify implicit nonlinear structural- and tem-

u1(n)

u2(n)

u3(n)

u4(n)

nonlinear
dynamic process

~x(n)

y(n)

Figure 5.9: General description of the deterministic nonlinear dynamic pro-
cess, defined in Equations 5.29.

poral dependencies, the input-/output behavior of a nonlinear dynamic
process will be analyzed. Unlike the investigation of the characteristics of
real measurement data, the properties of a deterministic dynamic process
can be specifically tailored to have the desired dependencies, which will be
revealed by the GMI.

x1(n+ 1) = x1(n) − 0.5x2(n) + 0.8u2
2
(n−k2) + u2

4
(n−k4),

x2(n+ 1) =
x1(n)

(1 + 0.1x2
2
(n))

+ 0.8u2
2
(n−k2) + u2

4
(n−k4),

y(n) = 1.8 tanh (0.32x1(n)) − 0.63 , (5.29)

Figure 5.9 depicts the general description of the nonlinear dynamic pro-
cess, defined in Equations 5.29. The process itself is designed to have two
internal states, which are also nonlinearly connected to each other.
It can be observed in the graphical- and in the analytical representation,
that only the variables u2 and u4 are used as inputs to the dynamic pro-
cess, while variables u1 and u3 are redundant.
Since the GMI is also supposed to identify the implicit temporal depen-
dencies, the signals of variables u2 and u4 have been delayed by k2 = 10
and k4 = 20 time steps, respectively.

83

5 Measuring the Information Flow for Feature Selection

1 1000 2000

u1(n)

1.0

0.0

-1.0
1 1000 2000

u2(n)

1.0

0.0

-1.0

1 1000 2000

u3(n)

1.0

0.0

-1.0
1 1000 2000

u4(n)

1.0

0.0

-1.0

1 1000 2000

y(n)

1.0

0.0

-1.0

Figure 5.10: Response of the nonlinear dynamic system to square-pulse in-
put sequences. The variables u2 and u4 are used as inputs to
the dynamic process, while u1 and u3 are redundant.

The response of nonlinear, dynamic system to square-pulse input sequences
is depicted in Figure 5.10. Since the GMI should give information about

84

5.5 Analysis of Nonlinear Dynamic Process Inputs with the GMI

the implicit structural- and temporal dependencies, we pretend to have no
further a priori knowledge about this data or the structure of the underly-
ing dynamic process.

1 10 20 30 40
[k/lags]

1
2

3
4

[i/ui]

0.0

0.2

0.4

0.6

0.8

1.0

I2(ui(n − k), y(n))

Figure 5.11: The GMI as a function of the input variable ui and a specific
time lag k.

In Figure 5.11, the result of the GMI analysis of the available process data
is depicted. It can clearly be observed, that the GMI values adopt only two
local maxima throughout the entire range.
The first maximum can be located for variable u2 at time lag k = 10 and
the second can be found for variable u4 and time lag k = 20. However, for
all other variables and time lags, no significant change of the GMI values
can be observed. This results correspond exactly to the definition of the
nonlinear dynamic process in Equations 5.29.

Finally, by assuming that no a priori information about the internal struc-
ture of the dynamic process existed, it has to be concluded from the above
results to omit the variables u1 and u3, while retaining the variables u2

and u4. Furthermore, when concerning the temporal aspect of the accom-
plished GMI analysis, one should also conclude to employ the delayed input
sequences u2(n− 10) and u4(n− 20) for further process identification and
modelling purposes.

85

5 Measuring the Information Flow for Feature Selection

In this context, another question of particular interest is how the GMI, as
a measure of statistical dependency, compares to the well known correla-
tion analysis. As a matter of fact, the GMI already revealed exactly the
structural- and temporal dependencies with which the nonlinear dynamic
process had been designed.

1
10

20
30

40

[k/lags]

1
2

3
4

[i/ui]

-1.0

-0.5

0.0

0.5

1.0

R(ui(n − k), y(n))

Figure 5.12: Spearman’s rank correlation coefficients as a function of the
input variable ui and a specific time lag k.

Figure 5.12 depicts the result of the correlation analysis of the dynamic
process data from above. Without exception, it can be observed that the
correlation coefficients adopt values around zero for all combinations of
variables and time lags. When considering the properties of the mutual
information and the coefficient of correlation in Table 5.1, no conclusions
with respect to statistical dependency can be drawn from this outcome at
all. Hence, the correlation analysis would fail at providing the structural-
and temporal information, which is required for successful system identifi-
cation.

In the following, a neural system identification of the nonlinear dynamic
process described in Equations 5.29 will be conducted. It will be demon-
strated, how a Recurrent Multilayer Perceptron does perform with and
without the knowledge about the intrinsic properties of the dynamic pro-
cess, selected by the GMI. The Extended Kalman Filter, as described in

86

5.5 Analysis of Nonlinear Dynamic Process Inputs with the GMI

Section 4.3.4, will be employed as training algorithm for the recurrent neu-
ral structures. In both cases, the learning rate has been set to η = 0.001.

1 1000 2000 3000 4000

1.0

0.0

-1.0

ŷ(n)
y(n)

Figure 5.13: Neural identification result of a Recurrent Multilayer Percep-
tron RMLP-4-4-2-1 with Extended Kalman Filter training and
no prior input variable selection.

Figure 5.13 depicts the neural identification result obtained by a RMLP
with Extended Kalman Filter training. The network estimates are denoted
by ŷ(n), whereas the desired target output is referred to as < (n). In this
case, all available input sequences without any time delay have been em-
ployed for training. After several identification runs, this result had an
average squared error ASE = 0.801 with respect to the depicted test set
of 4000 patterns.
It can be observed, that the neural structure could only adapt to a certain
degree to the behavior of the process. In some instances, the RMLP does
respond poorly, in other instances it does not respond at all, in the required
way.

However, if the findings of the GMI analysis are employed, the neural iden-
tification result becomes quite accurate.

Figure 5.14 depicts the neural identification results after the removal of the
redundant variables u1 and u3. In this case, the obtained time delays have
been employed for the remaining input variables u2 and u4.
The test set had an average squared error of ASE = 0.002. It can be ob-
served that the quality of the identification significantly improved after the

87

5 Measuring the Information Flow for Feature Selection

1 1000 2000 3000 4000

1.0

0.0

-1.0

ŷ(n)
y(n)

Figure 5.14: Neural identification result of a Recurrent Multilayer Percep-
tron RMLP-2-4-2-1 with Extended Kalman Filter training.
The GMI has been employed for prior input variable selec-
tion.

redundant variables have been removed and the correct time delays were
applied.

In this section, we have employed the GMI for the analysis of nonlinear
dynamic process inputs. It turned out that the GMI is capable of revealing
the implicit nonlinear structural- and temporal dependencies without any
a priori knowledge about the underlying process.
However, if the intention is to employ the GMI for the analysis of real
technical systems, defective measurement setup might provide low-value
data. In other words, the acquired data might contain missing values due
to unreliable measurement devices. This constellation will be investigated
in the next section.

5.6 GMI-Analysis of Nonlinear Process

Data Sets with Missing Values

In this section, we will investigate how the GMI can cope with data con-
taining missing values. For this purpose, the nonlinear dynamic process
data in Section 5.5 is artificially modified to contain a certain percentage

88

5.6 GMI-Analysis of Nonlinear Process Data Sets with Missing Values

of missing values. The missing values will be uniformly distributed over
the input- and the output-sequences. In our case, the missing values in the
data set are represented as NaN, i.e. the IEEE arithmetic representation
for Not-a-Number.

1 10 20 30 40
[k/lags]1

2
3

4

[i/ui]

0.0

0.2

0.4

0.6

0.8

1.0

I2(ui(n − k), y(n))

Figure 5.15: The GMI as a function of the input variable ui and a specific
time lag k with no missing values.

In Figure 5.15, the results of the GMI analysis with no missing values is
depicted. As already presented in the Section 5.5, it can be clearly observed
that the GMI values adopt two local maxima. The locations of these max-
ima correspond perfectly to the definition of the nonlinear dynamic process
in Equations 5.29. However, in the next step we will investigate the effect
of missing values on the outcome of the GMI analysis.

Figure 5.16 depicts the analysis outcome when 10% of the data set have
been randomly labeled as missing values. It can be observed that the two
local maxima are still present at the correct locations. Although the height
of both maxima are slightly reduced, the temporal and structural depen-
dencies can still be clearly deduced from the analysis result.
This situation changes completely if the data set contains 20% missing val-
ues as shown in Figure 5.17. Here, the GMI is depicted as a function of the
input variable ui and a specific time lag k. Although the maxima, indicat-
ing the specific input variables and its according time lags, can be assumed
to be present, they are now unspecific and of diffuse shape. For instance,

89

5 Measuring the Information Flow for Feature Selection

1 10 20 30 40
[k/lags]

1
2

3
4

[i/ui]

0.0

0.2

0.4

0.6

0.8

1.0

I2(ui(n − k), y(n))

Figure 5.16: The GMI as a function of the input variable ui and a specific
time lag k with 10% missing values. The two local maxima
are still located at the correct position.

the time lag of variable u4 cannot be determined exactly from the analysis
outcome. It can only be assumed to lie between 10 and 30 time lags. Hence,
no clear statement concerning the temporal dependencies between u4 and
y can be concluded in this case.
In this section, the capability of the GMI to cope with missing values has
been investigated. For this purpose, the nonlinear dynamic process data
in Section 5.5 has been modified to contain missing values. The new data
sets contained 0%, 10% and 20% uniformly distributed missing values, re-
spectively. The modified data sets have been analyzed without the prior
employment of missing-data procedures.
It turned out that, the GMI could be calculated without problems even
though missing values were present in the data set. In the present case,
the GMI could even cope with up to 10% missing values. In other words,
the structural- and temporal dependencies of the underlying nonlinear,
dynamic process could be revealed even if 10% of the analyzed data set
content were missing values.
In order to understand why the GMI can cope with up to 10% missing val-
ues, we have to take a closer look at Algorithm B.2. This algorithm takes
arbitrarily distributed time series and transforms them into uniformly dis-
tributed sequences of relative rank numbers. According to the employed

90

5.6 GMI-Analysis of Nonlinear Process Data Sets with Missing Values

1 10 20 30 40
[k/lags]

1
2

3
4

[i/ui]

0.0

0.2

0.4

0.6

0.8

1.0

I2(ui(n − k), y(n))

Figure 5.17: The GMI as a function of the input variable ui and a specific
time lag k with 20% missing values. The two local maxima
are now unspecific and of diffuse shape.

analysis software, the missing values are represented as dedicated entries.
In our case, the missing values in the data set are represented as NaN,
which is the IEEE arithmetic representation for Not-a-Number. Since the
core of this transformation process is an implementation variant of a stan-
dard sorting function, the set of missing values is always assigned to the
set of highest values in the transformed sequence. Hence, when computing
the GMI these values act as mere constant inputs with no functional de-
pendency whatsoever and do not contribute to the final result.
The benefit of this property of the GMI is its intrinsic robustness against
missing values. In fact, if no preprocessing with respect to missing-data
is done, the GMI is able to cope with a rather large amount of missing
values. However, since there is no benefit without a drawback, the quality
of the GMI results deteriorates rapidly with an increasing percentage of
persistent missing values. Hence, in cases with more than approximately
10% missing values, the observation time should be increased for the com-
pensation of the missing data. If an extension of the observation time is
not feasible, the prior employment of dedicated missing-data procedures is
strongly indicated before the computation of the GMI.

91

5 Measuring the Information Flow for Feature Selection

92

6 Optimal Feature Selection

with the GMI

The classic supervised learning of neural structures, for instance, relies on
a training set comprised of input patterns, which are the realization of the
feature vector, and the according output patterns. After successful learn-
ing, the neural structure is expected to serve as an acceptable model of
reality which represents the behavior of the underlying mapping process
between input- and output samples. Thus, the quality and reliability of
the derived neural model is determined by the quality of the neural train-
ing set. This is in turn highly dependent on the amount of information
that is inherent in the selected input variables which comprise the training
set. One might assume theoretically, that more input variables or features
should also contain a higher amount of information and thus yield more
accurate models. However, reality provides us with many reasons why this
is not true in general [KS96].

First of all, the time requirements for neural algorithms grow dramatically
with the number of variables involved. In Section 7.2, it will be demon-
strated how the general mutual information is used for feature selection
and thus for dimension reduction of the neural input vector. In this well-
illustrated case, the focus was to meet the predefined timing limits while
performing real-time neural signal processing in an automotive environ-
ment with hard real-time requirements.
Furthermore, most learning algorithms can be viewed as performing a form
of biased estimation of the output variable distributions given a set of fea-
tures. If a large number of features is involved, the distributions are very
complex and of considerably high dimension. Unfortunately, in the real
world, we are always faced with the problem of limited data sources. This
fact makes it very difficult to obtain good estimates for the many proba-
bilistic parameters. This fact is also closely associated with the so called
curse of dimensionality, mentioned earlier in Chapter 3. It states the expo-

93

6 Optimal Feature Selection with the GMI

nential growth of hyper-volume as a function of the input dimensionality
and thus the ever-growing amount of required data to cover it.
Finally and most important, irrelevant or redundant features could cause
severe problems in this context. They may confuse the derivation of the
model by obscuring the information provided by a small set of truly rele-
vant features for the task at hand. Although, if all required information is
readily available, this constellation might yield essentially poor models.

The general mutual information, which represents a thoroughly investi-
gated concept of information theory, has been used as the central point for
the development of the feature selection method proposed in Section 6.2.3
and 6.3. The formulation of this feature selection strategy as so called
greedy algorithm, will be justified in Section 6.1.
The new point in this context is to transfer Shannon’s abstract model of a
symmetric and noise contaminated communication channel to the problem
of feature selection. The leading thought is the separation of important
from unimportant features by measuring the abstract flow of information
between input- and output variables directly with the GMI. While the
PCA and the ICA in Chapter 3 inherently imply a linear model for the
dependence of the input variables among each other, the GMI goes beyond
this assumptions. Different from the PCA or the ICA, the GMI is capable
to detect the linear- as well as the nonlinear dependencies between the
input and the output variables. This small but rather significant difference
qualifies the GMI as a versatile method for feature selection, as we will see
in Chapter 7.

6.1 Theoretical Framework of Optimal

Feature Selection

This section is dedicated to unveil the theoretical aspects which are behind
the claim of an optimal feature selection.
In the first part of this section, the theoretical framework for the backward
elimination strategy is presented. It employs the concept of the so called
Markov Blankets, as provided in [KS96], to prove the efficacy of the back-
ward elimination algorithm. However, the second part of this section will
be concerned with the forward selection strategy. In order to justify the
formulation of this selection strategy as a greedy algorithm, its monotone
convergence property will be investigated.

94

6.1 Theoretical Framework of Optimal Feature Selection

6.1.1 Effectiveness Considerations of Backward

Elimination

In the sense of time series analysis, a data instance is described as an

assignment of values ~f = (f1, ..., fn) to a vector of random variables or

features ~F = (F1, ..., Fn). It is assumed, that each data instance is drawn
independently according to some probability distribution over the feature

space. The assignment of values ~f to the features ~F are described through

the probability distribution P (~F = ~f).
A classifier maps the above mentioned data instances to a number of possi-

ble classes C = {c1, ..., cl}. Optimistically, the feature vector ~F will fully de-
termine the mapping from feature space to class space. Unfortunately, this
is rarely the case. Since we usually do not have the right feature set to make
this a deterministic decision, a probability distribution is used to model this

classification function. The conditional probability P (C = ck | ~F = ~f) de-
scribes the classification function which associates the data instances to
the according classes.

Let us now consider the effect of feature space reduction on the distribution

P (C = ck | ~F = ~f). Let the components in a reduced feature vector ~G be

some subset of the components in ~F and let ~f~G denote the realizations of
the variables of this new feature vector. In the original feature space, the

distribution describing the classification function is P (C = ck | ~F = ~f). In

the reduced feature space, this distribution becomes P (C = ck | ~G = ~fG).
From a theoretic viewpoint, the goal of dimension reduction or feature

selection is on the one hand to select ~G in such a way that the above dis-

tributions are as close as possible. On the other hand, the dimension of ~G
has to be as small as possible and as large as necessary to solve the task
at hand.

In this theoretic framework, the cross-entropy, also known as the KL-
distance [KL51] is considered as the distance measure between the two
distributions. Thus, the dimension reduction can be seen as identifying a

lower dimensional feature vector ~G, which causes the least loss of informa-

tion when considering the original feature vector ~F as the baseline.

95

6 Optimal Feature Selection with the GMI

The previously mentioned the cross-entropy as a distance measure between
two distributions is defined to be

δG(~f) =
X
x∈Ω

µ(x) log
µ(x)

σ(x)
, (6.1)

where µ = P (C = ck | ~F = ~f) and σ = P (C = ck | ~G = ~fG). The set of
elementary events, from which the classes are drawn, is denoted by Ω.

In order to compare one feature vector ~G to another, we must first inte-

grate the values δG(~f) over the different data realizations ~f . Unfortunately,

some vectors ~f are more likely to occur than others. To avoid making
larger mistakes in certain cases, the distance measure is weighted with this

probability. The new feature vector ~G is then obtained by minimizing the
expression

∆G =
X

~f

P (~f) δG(~f). (6.2)

Clearly, the feature vector that minimizes this quantity is simply ~F . This
fact suggests the use of a so called backward elimination strategy, which

starts out with all available features ~F . In each iteration, a specific feature
Fi is eliminated that allows to stay as close to the original distribution
as possible. The fact, that once a feature has been eliminated, there is no
need to reconsider it again in later iterations, is shown with the concept
of Markov Blankets. As a consequence of this, the backward elimination
strategy can be formulated as a greedy algorithm without loss of gener-
ality. A detailed outline of the backward elimination strategy is given in
pseudo-code in Appendix B.2.
However, the computation expenses of the ∆G grow exponentially in the
number of features and available data instances. Furthermore, the itera-

tively obtained distribution P (C | ~G = ~fG) cannot be compared directly

to the baseline distribution P (C | ~F = ~f), since it is usually not avail-
able. This fact renders the backward elimination approach infeasible for
most high-dimensional technical problems e.g. as the one described in Sec-
tion 7.2.3.

Definition 6.1 (Conditional Independence)
Let A, B and X be arbitrarily distributed random variables. The two
random variables A and B are defined to be conditionally independent, if
P (A = a | X = x,B = b) = P (A = a | X = x).

96

6.1 Theoretical Framework of Optimal Feature Selection

Intuitively, features that are conditionally independent provide the least
additional information. This fact results in a small increase in ∆. Thus,
a conditionally independent feature Fi can be removed without increasing
the distance from the baseline distribution.
Since it is impractical to test for conditional independence, a new formula-
tion of the problem, employing the concept of so called Markov Blankets,
points the way to a possible solution.

Definition 6.2 (Markov Blanket)
Let F and C be a set of features and a set of classes, respectively. Further-
more, let M = F \ {Fi} be some set of features which does not contain Fi.
The set M is a Markov Blanket for Fi, if Fi is conditionally independent
of (F ∪ C) \M .

The Markov Blanket condition is stronger than the formulation of condi-
tional independence. It requires that a Markov Blanket M subsumes not
only the information that Fi has about a class C, but also of all other fea-
tures. The intention of the backward selection process is to remove those
features for which a Markov Blanket can be found within the set of remain-
ing features. It can be shown, that features judged as unnecessary based
on this criterion remain in fact unnecessary during the rest of the selection
process.
Assume that a feature Fi has been removed on the basis of an existing
Markov Blanket M . In some later iteration, another feature Fj ∈ M will
be removed. In general, the removal of Fj might now render Fi relevant
again. The following theorem states that this is not true.

Theorem 6.1 (Optimal Backward Elimination)
Let G be a set of features. If Fi /∈ G and Fj ∈ G, i 6= j and both have
Markov Blankets in G. Then Fi has also a Markov Blanket in G \ {Fj}.

The proof of this theorem is based on the basic independence of probabil-
ity distributions, as described in [Pea88]. For a detailed description of this
proof, the reader is primarily referred to [KS96].

Theorem 6.1 delivers a very important statement concerning the optimal
backward elimination strategy. A feature, that has been considered irrel-
evant and removed on the basis of an existing Markov Blanket, does not
have to be reconsidered again. Thus, the Markov Blanket criterion only
removes those features that are truly unnecessary. Furthermore, this con-
cept removes all attributes that are irrelevant for the present task and
it removes all redundant attributes which are already explained through

97

6 Optimal Feature Selection with the GMI

other attributes of the feature set. Anyway, the concept of Markov Blan-
kets has been introduced in [KS96] against the background of the backward
elimination strategy to prove its effectiveness. In this context, one major
drawback exists. In the rather realistic case, where some features obscure
the information provided by some other features, one would start the elim-
ination process with the full feature set. The elimination process is proved
to deliver optimal decisions, but the starting point might be considerably
disadvantageous. As we will see later, backward elimination will also ren-
der infeasible for high-dimensional input spaces. An alternative approach
to overcome this severe drawbacks is the forward selection strategy. Its
theoretical aspects will be addressed in the next section. This includes also
a proof of the monotone convergence property of the forward selection in
combination with the general mutual information.

6.1.2 Proof of the Monotone Convergence Property

of Forward Selection

As mentioned before, an alternative and feasible approach for the back-
ward elimination algorithm, is the forward selection strategy. In forward
selection, rather than starting with the full feature set and eliminating ir-
relevant features, relevant features are added to an initially empty set. In
this case, the GMI is used to maximize the information gain instead of
minimizing the information loss.

In other words, the goal of forward selection is to select a feature set
ξM = {ξr1 , ..., ξrM

} from a superset of N features, that provides the max-
imum information available for the mapping between input space ξM and
the according output space η. A detailed description of the forward selec-
tion strategy can be found in Section 6.2.3.

In order to justify the formulation of this selection strategy as greedy algo-
rithm and prove its convergence, its monotone convergence property will
be shown in the following:

Let I
(m)
2 = I2({ξr1 , ..., ξrm}, η) , m = 1, ...,M , M ≤ N be the value of the

mutual information in the m-th iteration of the forward selection process.

Since I
(m)
2 cannot exceed the value of the global optimum I

(opt)
2 , the se-

quence of mutual information values is bounded above and I
(m)
2 ≤ I

(opt)
2

holds for all m = 1, ...,M . The global optimum I
(opt)
2 is obtained by per-

98

6.1 Theoretical Framework of Optimal Feature Selection

forming an exhaustive search over all possible feature combinations, as
described in Section 6.2.1.

Without loss of generality, there exists a suboptimal upper bound I
(conv)
2 ≤

I
(opt)
2 for the sequence I

(m)
2 . Let us remember that any monotonically in-

creasing sequence with an existing upper bound is convergent. Since the
sequence of mutual information values has a defined upper bound, its con-

vergence can be proved by showing the monotony I
(0)
2 ≤ I

(1)
2 ≤ ... ≤ I

(m)
2 ≤

... ≤ I
(M)
2 , M ≤ N of the sequence values.

With the above definitions, the following holds:

I
(m+1)
2

I
(m)
2

=
I
(m)
2 +G(m)

I
(m)
2

= 1 +
G(m)

I
(m)
2

≥ 1, (6.3)

where

G(m) = max
k=1,...,N

(I2({ξr1 , ..., ξrm} ∪ {ξk}, η) − I2({ξr1 , ..., ξrm}, η))

=

�
0 : I2({ξr1 , ..., ξrm} ∪ {ξk}, η) ≤ I2({ξr1 , ..., ξrm)

> 0 : else.
(6.4)

The information gain G(m) in the m-th iteration of the selection process
cannot be negative, since for k = 1, ..., N , it always exists at least one vari-
able ξk ∈ {ξr1 , ..., ξrm}, which has already been selected. Since this variable
is in the set of previously selected features, no further information is ob-
tained with this variable and the information gain G(m) becomes zero. In
all other cases, the maximum achievable information is greater than zero.
This fact implies the monotony of the sequence of mutual information val-
ues. In conjunction with the existence of an upper bound, the convergence

of the sequence I
(m)
2 can be inferred and the following holds:

lim
n→N

I
(n)
2 = I

(conv)
2 . � (6.5)

The monotony of the sequence of mutual information values justifies also
the formulation of the forward selection strategy as greedy algorithm. Since

99

6 Optimal Feature Selection with the GMI

the mutual information can only increase from iteration to iteration, a lo-
cally made decision does not have to be reconsidered again in later iter-
ation steps. Either more information is obtained or the iteration process
converges.

However, to what extend the suboptimal solution I
(conv)
2 reaches the global

optimum I
(opt)
2 is a different matter. In the next section, it will be explicitly

demonstrated how the forward selection strategy in combination with the
GMI provides a clean and straightforward solution for real-world feature
selection problems. It will be shown, that the obtained results from this
selection strategy are very close to the global optimum solution.
Since this selection strategy also maintains computability on a large scale,
there is a clear trade-off between the rather small disadvantage of a sub-
optimal solution and the computational expenses. This fact clearly favors
the forward selection strategy versus the backward elimination algorithm.

6.2 Assessing Feature Selection Strategies

with the GMI

It has already been mentioned in Section 6.1, that the choice of a feature
selection strategy is assumed to have a considerable influence on the qual-
ity of the obtained outcomes, i.e. the information content of the selected
features. To reveal the extent of this influence on the basis of real measur-
ing data, the backward elimination- and the forward selection strategy are
both applied to industrial glass melting process data.

Glass melting

process

x1(n)

x16(n)

y1(n)

y4(n)

Figure 6.1: System model industrial glass melting process.

With respect to the information content measured by the GMI, the results
of both selection strategies are finally compared to the global optimal so-
lution.

100

6.2 Assessing Feature Selection Strategies with the GMI

Figure 6.1 depicts an abstract system model of the previously mentioned
industrial glass melting process. The variables xi are the inputs of the
open-loop process control. The output variables yj represent the response
from the system due to the applied inputs. As a matter of course, the
glass production process itself is kept a company secret of Schott Glass
AG. Hence, the available measuring data1 has been scaled and biased to
prevent its technical interpretability. Since the GMI method does not nec-
essarily dependent on the interpretability of data as physical quantities,
this does not imply any restriction to the applicability of the GMI method
in this case.

However, the focus of this section is set on the various strategies to iden-
tify the features, i.e. a subset of the input variables, that have significantly
high information content with respect to the observable system response.
During the feature selection process, irrelevant or redundant features are
removed and the selected variables are ordered due to their information
content. The resulting feature set is then employed to construct a training
data set for further neural process identification.

Figure 6.2 depicts the qualitative characteristics of the glass melting pro-
cess data. The data has already been preprocessed to remove outliers and
to fill up data gaps due to failures in the employed measuring equipment.
Finally, Savitzky-Golay Filtering has been applied to smooth out points
of discontinuity generated by the insertion of missing values. The data set
contains 16 input- and 4 output signals, while each signal is comprised of
16000 data points. The sampling interval between the data points is 30
minutes.

The following sections are dedicated to the description of various ways of
feature selection on the basis of the general mutual information, which has
been extensively described in Chapter 5. The investigations of the various
feature selection strategies are performed with the data set depicted in
Figure 6.2.

1The glass melting process data has been made available to the public by Schott
Glass AG in the context of the ”EUNITE 2004” competition.

101

6 Optimal Feature Selection with the GMI

(a) x1(n) (b) y1(n) (c) y2(n)

(d) x16(n) (e) y3(n) (f) y4(n)

...

Figure 6.2: Qualitative characteristics of the preprocessed glass melting
data. (a), (d) First and last of the 16 inputs to the glass melting
process. (b), (c), (e), (f) Response from the system due to the
applied inputs.

6.2.1 Global Selection Strategy

As previously mentioned, various feature selection strategies are feasible
while performing data analysis with the GMI method. In this section, the
global selection strategy is combined with the GMI and applied to the glass
melting process data depicted in Figure 6.2.
Since the global selection strategy is a so called brute force method, it
does always find the global optimum, with respect to the combination of
input variables with maximum GMI value among all other possible con-
stellations. However, the price to achieve this optimal solution has to be
paid by means of tremendous computational expenses.

Suppose a feature subset containing D variables has to be selected form a
superset of N input variables, then the number of distinct combinations of
input variables is

G(N,D) =

DX
k=1

N

k

!
. (6.6)

102

6.2 Assessing Feature Selection Strategies with the GMI

In the case of our glass melting process data, the realizations of the input
variables imply time dependence with respect to the process output. To
account for such time dependencies, each input variable might be asso-
ciated with an individual time lag before GMI analysis is applied. Since
every constellation of variables has to be combined with all possible time
lag constellations, the total number of distinct combinations in this case
extends to

G(N,D, T) =
DX

k=1

N

k

!
(T + 1)k, (6.7)

where N refers to the number of available input variables from which the
D dimensional subset has to be selected. The maximum number of consid-
ered time lags for all variables is expressed by T .

It can be seen very easily in Table 6.1, that even for considerably small
values for N , D and particularly for T , the number of combinations dra-
matically increases. Table 6.1 depicts the rapidly increasing combinatorial

Feature Set Feature Subset Time GMI estimated
Dimension Dimension Lags Values Flops

N D T G ⌊F ⌋

16 1 0 16 16.80 · 109

16 2 0 136 142.80 · 109

...
...

...
...

...
16 7 0 26332 27.65 · 1012

...
...

...
...

...
16 16 0 65535 68.81 · 1012

16 1 1 32 33.60 · 109

...
...

...
...

...
16 7 1 2150720 2.26 · 1015

...
...

...
...

...
16 7 48 7.87 · 1015 8.26 · 1024

Table 6.1: Combinatorial complexity of the global selection strategy as a
function of the dimension of the feature set-, the feature subset
and the maximum number of time lags.

103

6 Optimal Feature Selection with the GMI

complexity by means of the number of input variable combinations. The
number of variable combination, and thus the number of required GMI
values, is a function of the feature set dimension N , the feature subset
dimension D and the maximum number of considered time lags T . To give
an impression for the remarkable computational complexity, a lower limit
F for an estimate of the required number of floating point operations is
additionally listed in the last column of the table.
The emphasized lines in Table 6.1 show situations of particular interest
for the applicability of the global selection strategy. The situation where
N = 16, D = 7 and T = 0 turned out to be the limit of practical com-
putability for the global selection strategy on currently available standard
personal computers. If time dependencies between inputs and outputs also
have to be considered in the analysis of the process data, the computa-
tional complexity dramatically increases.
For the similar parameter constellation N = 16, D = 7 but this time with
T = 1, the computational complexity with respect to the required GMI cal-
culations rises from 26332 to 2150720. In case of the available glass melting
process data, the consideration of at most one time lag is not really useful
for the identification of potential time dependencies in the data set as a
whole. A more realistic setting for the identification of time dependencies
would be N = 16, D = 7 and T = 48. On behalf of the available process
data, this would allow the analysis of time dependencies ranging back up to
24 hours. However, this implies instantly the necessity for the computation
of 7.87 ·1015 GMI values, which is by far beyond any practical computabil-
ity.

In any case, as a consequence of this immense complexity, the identification
of time dependencies renders impossible while employing the global selec-
tion strategy. Instead of that, the optimum feature subsets for the settings
N = 16, D = 1, ..., 7 and T = 0 are calculated for each output variable.

104

6.2 Assessing Feature Selection Strategies with the GMI

xi1 xi2 xi3 xi4 xi5 xi6 xi7 I2(x, y1)

1 1 0 0 0 0 0 0 0.1342
...

...
...

...
...

...
...

...
...

23259 3 4 6 7 9 10 11 0.6138
23260 3 4 6 7 9 10 12 0.6308
23261 3 4 6 7 9 10 13 0.7333
23262 3 4 6 7 9 10 14 0.6547
23263 3 4 6 7 9 10 15 0.6493

...
...

...
...

...
...

...
...

...
26332 10 11 12 13 14 15 16 0.3724

Table 6.2: Indices of the input variable constellation around the maximum
GMI value I2(xglob, y1) among all possible input combinations.

In Table 6.2, the indices of the input variable constellation and their re-
sulting GMI value I2(x, y1) are listed. The set of input variables x in the
expression I2(x, y1) is defined as x = {xik

|ik 6= 0, k = 1, ..., D}, where D
is the cardinality of the feature subset, which contains the chosen variables
from the N dimensional superset of all features. In this particular case, the
number of variables to be chosen is restricted to D = 7, due to the previ-
ously mentioned computational limitations. Finally it turned out, that for
the output y1 the input variable combination x3, x4, x6, x7, x9, x10, x13

has the highest GMI value among all other combinations consisting of up
to seven variables.

In the context of optimal feature selection, the selected feature subset es-
sentially has to fulfill two requirements. On the one hand, the selected
variables ideally contain the maximum amount of information. Since the
input variables that maximize the GMI are chosen from all possible combi-
nations, this demand is of course implicitly met when employing the global
selection strategy.
On the other hand the set of selected variables has to be as small as possi-
ble, but also as large as necessary to solve the underlying problem. If too
few variables are selected, important information might be unnecessarily
ignored. On the opposite, any additional or redundant variable might ob-
scure the information of previously selected features.

105

6 Optimal Feature Selection with the GMI

0.0

0.2

0.4

0.6

0.8

1.0

[I2/%]

1 2 3 4 5 6 7
[d/Dim. Subset]

I2(xglob(d), y1)

Figure 6.3: The maximum GMI I2(xglob(d), y1) as a function of the maxi-
mum number of selected variables in the feature subset.

In Figure 6.3, the maximum GMI values I2(xglob(d), y1) are depicted as a
function of the cardinality d of the selected feature subset.
The set of input variables xglob(d) maximizes the expression I2(xglob(d), y1)
dependent on d. In conjunction with Table 6.2 it is defined as

xglob(d) = argmax
vi

[I2(vi, y1)] , (6.8)

where vi = {xik
| ik 6= 0, k = 1, ..., d}, i = 1, ..., G(N, d).

It can be clearly observed that, the maximum GMI values at least tend
asymptotically to an upper bound, which is specific to the underlying data.
This fact obviously implies that at a certain point, no further information
gain can be achieved when adding more variables to the subset of features.
This means that, the most significant variables have already been selected
at this point. In the example above, this point is reached at d = 7. It de-
fines the tradeoff between the number of input variables and the highest
obtainable information content. Hence, it also defines the optimal number
of input variables where no information is omitted and no variables are
unnecessarily enclosed. This specific example shows that the upper bound
of the GMI is already reached when employing the seven input variables
particularly emphasized in Table 6.2.
In Appendix C.1, the computation results for all output variables y1, y2,
y3 and y4 can be found. Figure C.1 also summarizes the curves of the max-
imum GMI values for all output variables.

106

6.2 Assessing Feature Selection Strategies with the GMI

Finally, it can be concluded that the global selection strategy does defi-
nitely find the unique optimal combination of input variables with respect
to the information content measured by the GMI. However, this goal is
attained at the price of disproportional high computational expenses. Due
to the immense combinatorial complexity, the identification of potential
time dependencies within the available glass melting data set turns out to
be infeasible. As another consequence of the combinatorial complexity, the
global selection strategy is not applicable to feature selection from large
sets of input variables, such as shown in Section 7.2.3.

In the following, the backward elimination- and the forward selection strat-
egy, both with considerable reduced computational requirements, are inves-
tigated. Since both strategies are assumed to provide suboptimal solutions,
their outcomes are compared to their corresponding results of the global
selection strategy. It will turn out that the assumedly suboptimal solu-
tions, in particular from forward selection, are absolutely comparable to
the optimal results from the global selection strategy.

6.2.2 Backward Elimination Strategy

Different from global selection, the backward elimination strategy does not
find the combination of variables that implies the global optimum with
respect to the GMI. In fact, it produces a suboptimal solution, which is
stated by KOLLER and SAHAMI [KS96] to be relatively close to the global
optimum.

If we assume N input variables, the first iteration requires (1 + N) cal-
culations of the GMI, one with the full variable set and N calculations,
each with one temporarily removed variable. Since the variable with the
smallest information gain has already been removed in the preceding step,
the second iteration requires just (N − 1) GMI calculations and so forth.
Because the selection of the last variable is trivial, the last GMI calculation
might be omitted.

Hence, the number of required GMI calculations for the backward elimi-
nation strategy is

G(N) = 1 +

NX
k=1

k, (6.9)

107

6 Optimal Feature Selection with the GMI

where N refers to the number of available input variables. Compared to
the global selection strategy, the number of required GMI calculations is
significantly reduced.

0.0

0.2

0.4

0.6

0.8

1.0

[I2/%]

1 2 4 6 8 10 12 14 16
[d/Dim. Subset]

I2(xglob(d), y1)

I2(xback(d), y1)

Figure 6.4: The GMI of the chosen variables from backward elimination
I2(xback(d), y1) and the global maximum I2(xglob(d), y1) as a
function of the number of selected variables in the feature sub-
sets.

In Figure 6.4, the GMI values of the chosen variables from backward elimi-
nation I2(xback(d), y1) are compared to the maximum GMI I2(xglob(d), y1).
Both GMI curves are functions of the number of selected variables d in the
feature subsets and are computed on the basis of the data set depicted
in Figure 6.2. Due to the previously mentioned combinatorial complexity,
the curve for the global selection outcome covers only seven dimensions. It
can be observed that both selection strategies show the same quantitative
curve progression. Expectedly, the features that had been identified with
the backward elimination strategy show less information content that those
from global selection.
In Appendix C.2, the results for all output variables are depicted. How-
ever, some of the results are very close to the global optimum while others
show a rather large deviation from the global optimum. This leads to the
conclusion, that the quality of the results of backward elimination is rather
unstable and might be highly dependent on the character of the underly-
ing data. From the practical viewpoint of optimal feature selection, this
disadvantage is undesirable.

108

6.2 Assessing Feature Selection Strategies with the GMI

Besides that, another drawback of the backward elimination strategy is,
that it has to start out with the maximum dimension and run through
all iterations before the final result can be obtained. In particular, this
could cause considerable restrictions when analyzing high dimensional in-
put data, such as demonstrated in Section. 7.2.3. In order to avoid such
imponderability, the forward selection strategy has to be considered as a
feasible alternative approach.

109

6 Optimal Feature Selection with the GMI

6.2.3 Forward Selection Strategy

In the case of our glass melting process data, feature selection is termi-
nated if a previously defined threshold for the total information content
is reached. In Figure 6.5, the GMI values of the chosen variables from

0.0

0.2

0.4

0.6

0.8

1.0

[I2/%]

1 2 4 6 8 10 12 14 16
[d/Dim. Subset]

I2(xglob(d), y1)

I2(xforw(d), y1)

Figure 6.5: The GMI of the chosen variables from forward selection
I2(xforw(d), y1) and the global maximum I2(xglob(d), y1) are
depicted as a function of the number of selected variables in
the feature subsets.

forward selection I2(xforw(d), y1) are compared to the maximum GMI
I2(xglob(d), y1). In this case, it can be clearly observed that, the result
of forward selection is identical to the global optimum solution obtained
through the global selection strategy. In Appendix C.3, the results for all
output variables y1, y2, y3 and y4 are compared to the optimum solution.
Figure C.7, depicts a slight deviation of the forward selection solution from
the global optimum. However, in contrast to the backward elimination
strategy, forward selection comes up with reliable good solutions, which
are remarkably close to the global optimum. The constant high quality of
the forward selection strategy can be clearly seen by comparing the results
for output variables y1 and y4 with its equivalents from backward elimina-
tion.

The high quality of the results and the significantly reduced combinato-
rial complexity of the forward selection strategy, facilitates the previously
mentioned identification of process immanent time dependencies.
Since forward selection can be also terminated if a predefined number D of

110

6.2 Assessing Feature Selection Strategies with the GMI

features has been selected from the set of available variables, the number
of required GMI calculations is

G(N,D, T) = D ·N · (T + 1), (6.10)

where D ≤ N is again the dimension of the feature subset, N refers to the
number of available input variables and T denotes the maximum number
of time lags to be considered.
Since the forward selection strategy starts out with an empty feature set
and accounts for the information gain obtained by adding new features,
there is no need to run through the complete iteration process like in
backward elimination. The iteration process could be terminated after
the predefined number of features has been selected. Furthermore, as a
consequence of the reduced computational expenses, the forward selection
strategy provides also the possibility to analyze the occurrence of time de-
pendencies in the underlying data.

This section revealed, that forward selection is a feasible and robust alter-
native to the global- and backward elimination strategy, while maintaining
computability on a large scale. It turned out that the results from forward
selection are constantly close to the global achievable optimum solution.
This renders forward selection feasible for the analysis of high dimensional
data such as accomplished in Section 7.2.
In Section 6.3, the forward selection strategy will be employed for the an-
alysis of our glass melting process data, which has already been introduced
at the beginning of this chapter. The input variables, which have been se-
lected based on an established information theory concept, will be further
used for the construction of neural training set. Finally, it will be demon-
strated in Section 7.1, how these training sets can be applied to perform a
neural identification of the glass melting process behavior.

111

6 Optimal Feature Selection with the GMI

6.3 Feature Selection employing Forward

Selection and the GMI

For different selection strategies, their performance and quality issues have
been investigated in Section 6.2. It turned out, that the forward selection
strategy provided the best results with respect to quality, while maintain-
ing computability on a large scale [HF01]. In the following, this selection
strategy will be employed to accomplish optimal feature selection from the
previously introduced glass melting process data. In Chapter 7, it will be
demonstrated how the GMI based feature selection can easily be employed
for further types of technical problems.

6.3.1 Forward Selection without the consideration of

Time Lags

As mentioned earlier in this chapter, the forward selection strategy can be
applied in multiple ways for feature selection. In Section 6.2.3, the forward
selection strategy has been described in a rather formal way. In order to
demonstrate how this strategy can be brought to life, feature selection is
initially performed without the intention of identifying time dependencies.
In a second step, the time-dependent aspect will also considered in the
analysis of the process data.

When considering the forward selection procedure as described in Equa-
tion 3.40, it is quite clear that the selection of variables is performed by
passing through multiple iteration loops. Figure 6.6 depicts the situation
at the beginning of the first iteration for output variable y1. At this time,
the subset of selected features is still empty. Since the goal is to determine
the variable providing the maximum information gain in each iteration,
the GMI values I2({xi(n)}, y1(n)) are calculated for i = 1, ..., 16, i.e. for
all available input variables. After all values have been calculated, the in-
put variable with the highest GMI is selected. This variable will then be
used as a fixed input for all GMI calculations in the succeeding iterations.
Figure 6.7 illustrates the outcome of the first iteration cycle with respect
to the general mutual information. The so called GMI function plots the
GMI values against the variables xi, which have been consecutively added
to the initially empty feature subset. In this case, the variable x7 provides
the highest GMI value and is therefore the first variable to be selected.

112

6.3 Feature Selection employing Forward Selection and the GMI

1

...

16000

x1 x16 y1

{xi(n)}

· · ·

· · ·

· · ·

· · ·

Figure 6.6: The first iteration of the feature selection procedure: Calcu-
lation of the GMI between the one dimensional time series
{xi(n)} and the time series of the output variable y1(n).

0.0

0.2

0.4

0.6

0.8

1.0
[I2/%]

1 2 4 6 8 10 12 14 16
[i/xi]

I2({xi}, y1)

Highest achievable
GMI value (0.74%)

Figure 6.7: The GMI function of the first iteration cycle for output variable
y1.

The dashed line in Figure 6.7 marks the maximum achievable GMI value
when employing the forward selection strategy, with respect to the first
output variable y1.

113

6 Optimal Feature Selection with the GMI

1

...

16000

x1 x7 x16 y1

{xi(n)}

· · ·

· · ·

· · ·

· · ·

Figure 6.8: The second iteration of the feature selection procedure: Cal-
culation of the GMI between the two dimensional time se-
ries {xi(n), {x7(n)}} and the time series of the output variable
y1(n) of the glass melting process.

Figure 6.8 depicts the situation at the beginning of the second iteration.
From now on, the previously selected variable x7 is a permanent input
to all GMI calculations. The GMI is now calculated between the two di-
mensional time series {xi(n), {x7(n)}} and the time series of the output
variable y1(n). After the GMI values have been calculated for i = 1, ..., 16,
the input variable with the highest GMI is again selected for the next
iteration and so forth. Thus, the number of selected features constantly
increases from iteration to iteration.

The result of the first six iteration cycles is depicted in Figure 6.9. Each
iteration produces a so called GMI function, which is used to determine the
input variable to be currently selected. As mentioned before, the iteration
process might be terminated if a predefined GMI threshold is reached. In
the case of our glass melting data, this threshold is defined to be 99% of
the maximum achievable GMI value for the current output variable.
However, one might ask for what reason this threshold has to be chosen at
all. In certain cases, the forward selection strategy tends to produce iden-
tical GMI functions, if the values approach the highest obtainable GMI
value. If this happens, an additional variable does not imply further infor-
mation gain and the iteration has to be stopped anyway. Otherwise the

114

6.3 Feature Selection employing Forward Selection and the GMI

0.0

0.2

0.4

0.6

0.8

1.0

[I2/%]

1 2 4 6 8 10 12 14 16
[i/xi]

Highest achievable
GMI value (0.74%)

...

I2({xi, {x7, x9}}, y1)

I2({xi, {x7}}, y1)

I2({xi}, y1)

Figure 6.9: The GMI functions of the first six iteration cycles for output
variable y1. The variables comprising 99% of the maximum
achievable GMI are: x7, x9, x13, x4, x6, x3.

same variable would be selected over and over again, which does not pro-
vide any information gain either. It could be observed that this behavior
did occur most frequently, if the GMI functions of consecutive iteration
cycles look very similar right at the beginning of the analysis.

In this context, another interesting fact has to be noticed. If we consider the
first three iterations as depicted in Figure 6.9, it can be observed that the
GMI functions I2({xi}, y1) and I2({xi, {x7}}, y1) only share one common
result, namely the GMI value I2({x7}, y1) of the recently selected variable
x7. Without exception, all GMI values of the second iteration cycle are
greater or equal to the maximum of the preceding iteration. This means
that any variable, apart from x7, will definitely come along with a positive
information gain.
However, a different situation can be observed if we consider the GMI func-
tions I2({xi, {x7}}, y1) and I2({xi, {x7, x9}}, y1). The latter points out the
variables x8, x11, x12 and x16, which would clearly cause a loss of informa-
tion if selected. As a matter of fact, this means that only specific variables
will imply a benefit with respect to information gain, while others do negate
already present information content.

When we recall again the outline of the backward elimination strategy, the
existence of such variables would result in an incorrect starting point for

115

6 Optimal Feature Selection with the GMI

the entire selection process. Remember that the bottom line of backward
elimination is the assumption of a proper starting point distribution. The
designated goal in each iteration is to stay as close as possible to this start-
ing point distribution, while removing variables. In other words, backward
elimination is trying to preserve as much of the initial information as pos-
sible, while starting out with the complete variable set and assuming it to
be the ideal constellation.
Although the optimality of the backward elimination strategy itself has
been established in Section 6.1, the starting point of the iteration seems
to be the critical factor. The prove in Section 6.1, only concludes that the
backward elimination strategy yields an optimal solution. However, this
does not take into account the information content of the initial variable
set. Since backward elimination always has to start out with a complete
set of variables, the total information content of this combination could be
considerably reduced due to the degradation effect described above.
Altogether, different from the forward selection strategy, this appears to
be the actual reason for the partially poor performance of backward elim-
ination in practical applications.

116

6.3 Feature Selection employing Forward Selection and the GMI

6.3.2 Forward Selection including Time Lags

It had been mentioned earlier in this chapter, that the forward selection
strategy can be applied in various flexible ways for data analysis. Besides
different termination conditions of the iteration process, the reduced com-
putational complexity, as denoted in Equation 6.10, also allows for the
analysis of time dependencies.
In this section, it will finally be demonstrated how forward selection in
combination with the GMI could be efficiently employed for the analysis
of data immanent time dependencies.

1 + k1

x1 x5 x16 y1

{x1(n − k1)} {x5(n − k5)} {y1(n)}

· · ·

· · ·

· · ·

· · ·

Figure 6.10: The second iteration of the feature selection procedure includ-
ing the analysis of time dependencies.

Figure 6.10 depicts the second iteration of the feature selection process,
which also includes the analysis of temporal dependencies. Compared to
the procedure illustrated in Section 6.3.1, data windows are employed now
to obtain variable specific time delays ki. More precisely, if the variable
xi is currently considered, the GMI is calculated while the data window
is moved over the corresponding time series with ki = 0, ..., T . If we have
a data set consisting of N input variables and a maximum number of T
time lags should be considered, a two dimensional GMI function contain-
ing N(T + 1) values is generated in each iteration. After calculation, the

117

6 Optimal Feature Selection with the GMI

variable–time lag combination that corresponds to the highest information
content is selected as the fixed input for the next iteration.

0 25
50

75
100

[t/days]0
5

10
15

[i/xi]

0.0

0.2

0.4

0.6

0.8

1.0

[I2/%]

Figure 6.11: The GMI as a function of the input variable xi and the variable
specific time lag t for output variable y1

Figure 6.11 depicts the GMI function of the first iteration of the forward
selection strategy. The GMI values I2({xi(n − ki)}, y1(n)) are computed
as a function of the input variable xi and a variable specific time lag ki.
In Figure 6.11, the time lags ki are already converted to reflect days in-
stead of arbitrary units. It can be observed that the variable x12 does not
show any temporal dependency over the analysis interval of 110 days. This
observation corresponds perfectly to the result obtained in Section 6.3.1,
where the time aspect has not been considered. In fact, the variable x12

has never been selected as a relevant feature by any of the investigated
selection strategies in this work.

It can further be perceived that the input variables x1 through x7 show
considerable GMI values with a lag of time of approximately 110 days. As
a matter of fact, variable x5 with a time delay of 109 days has been selected
as the most relevant feature in this iteration cycle.
Another interesting fact can be observed, when we draw our attention to
the cutting edge of Figure 6.11, where t = 0. Here, it can be seen that
the quantitative curve progression of the slice plane is very similar to the

118

6.3 Feature Selection employing Forward Selection and the GMI

according GMI function depicted in Figure 6.7. However, the difference
in the absolute values of the both curves is due to the limited length of
the data sequences. Under the rather unrealistic assumption of unlimited
data sequences and thus under the assumption of unlimited computing re-
sources, both GMI function would be identical.

0 25
50

75
100

[t/days]0
5

10
15

[i/xi]

0.0

0.2

0.4

0.6

0.8

1.0

[I2/%]

Figure 6.12: The GMI functions of the first six iteration cycles for input
variable y1. The GMI is now a function of the input variable
xi and the time lag t for output variable y1.

In the end, Figure 6.12 depicts the GMI functions of the first six iteration
cycles for the output variable y1. Like already presented in Figure 6.9, it
can be also observed here that the GMI functions become identical with a
growing number of iteration loops. Hence, this behavior could be succes-
sively reproduced, even when additionally analyzing the temporal aspects
of the glass melting process data.
In this context, it should be mentioned that the GMI function including
time lags cannot be compared with the maximum achievable GMI value.
The explanation for this has been presented in Table 6.1. It depicts the
effect of the tremendous combinatorial complexity, when it comes to the
analysis of temporal aspects. Hence, the global selection strategy could not
be applied to the glass melting process data in this case.

119

6 Optimal Feature Selection with the GMI

Iteration Variable Time Lag GMI Value
[i/xi] [t/days] [I2/%]

1 x5 109 0.22
2 x11 99 0.34
3 x13 68 0.44
4 x7 109 0.49
5 x6 15 0.52
6 x14 57 0.56

Table 6.3: The selected variables together with the according time lag for
output variable y1.

Since the selection process tends to produce identical GMI functions simi-
lar to the results depicted in Figure 6.9, the iteration has been terminated
after six loops. The selected variables and their according time lags are
assembled in Table 6.3. The additional analysis of the temporal aspects
revealed several long-term dependencies, which are likely to be induced by
the high specific heat capacity of glass and thus the notable thermal iner-
tia of the whole system. Hence, the results of the GMI analysis correspond
perfectly to the technical reality of the glass melting process.

In this section, it could be successfully demonstrated how feature selection
can be practically performed by employing the forward selection strategy
for the analysis of real process data.
In the first part of this section, the analysis has been performed with-
out the intention of identifying time dependencies within the underlying
process data. In the second part, the forward selection strategy has been
employed to reveal data immanent temporal correlation.
It turned out that the forward selection strategy has a wide range of ap-
plicability. The results lead to the conclusion that the forward selection
strategy, in combination with the GMI, is a stable and valuable method
for feature selection. In order to confirm the value of the proposed concept
of feature selection, application case studies will be performed later on.

120

7 Application Case Studies and

Proof-of-Concept

In this Chapter, two selected engineering problems are addressed with the
previously introduced generalized mutual information. The first task is the
analysis of the glass melting process. The second challenge is the efficient
reduction of a high dimensional data space in automotive engineering. Since
both tasks involve highly nonlinear behavior, the application of a nonlinear
analysis method is inevitable.

7.1 Neural Identification of the Glass

Melting Process

Throughout the ages, glass played an important role in the development of
human society, its art- and its technological history. In the stone age, man
used natural volcanic glass, also known as obsidian, as a cutting tool and to
produce weapons for hunting. Artificial glass was discovered, while acciden-
tally melting sand and natron. The oldest findings of artificially produced
glass, pearls from the graves of Egyptian kings, are dated about 3500 B.C.
The invention of the glass melting furnace about 200 B.C. revolutionized
the manufacturing of glass and gave way to the production of flat glasses.
Glass for basic ophthalmic applications was manufactured since 1250, and
simple microscopes and telescopes had been produced since the 17th cen-
tury.
In Benediktbeuern, the German Joseph Fraunhofer (1787-1826) sought to
bring glass melting under scientific control. He improved microscopes, tele-
scopes and survey instruments. In 1846, Carl Zeiss founded an optical shop
in Jena and in 1866, he started together with Ernst Abbe to design op-
tical instruments on a scientific basis. However, this scientific approach
required high-quality glass with constant and predictable optical proper-

121

7 Application Case Studies and Proof-of-Concept

ties. In 1879, Dr. Otto Schott performed systematic research and identified
various components and how they influenced the optical properties of tech-
nical glass. Since this time, the knowledge about glass production evolved
with remarkable speed and the ancient art of glass making rapidly changed
into an independent technical discipline.

In order to maintain the high quality of modern technical glass products,
the rather complex production process has been focused on as a subject for
investigation. In this context, the objective is to deduce a mathematical
model describing the input-/output behavior of the technical glass pro-
duction process from available observational data. The motivation behind
this ambition is the ability to predict the properties of the glass before its
production does even occur. This chapter is dedicated to the neural identi-
fication of the glass production process based on the outcome of a feature
selection strategy described in Section 6.3.

7.1.1 Industrial Glass Production

The physical definition of glass is a solid, uniform and amorphous mate-
rial. It is usually obtained when a suitably viscous molten material cools
down very rapidly, thus no regular crystal lattice could form. In its natural
form, glass is a transparent, relatively strong, hard-wearing and biological
inactive material. However, untreated glass is brittle and will break into
sharp shards. These properties can be modified, or even changed entirely,
with special additives or adequate heat treatment.

Common glass is mostly amorphous silicon dioxide (SiO2), which is basi-
cally the same chemical compound as found in natural quartz. The melting
point of pure silica is approximately 1800◦C. In order to reduce the melting
point to about 1000◦C, soda (Na2CO3) or potash (K2CO3) is added. How-
ever, soda makes the glass water-soluble. Since this is undesirable, calcium
oxide (CaO) is added to restore its insolubility. In Figure 7.1, the interior
of a glass melting tank is depicted. The picture was taken at Schott Glas
AG in Mainz, Germany and shows technicians accomplishing the periodic
maintenance of the tank after cooling down.

Figure 7.2(a) depicts the flow of the liquid glass in a glass melting tank.
The raw material enters the melting tank through the batch and melts as
it flows towards the center. It can be seen, that in the middle of the glass
tank, air is injected. This so called bubbling , yields a forced convection
which removes the parasitic inclusions from the melted mass. After pass-

122

7.1 Neural Identification of the Glass Melting Process

Figure 7.1: Glass melting tank after cooling down.

Batch

Bubbling

Wall

Outlet

(a) (b)

Figure 7.2: Technical specification of a glass melting tank. (a) Glass melt-
ing with embedded flow vectors. (b) Combustion chamber with
temperature distribution.

ing a wall which serves as a siphon the mass is ready for further processing
and leaves the tank through an outlet.

123

7 Application Case Studies and Proof-of-Concept

At both sides of the combustion chamber, the blowers are located which
provide the necessary heat for the melting process. Mostly a combination
of heavy oil and pure oxygen is used as energy source for the heating sys-
tem. Figure 7.2(b) gives an impression of the temperature distribution on
the surface of the molten glass. It seems noteworthy that the temperature
over the convection zone is significantly higher than in the rest of the com-
bustion chamber. Since the viscosity of glass is inversely proportional to
the temperature, parasitic air inclusions could leave the glass more easily
at this part of the surface.

Glass melting

process

in1(n)

in16(n)

out1(n)

out4(n)

Figure 7.3: System model of the glass melting process.

In Figure 7.3, an abstract system model of the previously described glass
melting process is outlined. The variables inj are the input signals for the
open-loop control of the glass melting process. The variables outk represent
the system response and can thus be used as direct quality measures of the
entire melting process. An overview of the glass melting process data is de-
picted in Figure 6.2. Since the technical details of the process are strictly
kept a company secret, the raw data set containing the input- and output
signals has been scaled and biased to conceal its technical interpretability.

7.1.2 Neural Process Identification

In this section, the outcomes of the forward selection strategy are em-
ployed to accomplish a neural identification of the glass melting process.
However, when additionally considering time lags, only approximately 30%
of the already rare measurement data could be used for the construction of
the neural training sets. Prior feasibility studies showed that such a small
amount of training patterns does entirely yield unsatisfactory neural iden-
tification results.

124

7.1 Neural Identification of the Glass Melting Process

As a consequence of the limited length of the available measurement data,
the consideration of time lags renders infeasible for the construction of
neural training sets and thus for subsequent training. Hence, the neural
identification has to be performed with the results obtained in Section 6.3.1,
that is without the consideration of time lags.

7.1.2.1 Neural Training Setup

After the selection of the relevant input variables has been completed, the
neural data sets are specifically constructed for each training run. For this,
the preprocessed glass melting process data, as depicted in Figure 6.2, is
divided into separate training- and test data sets.
However, the usage of a validation data set, i.e. the presentation of un-
known data during training, had been renounced for two reasons. First
of all, the previously mentioned limited data availability does not allow
a further reduction of the actual training data set. Secondly, we are not
primarily interested in the evaluation or the performance aspects of some
specific neural training algorithm.

1 15001 16000

Training Data
Test Data

Figure 7.4: Exemplary segmentation of the available process data into
training- and test data sets.

125

7 Application Case Studies and Proof-of-Concept

Hence, a separate validation data set would not generate any benefit with
respect to the main focus, which definitely lies on the proof-of-concept of
the proposed feature selection method based on the GMI.
Figure 7.4 exemplarily illustrates the segmentation of the available process
data into training- and test data sets. It can be observed that the training
set is comprised of the first 15000 patterns, whereas the last 1000 are used
as test data.

In order to perceive the effect of prior feature selection on the identification
results, the neural training is initially performed with all available input
variables. In a second step, the GMI selected input variables are employed
for training and the noticeable differences are discussed below.

Network Input Output Learning
Topology Variables Variables Algorithm

FF-16-16-4 x1, ..., x16 y1 EKF
FF-16-16-4 x1, ..., x16 y2 EKF
FF-16-16-4 x1, ..., x16 y3 EKF
FF-16-16-4 x1, ..., x16 y4 EKF

Table 7.1: Neural training setup for all available input variables.

Network Input Output Learning
Topology Variables Variables Algorithm

FF-6-16-4 x7, x9, x13, x4, y1 EKF
x6, x3

FF-8-16-4 x10, x6, x7, x11 y2 EKF
x12, x14, x8, x16

FF-7-16-4 x13, x7, x9, x2 y3 EKF
x8, x4, x16

FF-5-16-4 x6, x9, x7, x3 y4 EKF
x13

Table 7.2: Neural training setup for the GMI selected input variables.

In Tables 7.1 and 7.2, the employed network topologies, the input- and
output variables and the learning algorithms are listed. In all cases, the
learning rate has been set to 0.05 and the neural training was conducted
with the Extended Kalman Filter over 100 epochs.

126

7.1 Neural Identification of the Glass Melting Process

7.1.2.2 Identification Results

The neural identification results, with respect to the cases in Table 7.1,
are depicted in Figure 7.5. Since the measurement data has been biased
and scaled to prevent its technical interpretability, the output variables are
quantified with so called arbitrary units (a.u.).

[y1/a.u.]

ŷ1(n)
y1(n)

200

0

-200

-400

116000
(a)

[y2/a.u.]

ŷ2(n)
y2(n)

160

140

120

100

80

60

160001
(b)

[y3/a.u.]

ŷ3(n)
y3(n)

180

160

140

120

100

1 16000
(c)

[y4/a.u.]

ŷ4(n)
y4(n)

200

180

160

140

120

100
1 16000

(d)

Figure 7.5: Neural identification results with all available input variables:
(a) |µtest|=1.9, σtest=2.2, (b) |µtest|=16.3, σtest=9.5, (c)
|µtest|=0.4, σtest=4.5, (d) |µtest|=4.2, σtest=3.9

After convergence, the 15000 training patterns are presented to the neural
network along with the 1000 unknown test patterns. Assuming the test
data to be some hypothetical input sequence to the process, the response

127

7 Application Case Studies and Proof-of-Concept

of the neural network could be interpreted as a prediction of the glass
melting process. The quality of identification is measured by means of the
absolute value of the average approximation error |µtest| and its according
standard deviation σtest. As mentioned before, the test data ranges from
pattern 15001 to pattern 16000.

[y1/a.u.]

ŷ1(n)
y1(n)

200

0

-200

-400

16000 1
(a)

[y2/a.u.]

ŷ2(n)
y2(n)

160

140

120

100

80

60

1 16000
(b)

[y3/a.u.]

ŷ3(n)
y3(n)

180

160

140

120

100

1 16000
(c)

[y4/a.u.]

ŷ4(n)
y4(n)

200

180

160

140

120

100
1 16000

(d)

Figure 7.6: Neural identification results with the GMI input variables: (a)
|µtest|=1.1, σtest=2.2, (b) |µtest|=10.6, σtest=7.1, (c)
|µtest|=0.4, σtest=4.1, (d) |µtest|=2.1, σtest=3.2

Figure 7.6 shows the results of the identification with the GMI selected
input variables. It can be observed, that for all variables the average ap-
proximation error |µtest| and its standard deviation σtest decreased, when
employing the GMI selected input variables.

128

7.1 Neural Identification of the Glass Melting Process

The worst results, with respect to |µtest| and σtest, has been obtained for
variable y2 followed by y4. However, the best results can be observed for
outputs y1 and y3.

In this context, one might finally also raise the question about the perfor-
mance of the final system identification based on GMI feature selection,
in contrast to the results obtained during the EUNITE competition. The
following error function has been employed to evaluate and compare the
performance of the various EUNITE solutions:

Eeunite =
1

4

4X
i=1

100

N

NX
n=1

‖yi(n) − ŷi(n)‖

‖yi(n)‖
f(n), (7.1)

where
yi(n) is the desired output of variable i at time step n,

ŷi(n) is the estimated output of variable i at time step n,

N = 1000 is the length of the error integral and

f = 500
500+n

is an error weight function decreasing with the

number of time steps n.

[Eeunite/a.u.]

[Solution]

2.0

1.0

0.0
1 2 4 6 8 10 12 14 16 18 20

EUNITE

GMI

Figure 7.7: Overall errors of the best EUNITE solutions and of the result
obtained from the GMI selected input variables.

The error function in Equation 7.1 is directly applied to the test data rang-
ing from pattern 15001 to 16000. For the situation depicted in Figure 7.5,

129

7 Application Case Studies and Proof-of-Concept

this yields the overall error value Eeunite = 2.87. This measures the qual-
ity of the process prediction of 1000 time steps on the basis of all available
input variables. However, in the case of GMI selected input variables, the
prediction error Eeunite = 1.44 is obtained. This clearly demonstrates the
improvement in modelling by the employment of the GMI feature selec-
tion. In Figure 7.7, the overall prediction error of the solution obtained
from the GMI selected input variables is compared to the prediction er-
rors of the best EUNITE solutions. It can be observed that the solution
obtained from the GMI selected input variables is just among the best
20 solutions. It turned out that the quality of the obtained system model
could be considerably enhanced through the application of the prior GMI
feature selection process.

In order to demonstrate the wide applicability of this method, it is fur-
ther assigned for a fairly complex problem in automotive engineering. The
following section is concerned with the optimization of the so called neu-
ral combustion control for spark ignition engines, using the GMI driven
feature selection method. In a separate section, the quality of the neural
combustion model, which has been derived from the GMI selected features,
is compared to its PCA- and ICA pendents.

130

7.2 Neural Combustion Control in Automotive Environments

7.2 Neural Combustion Control in

Automotive Environments

7.2.1 Fundamentals of Motormanagement

In the second half of the 19th century, Nikolaus August Otto presented
the first gas powered four-stroke cycle engine at the 1878 World Fair in
Paris. This spark-ignition engine, which was later named after its inventor,
provided the possibility of converting chemically stored energy into kinetic
energy through internal combustion.
Sixteen years later, Rudolf Diesel patented the first internal combustion
engine that uses oil for fuel. It was later also named after its inventor.
The basic Diesel engine does not use a carburetor or an ignition system,
i.e. spark plugs, but injects diesel oil directly into the cylinders when the
piston has compressed the air so tightly that it is hot enough to ignite the
diesel fuel without a spark. Because a cold engine cannot ignite the diesel
fuel, glow plugs are used to heat the mixture.
Both revolutionary concepts differ in the way the combustion process is
initiated. In the case of Diesel engines, fuel is directly injected into the
combustion chamber which already contains compressed fresh air. In spark-
ignition engines, a fuel-air mixture is pulled into the combustion chamber.
After compression, the mixtures is ignited with an electrically generated
spark.
Since the investigations and results presented in this work are exclusively
related to the spark-ignition engine, this chapter intents to provide a short
survey of its technical aspects. The technical information on the func-
tional structure and management of spark-ignition engines are mostly taken
from [Bos94].

7.2.1.1 Spark-ignition Engine

For more than hundred years after Karl Benz first employed a combustion
engine for the propulsion of a vehicle, the two principles introduced above
are still prior art for the use in passenger cars, ships and aircrafts. While
a modern combustion engine cannot be compared to its beginnings, the
basic principle is still the same.
Figure 7.8 depicts the basic structure of a four-stroke cycle engine. In
the next section, the operation of this spark ignited is introduced while
describing the engine actuator system.

131

7 Application Case Studies and Proof-of-Concept

Piston

Connecting rod

Crankshaft

Venturi

Throttle

Injector Spark plug

Camshaft

Catalytic converter

Figure 7.8: Basic structure of a four-stroke spark-ignition engine.

Actuator System

The operation conditions of the considered type of combustion engines can
be influenced with the actuators drawn in Figure 7.8. Fresh air is brought
to the cylinders through the throttle plate, the venturi and the intake man-
ifold. At the end of the intake manifold, the fuel is injected and vaporizes
into the fresh air.
The first stroke down (intake stroke) pulls this fuel-air mixture into the
combustion chamber. In the second stroke up (compression stroke), all
valves are closed and the mixture is compressed. The third stroke down
(power stroke) comes about through the rapid burning of the compressed
fuel mixture. One might think that the fuel-air mixture explodes after ig-
nition, but further investigation showed that it rapidly burns. Finally, the
fourth stroke up (exhaust stroke) expels the exhaust gases from the cylin-
der. It entire process is also called the ”Otto cycle”.
In Figure 7.9, the working cycle of a four-stroke combustion engine is de-
picted. After the fuel-air mixture has been pulled into the cylinder (a) and
the valves have been closed, the mixture is compressed. Shortly before the
top dead center position (TDC) of the piston (b), the mixture is ignited.
The time of ignition is defined as the relative angle of the crankshaft before

132

7.2 Neural Combustion Control in Automotive Environments

intake stroke

(a)

compression stroke

(b)

power stroke

(c)

exhaust stroke

(d)

Figure 7.9: Working cycle of a four-stroke combustion engine.

the TDC position of the piston. From the volume Vh, when the piston re-
sides in the bottom dead center (BDC), and the volume Vc, when it resides
in the TDC, the compression ratio ε = (Vh + Vc)/Vc can be determined.
Depending on the construction parameters of the engine, ε adopts values
between 7 and 13. When the compression ratio is increased, the thermal
efficiency increases and the fuel can be used more effectively. Unfortunately
the compression ratio ε cannot be infinitely increased, since a high ε also in-
creases the probability of knocking. Knocking is a condition, accompanied
by an audible noise, that occurs when the fuel-air mixture in the cylinders
is ignited too early, e.g. due to high pressure or temperature. Long time
knocking damages the cylinder and can destroy the entire engine.
After the compressed mixture has been ignited (c), the temperature in-
creases due to ongoing combustion. The increasing in-cylinder pressure
forces the piston downwards. The kinetic energy of the piston is trans-
ferred to the crankshaft the via the connecting rod which is then available
to the transmission at the power take off. When the piston moves up again
(d), the exhaust gas is expelled from the combustion chamber.

133

7 Application Case Studies and Proof-of-Concept

In order to exploit the occurring oscillations for faster gas exchange, the
intake is starting to open while the exhaust is not yet closed. This is called
valve overlap.

The throttle which is mounted on the venturi regulates the mass of air sup-
plied to the cylinders. In modern motor management systems, the throttle
plate is operated electrically which allows the engine control unit (ECU)
to control the flow of air into the cylinder directly. For this the position of
the driver’s gas pedal is measured and the proper throttle plate angle αth

is computed according to the current mode of operation. From the actual
air mass entering the cylinder, the ECU determines the amount of fuel to
be injected into the intake manifold.

Fuel consumption, exhaust emissions and smooth operation of the engine
are directly correlated to the air-fuel ratio (A/F ratio). The A/F ratio is
defined as the mass of air supplied to the engine divided by the mass of
fuel supplied in the same period of time. The chemically ideal, or stoichio-
metric, air-fuel ratio defines the exact mass of air which is necessary to
burn all the carbon and hydrogen in the fuel to carbon dioxide and water
with no oxygen remaining. For spark-ignition engines, an ideal combustion
is achieved with an A/F ratio of 14.7 : 1.
A measure for the deviation of the actual from the theoretical A/F ratio is
the so called λ-value. This variable is defined as the quotient of the actual
mass of air and the theoretically required mass of air for ideal combustion.
Hence, for λ = 1 the actual mass of air is equivalent to the theoretically
required mass. For λ < 1 less oxygen than required is present. An increased
power output is obtained for λ = 0.85 to λ = 0.96. For λ > 1 more oxygen
than required is present. A decreased fuel consumption can be observed
for λ = 1.05 to λ = 1.3. Finally, for λ > 1.3 the fuel-air mixture is hard
flammable and failure or misfiring can be observed.

134

7.2 Neural Combustion Control in Automotive Environments

(a)

0.6 0.8 1.0 1.2 1.4

NOx

HC

CO

[λ]

(b)

0.8 1.0 1.2 [λ]

P

be

Figure 7.10: (a) Qualitative influence of λ on the exhaust emissions. (b)
Qualitative influence of λ on the power output P and the
effective fuel consumption be of the engine.

In Figure 7.10(a), the relative influence of λ on the power output P and
the effective fuel consumption be of the engine is depicted. Figure 7.10(b)
displays the relative influence of λ on the composition of the exhaust
emissions. A modern spark-ignition engine reaches its maximum power
output for λ ≈ 0.90, while the minimum fuel consumption requires
λ ≈ 1.15 [Bos94].
The influence of λ on the composition of the exhaust emissions has to be
considered separately for each type of the emitted noxious gases. As de-
picted in Figure 7.10(b), the concentration of carbon monoxide (CO) and
the unburned hydrocarbons (HC) decreases with growing values of λ. The
concentration of HC rapidly increases again for λ > 1.2. Unfortunately,
the concentrations of NOx behave totally different. The oxides of nitrogen
adopt a global maximum for λ ≈ 1.0 while the concentration of all other
exhaust gases is relatively low and vice versa.

The exhaust emissions of a combustion engine can be manipulated in three
ways. The first possibility is the preparation of the fuel-air mixture be-
fore entering the engine. The second possibility is the optimization of the
combustion through a particular shape of the combustion chamber itself.
Finally, the exhaust emissions can be manipulated by placing catalytic con-
verters in the exhaust pipe of the engine. The catalytic converter improves

135

7 Application Case Studies and Proof-of-Concept

the oxidation of CO and HC to nontoxic CO2 and H2O. At the same time
it reduces the dangerous oxides of nitrogen (NOx) to harmless nitrogen
(N2).

0

20

40

60

80

100

[Conversion rate/%]

0.98 0.99 1.00 1.01 1.02 1.03 [λ]

HC

CO

NOxNOx

Figure 7.11: Conversion rates of the catalytic converter.

Figure 7.11 depicts the conversion rate of a three-way catalytic converter
for each component of the exhaust gas mixture. With the aid of catalytic
converters, up to 90% of the produced noxious gases can be converted into
harmless substances [Bos94]. An effective catalytic conversion requires an
almost optimal fuel-air mixtures with λ ≈ 1.0. A deviation of 2% from
λ = 1.0 yields an unacceptable conversion rate of at least one component.
In order to guarantee good operation conditions of the catalytic converter,
modern engines are equipped with a closed loop λ-control. The task of a
closed loop λ-controller is to obtain and maintain a stoichiometric fuel-air
mixture with λ ≈ 1.0.

136

7.2 Neural Combustion Control in Automotive Environments

Automotive Sensor System

In order to determine the appropriate actuator settings with respect to
the driver’s demands and the current state of the entire system, the en-
gine control unit is dependent on a large number of sensor signals. For the
acquisition of the required data, modern combustion engines are equipped
with numerous sensors. The type and localization of the sensors will be
explained in this section.

αth

Pv

Camshaft sensor /
Valve timing

λ

Pcyl

Knock sensor

Crankshaft sensor /
RPM

Teng

Tv
Air-mass sensor

Figure 7.12: Sensor system of a spark-ignition engine.

Figure 7.12 depicts the basic sensor system of a spark-ignition engine to-
gether with their mount points on the engine.

• The air-mass sensor is located between the air cleaner and the throt-
tle plate. As described in detail in [Bos94], a platinum-film resistor
is brought into the air stream. An integrated circuit is keeping the
sensor temperature at a specific value by controlling the electrical
current through the sensor element. From the additional electrical
current to maintain the sensor temperature the passing air-mass can
be obtained as a measure for the actual engine load in units of kg/h.
In combination with a second sensor element, also the direction of
flow can be determined. This is important to identify oscillations in
the venturi. In most operation conditions, the delivered signal is very

137

7 Application Case Studies and Proof-of-Concept

accurate. However, due to strong oscillations in some conditions the
air-mass cannot be determined with this sensor signal.

• After the air-mass sensor the fresh air passes the throttle. As men-
tioned before, the engine control unit translated the driver’s demands
into the throttle angle αth. The throttle regulates the flow of fresh
air into the cylinders. The throttle angle is measured with a poten-
tiometer which is mounted on the throttle shaft. The resulting signal
has very high dynamics, but tents to be rather inaccurate in static
situations. In modern motormanagement systems, this sensor signal
is only used in dynamic situations or failure conditions.

• The third sensor to determine the air-mass is the absolute pressure
sensor which is mounted in the venturi before the intake manifold.
The pressure Pv in the venturi is measured very accurately with a
piezoelectric resistor. This sensor shows a very good static and dy-
namic characteristic. In order to determine the exact air-mass flow
into the intake manifold, the ambient pressure is required. Unfor-
tunately, due to cost efficiency, an ambient pressure sensor is not
present in current sensor systems. Since the air-mass flow is very
hard to determine solely from Pv, dynamic system models are em-
ployed to estimate the air-mass from known sensor signals.

• In order to correct the determined air-mass with respect to its den-
sity, the temperature Tv in the venturi has to be known. The sensor
element is a temperature sensitive resistor. In this case, a negative
temperature coefficient resistor (NTC) is employed.

• The temperature Teng of the cooling system determines the current
operation condition of the engine. This sensor signal allows the ECU
to distinguish whether a cold start has been performed or the engine
is in the warm-up.

• The determination of the exact crank angle position of the piston
is elementary for an optimal inflammation of the fuel-air mixture in
the cylinder. As depicted in Figure 7.12, a toothed wheel made of
ferrous metal is mounted on the crankshaft. When the crankshaft is
revolving, the teeth are passing nearby a field coil wrapped around
an permanent magnet. When a tooth is passing the sensor, it causes
a variation of the magnetic flux and thus a measurable alternating
electrical current. The start of the measurement is marked by two
missing teeth, as shown in Figure 7.12. Since the frequency of the
generated alternating current depends on the time gap between the

138

7.2 Neural Combustion Control in Automotive Environments

teeth, the revolution speed of the crankshaft can also be determined
from this signal.

• Since two revolutions or 720◦ are required for a complete Otto-cycle,
the true position of the crankshaft and thus of the piston cannot be
determined solely from the signal of the crankshaft sensor. This is
the reason for the existence of another sensor measuring the rota-
tion of the camshaft which turns at half the speed of the crankshaft.
For this, a permanent magnet is mounted on the camshaft which in-
duces a signal in the Hall-sensor every time the camshaft completes
a full revolution. Hence, the unambiguous position of the piston can
only be determined from the crankshaft- in combination with the
camshaft signal.
This sensor signal is also used for the determination of the camshaft
position. This is important when adjusting the position of the
camshaft relative to the crankshaft so that the valves will open and
close at the proper time.

• It has been already mentioned in Section 7.2.1.1, that the current
λ-value has a major influence on the exhaust emissions. Since the λ
value can only be determined very inaccurately from the measured
air-mass and the amount of injected fuel, an oxygen sensor is placed
in the exhaust pipe. The ECU determines the quality of the fuel-
air mixture from the concentration of oxygen in the exhaust gas.
Modern three way catalytic converters can only achieve their maxi-
mum conversion rates with this sensor. The second oxygen sensor is
mandatory for the diagnosis of the catalytic converter system. Note
that a minimum temperature of 200◦C − 350◦C is required for the
proper operation of this sensor.

• In order to prevent the engine from mechanical defects a sensor is
mounted on the cylinder block to detect the high-frequency vibra-
tions caused by detonation or advanced ignition. Since an engine
gives the best power and efficiency as it approaches detonation, the
knock sensor can relay this information to a computer which then
controls the factors leading to detonation. The ignition timing is the
major factor leading to detonation or uncontrolled combustion. If
detonation is detected, the ignition timing is immediately retarded.

• After this short presentation of the basic sensor system an additional
sensor has to be mentioned which is not yet employed in series pro-
duction. A piezo-resistive pressure sensor can be brought directly into

139

7 Application Case Studies and Proof-of-Concept

the combustion chamber for measuring the in-cylinder pressure dur-
ing combustion. This pressure data will be used later in Section 7.2.4
to determine a central parameter of combustion, the so called 50%
energy conversion point. A more detailed introduction to this type
of sensor and the corresponding signal preprocessing can be found
in [Kur94] and [Her94].

7.2.1.2 Combustion Process

In this section, the basic chemical reactions of the internal combustion
process are presented. Furthermore, the relevance of the in-cylinder pres-
sure for the analysis of the combustion process is motivated. Finally, the
influence of ignition timing on the efficiency of combustion is presented.

Chemical Reactions

The fuel of a combustion engine mainly contains chemical compounds
called hydrocarbons (CxHy). They are made of the chemical elements hy-
drogen (H2) and carbon (C). Those hydrocarbons have the ability to per-
form a chemical reaction with the oxygen of the air. During any thermal
combustion, the following principle reactions take place:

2H2 +O2 → 2H2O

2C +O2 → 2CO

2CO +O2 → 2CO2.

(7.2)

If a mixture of small- and middle chain hydrocarbons (CxHy) is employed,
the chemical reaction with the oxygen of the air can be formulated in the
following way:

CxHy +
�
x+

y

4

�
O2 → xCO2 +

y

2
H2O.

(7.3)

If a stoichiometric fuel-air mixture and an ideal combustion is assumed,
only carbon dioxide and water vapor is produced. In reality, however,
the fuel is comprised of a large variety of hydrocarbons (hexane, octane,
nonane), cyclic hydrocarbons (phenol, toluene) and organic sulfur com-
pounds. Due to the various load conditions of the engine, an ideal fuel-air
mixture cannot be guaranteed for every combustion cycle. Since the air is

140

7.2 Neural Combustion Control in Automotive Environments

not comprised of pure oxygen but of a mixture of oxygen and nitrogen,
also oxides of nitrogen are produced during the combustion process. Fi-
nally, the combustion itself is not ideal in reality. This leads to the fact
that the exhaust emissions of a combustion engine is mainly a mixture of
unburned hydrocarbons (HC), oxides of nitrogen (NOx), carbon monox-
ide (CO), carbon dioxide (CO2) and water vapor (H2O). The interested
reader is referred to [PKTS89] for a more detailed description of the chem-
ical processes.

Combustion Pressure and Energy Conversion

Since the in-cylinder pressure in an integral variable of all effects influ-
encing the combustion, this signal is most suitable for the analysis of the
combustion process. As described above, very robust sensors exist which
can be brought directly to into the combustion chamber through an addi-
tional drill hole in the cylinder head.

-80 -40 0 +40 +80

[crank angle/◦]

0

5

10

15

20

25

30

35

40
[pressure/bar]

Energy conversion

In-cylinder pressure

0.0

0.5

1.0

[energy conversion/%]

Figure 7.13: In-cylinder pressure and energy conversion.

Figure 7.13 depicts the in-cylinder pressure curve during combustion. The
crank angle is measured relatively to the top dead center position of the
piston at the end of the compression stroke. After the fuel-air mixture has
been pulled into the cylinder, the mixture is compressed and ignited shortly
before the piston reaches the top dead center position. After ignition the

141

7 Application Case Studies and Proof-of-Concept

pressure increases rapidly until it reaches its maximum value shortly af-
ter the top dead center. The resulting in-cylinder pressure accelerates the
piston on its downward movement. The accelerating force is transferred to
the transmission system via the connecting rod and the crankshaft.

From the mere in-cylinder pressure curve it is very difficult to determine
valuable information about the quality of the performed combustion di-
rectly. In order to obtain immediate information about the combustion
process, the energy conversion curve is considered. The energy conversion
curve can be computed from the measured combustion pressure through
a sophisticated, recursive thermodynamic calculation. In Figure 7.13, the
in-cylinder pressure and the corresponding energy conversion curve is de-
picted.
Besides the λ-value, the ignition timing has also a significant influence on
the produced exhaust emissions and the fuel consumption. It is important
that the spark coming from the spark plugs ignites the air-fuel mixture
when the crankshaft is in the correct angular position. If the ignition tim-
ing is advanced, the concentration of unburned hydrocarbons increases due
to incomplete combustion of the fuel-air mixture. In that case, it can also
be observed that the temperature in the combustion chamber increases.
This results directly in a higher concentration of NOx in the exhaust gas.
Only the emission of CO is almost independent of the ignition timing.

0

0.2

0.4

0.6

0.8

1.0

[η/%]

0 10 20 30 40 50
[∆ign/◦]

Figure 7.14: Efficiency of a combustion engine versus the deviation from
the optimal ignition timing.

142

7.2 Neural Combustion Control in Automotive Environments

Figure 7.14 depicts the efficiency of a combustion engine as a function of
the deviation from the optimal ignition timing. It can be observed that
small deviations around 10◦ from the optimal ignition timing have only
minor effects on the efficiency. On the other hand, a deviation above 10◦

results in severe degradation of the engine efficiency.
In BARGENDE [Bar95a], a new criterion for the analysis of the engine
efficiency with respect to the ignition timing has been presented. It turned
out that the so called 50% energy conversion point (50%-ECP) of the
current combustion is of major interest. The 50% energy conversion point
is defined as the crank angle position at which 50% of the fuel mass in the
cylinder has chemically reacted with the oxygen of the air. BARGENDE
found out that when the engine works under condition of medium load,
the 50%-ECP should be at approximately +8◦ after the TDC of the piston
in order to achieve maximum engine efficiency. Hence, the ignition timing
has to be adjusted appropriately to guarantee this outcome. In further
investigations, BARGENDE [Bar95b] showed clearly that the 50%-ECP
is a simply but effective criterion to optimize and maintain the efficiency
of a combustion engine during operation. As mentioned before, due to
computational complexity it had not been possible to determine the 50%-
ECP in a real-time environment. In Section 7.2.3, a method for the fast
computation of the 50%-ECP with GMI-optimized neural networks will be
presented.

7.2.1.3 Structures of Modern Motormanagement

Since the first use of electronic components for the management of combus-
tion engines, a remarkable development of the employed hardware could be
observed. This section intents to present a brief insight into the complex
soft- and hardware structures of motor management.

Engine Control Unit

Compared to the first rather simple electronic circuits, modern engine con-
trol units are powerful computers with dedicated real-time operating sys-
tems. The electronic control unit is the central processing unit of the mo-
tormanagement system.
Figure 7.15 depicts the functional structure of a modern engine control
unit. Switched input signals, e.g. the selected gear, are directly fed into the
CPU after passing an appropriate signal conditioning circuit. Analog in-
put sources, e.g. the signal from the knock detection sensor, are converted
into digital values before entering the CPU. On the basis of the collected

143

7 Application Case Studies and Proof-of-Concept

RPM
Knock-sensor

λ
αth

Air-mass
Tv

Teng

Pv

Gear

...

Main On/Off

Sensors Conditioning CPU Amplifiers Actuators

RAM

EEPROM

A/D

Diagnosis

Injection
Ignition

...

Figure 7.15: Functional Structure of an Engine Control Unit.

input signals from the sensor system, the CPU calculates the appropriate
actuators settings.

To perform all tasks of signal processing, the CPU requires an executable
program code. This code is stored together with relevant variables and
characteristic maps in the EEPROM of the engine control unit. The deter-
mined output signals are then applied directly to the connected actuators
via power circuitry. If any error occurs during operation, it is stored into
the EEPROM and can be read out through the serial diagnosis interface
at the next service interval.
During development, almost every function can be adjusted to the require-
ments of a particular engine type with a large number of parameters and
characteristic maps. Due to the immense complexity of a modern ECU,
the determination of this characteristic maps requires several years of man
power. Note that the parametrization of the implemented functions with
respect to only one particular engine consumes a very large amount of the
entire development budget.

In order to integrate other electronic control devices, e.g. the anti-lock
brake system (ABS), anti-spin regulation (ASR) or the board computer in-

144

7.2 Neural Combustion Control in Automotive Environments

side the passenger compartment, an efficient communication among those
devices is necessary. Since the wiring harness in a modern passenger car has
grown extremely complex, conventional point-to-point connections are not
efficient enough to provide the required bandwidth for the communication
of all essential signals. This problem has been solved with the introduction
of the controller area network (CAN). The CAN is a digital bus system
with collision avoidance mechanism. For a detailed description of the CAN
bus system the interested read is referred to [Law97] or [Bos94].

Conventional Ignition Timing

As already mentioned above, the ignition timing of a combustion engine
depends on the engine load and the engine speed. This variables are mea-
sured with the corresponding sensor elements and transferred to the ECU.
Since the environmental conditions and the operating modes of the engine
are rapidly changing, the ignition timing has to be constantly corrected to
meet the requirements of new circumstances.

Engine SpeedEngine Load

Basic Ignition Timing

Temperature Correction

Warm-up Correction

Trailing Throttle Cutoff

no
Correction before

Correction after

yes

Operating Condition Correction

Idle Control Gearbox Anti-knock Control

Range Check

Ignition Timing

Figure 7.16: Algorithm in the engine control unit which determines the
proper ignition timing.

145

7 Application Case Studies and Proof-of-Concept

Figure 7.16 depicts, according to [Bos94], the conventional algorithm to
compute the proper ignition timing. After the basic ignition timing has
been determined from a static map inside the ECU, this value has to be
corrected to guarantee proper ignition for a large variety of operating con-
ditions. An example for a static map containing the basic ignition timing
is depicted in Figure 7.17. In the start-up phase and depending on the
ambient temperature, corrections are applied to the basic ignition timing.
In special operating conditions, e.g. when starting or leaving the trailing
throttle fuel cut-off, the ignition timing has to be adjusted also to the re-
quirements of other vehicle components. Finally, if the engine is detected
to run in idle-state or if knocking combustion is detected, a closed loop
controller is activated which takes over the adjustment of the ignition tim-
ing.

In this section, a brief overview of the complex soft- and hardware struc-
tures in modern motormanagement systems has been provided. The next
section intents to introduce the basic principles of neural combustion con-
trol.

[Ignition Timing/◦]

-10
0

10
20
30
40

[Engine Load/%]

0
0.5

1.0
[Engine Speed/RPM]1000

3000

5000

Figure 7.17: Characteristic map of the basic ignition timing.

146

7.2 Neural Combustion Control in Automotive Environments

7.2.2 Neural Combustion Control

Modern motor management systems rely on numerous sensor signals, in
order to be able to accomplish their tasks. From the viewpoint of combus-
tion control, the 50% energy conversion point (50%-ECP) is of particular
interest. Since this variable cannot be measured directly, it has to be deter-
mined from a measurable quantity which characterizes the quality of the
observed combustion. Since the in-cylinder pressure is the central quantity
which describes the effects influencing the entire combustion, this measur-
able quantity is used to determine the desired 50%-ECP.

-80 -40 0 +40 +80

[crank angle/◦]

0

5

10

15

20

25

30

35

40
[pressure/bar]

Desired 50%-ECP

Actual 50%-ECP

Energy conversion

In-cylinder pressure

0.0

0.5

1.0

[energy conversion/%]

Figure 7.18: In-cylinder pressure, the 50%-ECP and the course of the en-
ergy conversion during one combustion cycle

Figure 7.18 displays the in-cylinder pressure curve and the according energy
conversion as a function of the crank angle position during one combustion
cycle. The combustion pressure is the central variable with respect to all
effects influencing the course of combustion. It is used to determine the
50%-ECP from which the efficiency of the observed combustion can be es-
timated.
The 50% energy-conversion point is defined as the crank angle position at
which 50% of the fuel mass in the cylinder has chemically reacted with
the oxygen during the course of combustion. In case of an optimal com-
bustion with maximum efficiency, the position of the 50%-ECP has to be
at a crank angle position of approximately +8◦ after the top-dead-center
position (TDC) of the piston.

147

7 Application Case Studies and Proof-of-Concept

It has been shown earlier by BARGENDE [Bar95b] that the efficiency of
a combustion engine is maximized with the 50%-ECP around +8◦ TDC
(±2◦). Compared to other energy conversion points, the 50%-ECP stays
relatively stable throughout all operation conditions of the engine. In order
to keep the 50%-ECP at the desired crank angle position which depends
on the current load level of the engine, a closed loop PI controller could be
implemented.

RPM

Load

Desired 50%-ECP (+8◦)

− +

PI
Controller

Neural Network

Combustion

Ignition Timing Combustion Pressure
Curve

Actual 50%-ECP

Figure 7.19: Basic structure of a closed loop neural combustion control.

Figure 7.19 depicts the basic structure of a closed loop combustion con-
troller. As mentioned before, the goal of combustion control is to keep
the 50%-ECP at a desired crank angle position. This crank angle position
depends on the actual operating condition of the engine. Referring to BAR-
GENDE, it could be either set to +8◦ TDC or it could be determined via
a static map inside the engine control unit (ECU). The in-cylinder pres-
sure is constantly measured during the course of combustion and the crank
angle position of the 50%-ECP is determined from the obtained pressure
curve. The deviation of the current 50%-ECP from the desired value is fed
into a PI controller, which then adjusts the ignition timing for the next
combustion cycle.
The 50%-ECP might be obtained with a high degree of accuracy from the
measured pressure curve through a sophisticated thermodynamic compu-
tation. Since this calculation is far too complex to be accomplished in real
time, feedforward neural networks have been proposed as an alternative

148

7.2 Neural Combustion Control in Automotive Environments

approach. In this attempt, the target output of the neural structure is
obtained through the mentioned thermodynamic computation before the
actual training is performed. This approach takes advantage of the capabil-
ity of neural networks to learn and generalize complex nonlinear functions.
Once training has been successfully completed, the neural network can be
regarded as a virtual sensor for the 50%-ECP. Finally, it will be integrated
into the control structure shown in Figure 7.19.
At the end of this chapter, it will also be shown that this method is suit-
able for real time applications and can thus be implemented in automotive
environments.

In order to determine the actual 50%-ECP with a neural network, the in-
cylinder pressure is equidistantly sampled and fed into the neural structure
after training. The basic requirement with respect to the maximum devia-
tion of the derived virtual combustion sensor, from the effective 50%-ECP,
was specified to be ±2◦.

0

10

20

30

[Output 50%-ECP/◦]

0

10

20

30

[Error/◦]

0 10 20 30
[Target 50%-ECP/◦]

-80◦

0◦

+80◦

|Emax| = 0.79◦

Figure 7.20: Equidistant down-sampling of the in-cylinder pressure and
presentation to the neural network.

Figure 7.20 shows the presentation of a 18 dimensional input vector, which
is comprised of the equally sampled combustion pressure curve. The orig-
inal in-cylinder pressure curve has been recorded with a resolution of 1◦

and contains 180 points. In this example, a 18-10-5-1 feedforward neural
network has been trained with the Extended Kalman Filter for 100 epochs
to map the vector of pressure values to its according 50%-ECP. The test
data set contains 400 combustion cycles and the absolute value of the max-

149

7 Application Case Studies and Proof-of-Concept

imum error is 0.79◦. However, the choice of equidistant sample-points has
been an empirical decision. In spite of this remarkable result, we have to
raise the following fundamental questions concerning the construction of
the neural network training data.

1. Are the chosen sample points reasonable from the viewpoint of in-
formation theory?

2. Can the dimension of the input pattern to the neural network be
reduced, in order to optimize the computational expenses?

3. Finally, what are the sample points with the highest information
content with respect to the given problem and how can they be
systematically identified?

The answers to this interesting questions will be provided in the context
of the next section. Beyond this, the applicability of the optimized virtual
combustion sensor in a real time environment will be proved.

7.2.3 Selection of the relevant Input Variables

employing Forward Selection and the GMI I2

In Chapter 5, the general mutual information has been introduced as a
method for measuring the linear- and nonlinear dependencies among mul-
tidimensional time series. Due to the existence of an efficient estimation
algorithm, the presented concept is based upon the second order Rényi-
Entropy I2. The practical aspects of the algorithm included the introduc-
tion of an adequate matrix calculus and the assessment of its computational
complexity.

The question of interest is now whether it is possible to employ the
presented method for the analysis of real time measurement data in
general. In this chapter the general mutual information will be em-
ployed for the preprocessing of neural network input data in an au-
tomotive environment. It will be demonstrated how the most relevant
sample points can be selected from a large set of combustion pres-
sure curves to construct optimal neural network training data [HS00].
Besides the employment of the GMI method for spark ignition engine
data, the remarkable broad applicability of this sophisticated method
proved later to be also of great value for the analysis of common-rail signals
in diesel engines [Frö03].

150

7.2 Neural Combustion Control in Automotive Environments

The questions at the end of Section 7.2.2 can be quantitatively answered by
employing the previously introduced concept of the general mutual infor-
mation I2. In order to construct an optimized data set for neural network
training, the input variables with the highest information content, with
respect to a given problem, are iteratively selected from a large data set.

k = 1 7→

k = 2 7→

k = 3 7→

:
:

k = K 7→

Combustion Pressure Curves

{xi(k)}
K
k=1

50%-ECP

{y(k)}K
k=1

(i=1)
-89◦

(i=180)

+90◦

Figure 7.21: Calculation of the GMI between i-th sample point of the
combustion pressure curves {xi(k)}

K
k=1 and the correspond-

ing 50%-ECPs {y(k)}K
k=1.

In Figure 7.21, the sampled combustion pressure curves {xi(k)}
K
k=1 and

its according 50%-ECPs {y(k)}K
k=1 are depicted. As mentioned above, the

most relevant sample points of the combustion pressure curve are iden-
tified through an iteration process. For this purpose, the i-th pressure
values {xi(k)}

K
k=1 in all K pressure curves together with the 50%-ECPs

{y(k)}K
k=1 are considered. A quantitative measure for the relevance of this

particular sample point for the determination of its corresponding 50%-
ECP is obtained by computing the general mutual information I2 between
the sequences {xi(k)}

K
k=1 and {y(k)}K

k=1. The resulting GMI values for
i = 1, ..., 180 are then normalized and plotted against the crank angle po-
sition.

151

7 Application Case Studies and Proof-of-Concept

0.2

0.3

0.4

0.5

[I2(xi, y)/%]

-89 -70 -50 -30 -10 +10 +30 +50 +70 +90
[crank angle/◦]

I2(x99, y)

Figure 7.22: The GMI function reaches its maximum at the crank angle
position with the highest information content.

Figure 7.22 depicts the GMI values of the first iteration which are plot-
ted against the crank angle position of the piston. The position showing
the highest GMI value is interpreted as the most relevant sample point
of the pressure curve for determining the 50%-ECP. In this case, the se-
quence {x99(k)}

K
k=1 corresponding to the crank angle position +9◦ has been

identified as the most relevant sample point of the underlying combustion
pressure curves.

-1.0

0.0

1.0

[R(xi, y)]

-89 -70 -50 -30 -10 +10 +30 +50 +70 +90
[crank angle/◦]

Figure 7.23: Spearman’s rank correlation coefficients adopt values around
zero for crank angle position where the GMI reaches its max-
imum.

152

7.2 Neural Combustion Control in Automotive Environments

For one dimensional time series, the coefficients of correlation ρ(xi, y) can
also be computed and compared to Figure 7.22. The rank correlation coef-
ficients are based on the absolute ranks of the observations. This statistic
measure does not depend on a specific distribution of the underlying vari-
ables and is called a nonparametric- or distribution-free statistic.
In Figure 7.23, it can be clearly observed that the rank correlation coeffi-
cients [Spe04] adopt values around zero whereas the GMI in Figure 7.22
reaches its maximum. Hence, no variable would be chosen which corre-
sponds to crank angle positions in the range from −20◦ to +40◦. Since
this range depicts the so called high-pressure phase, i.e. the crank-angle
positions at which the actual combustion occurs, this result does clearly
not contribute to the solution of our selection problem.

The GMI function in Figure 7.22 might also remind of the coefficient of
correlation. However, the general mutual information differs from the co-
efficient of correlation in multiple points.

• The GMI is defined also for time series of arbitrary dimensionality,
while the coefficient of correlation is not.

• All linear- and nonlinear dependencies between the possible multi
dimensional sequences are captured by the GMI. The conventional
coefficient of correlation is only sensitive to linear dependencies.

• If the GMI value tends to zero, it can be concluded that there are no
statistical dependencies between the investigated time series (Theo-
rem 5.3). From a coefficient of correlation of zero no conclusion can
be drawn at all, for arbitrarily distributed time series.

According to the forward selection strategy mentioned before, all previ-
ously identified points have to be considered. The additional sequence cor-
responding to the next chosen sample point, has to maximize the obtainable
information of the given problem.
The second iteration of the selection process is illustrated in Figure 7.24.
Similar to Figure 7.21, the GMI function is computed for each crank an-
gle position. The GMI values are now computed between the two dimen-
sional input sequence {xi(k), (x99(k))}

K
k=1, for i = 1, ..., 180, and the one

dimensional output sequence {y(k)}K
k=1 corresponding to the 50% energy

conversion points.

Figure 7.25 depicts the result of the second iteration of the selection pro-
cess. Compared with I2({xi}, y), the GMI function I2({xi, (xi1)}, y) with

153

7 Application Case Studies and Proof-of-Concept

k = 1 7→

k = 2 7→

k = 3 7→

:
:

k = K 7→

Combustion Pressure Curves

{xi(k)}
K
k=1 {x99(k)}

K
k=1

50%-ECP

{y(k)}K
k=1

(i=1)
-89◦

(i=180)

+90◦

Figure 7.24: Calculation of the GMI values between the two dimensional in-
put sequence {xi(k), (x99(k))}

K
k=1 and the corresponding 50%

energy conversion points {y(k)}K
k=1.

0.0

0.5

1.0
[I2/%]

-89 -30 +30 +90
[crank angle/◦]

I2({xi, {xi1}}, y)

I2({xi}, y)

Figure 7.25: The GMI function I2({xi, (xi1)}, y) resulting from the second
iteration of the selection process.

i1 = 99 includes the information gain when increasing the dimension of the
input time series by one. Regarding the GMI function I2({xi, (xi1)}, y), the
most interesting point is when xi reaches the formerly chosen value xi1 . At
this point, no additional information is present and the GMI adopts a local

154

7.2 Neural Combustion Control in Automotive Environments

minimum. The GMI value of this point is hence identical to the according
point in the preceding GMI function I2({xi}, y). Continuing with this for-
ward selection strategy, an ordered set of crank angle positions, specifying
the positions with the highest information content, can be successively se-
lected from the large set of 180 possible input variables.

0.0

0.5

1.0
[I2/%]

-89 -30 +30 +90
[crank angle/◦]

...

I2({xi, {xi1 , xi2}}, y)

I2({xi, {xi1}}, y)

I2({xi}, y)

Figure 7.26: Sequence of GMI functions for successive iteration steps of the
selection process.

Figure 7.26 illustrates the GMI functions of successive iteration steps which
were used to identify the most relevant sample points of the in-cylinder
pressure curve. The described procedure is carried out while the informa-
tion gain is significant. When the consideration of additional input variables
will not yield further information about the output variable, the iteration
process is stopped. It can be observed, that the selected points are not
equally distributed like previously assumed. However, from the viewpoint
of information theory, the identified set of crank angle positions is indeed
optimal.
Employing the concept of mutual information resulted in a significant re-
duction of the input dimension. The dimensionality of the input vector
could be decreased from 18 down to five sample-points.
The most important result is that the previously chosen equidistant sample
points are not reasonable from the viewpoint of information theory.

Finally, another interesting point is the dependence of the selected input
vector components among each other. In Figure 7.27, the general mutual
information I2(xi, xj) between pairs of input variables xi and xj is de-

155

7 Application Case Studies and Proof-of-Concept

picted. It can be observed that the resulting matrix is symmetric, since
I2(xi, xj) = I2(xj , xi) holds as mentioned in Theorem 5.3. The main di-
agonal consists exclusively of ones. This is also an immediate consequence
of the determination property stated in Theorem 5.3. The GMI values for

1
40

80
120

160

j1

40

80

120

160

i

0.0

1.0

I2(xi, xj)

Figure 7.27: General mutual information I2(xi, xj) between pairs of input
variables xi and xj . The GMI values for the pairs of the se-
lected input variables are outlined by dots.

the pairs of the selected input variables are outlined by dots. It can be
observed that not all selected variables are mutually independent. In the
case of independent input variables, the term I2(xi, xj) adopts values close
to zero.
If we reconsider some typical combustion pressure curves in Figure 7.21, it
appears quite natural that neighboring variables have to be highly corre-
lated due to the similarity among different in-cylinder pressure curves.

The general mutual information cannot be used to construct orthogonal
input variables. Instead, it finds the most relevant input variables with
respect to the nonlinear mapping between pressure values and the 50%-
ECP. Hence, a further preprocessing method for neural input data such as
principal component analysis (PCA) as suggested in [Bis99] could be ad-
ditionally applied afterwards. This might be done to produce orthogonal
input variables which might yield better convergence during neural train-

156

7.2 Neural Combustion Control in Automotive Environments

ing. However, the investigation of this fact is definitely beyond the scope
of this work and might be subject to further research activities.

Compared to the conventional coefficient of correlation, the general mutual
information has several major advantages:

• The mutual information is capable of capturing nonlinear dependen-
cies between inputs and outputs.

• It can be applied to multivariate input- and output data.

• The mutual information provides a constructive method to reduce
the input dimension of neural training data, on the basis of a well
defined information theory.

This section was concerned with the systematic analysis of the in-cylinder
pressure during combustion to determine the most relevant sample points
for neural network training. The next section assesses the applicability
of the obtained GMI results for a neural identification of the combustion
process. Finally in Section 7.2.6, this optimized neural structure is used to
implement a real-time combustion control in an experimental automotive
setup.

157

7 Application Case Studies and Proof-of-Concept

7.2.4 Neural Identification of the Combustion

Process considering the GMI Results

In Section 7.2.3, the most relevant input variables for the identification of
the combustion process have already been selected. In order to prove the
applicability of this result, for the concrete implementation of an optimized
closed loop control, the combustion process has to be identified in advance.
Since the feature selection procedure has already been completed, a neural
training data set can be constructed, which comprises the realizations of
the identified sample points of the in-cylinder pressure curves.

Network Input Learning
Topology Variables Algorithm

FF-18-10-5-1 x5, x10, ..., x180 RTRL, EKF
FF-5-10-5-1 x99, x140, x105, x93, x101 RTRL, EKF

Table 7.3: Neural training setups for the derivation of a virtual combustion
sensor.

Table 7.3 summarizes the neural training setups for the derivation of the
virtual combustion sensor. In order to realize the impact of the GMI fea-
ture selection on the performance of the neural combustion model, two
separate identification runs have been conducted. The first employs the
equidistantly sampled pressure curves, while the second uses the GMI se-
lected inputs.
Furthermore, each identification run has been accomplished with two dif-
ferent training methods, the Extended Kalman Filter and the Real Time
Recurrent Learning algorithm. The purpose of this is the assessment a
potential performance enhancement through the application of a sophisti-
cated training algorithm like the Extended Kalman Filter. In all cases, the
learning rate has been set to 0.05 and the training was conducted over 100
epoches.

The presentation of the GMI identified points of the in-cylinder pressure
curve to the neural combustion model is presented in Figure 7.28. In this
case, a 5-10-5-1 network has been trained with the Extended Kalman Filter
for 100 epochs.

After training, the performance of the neural combustion model was as-
sessed with a test data set containing 400 unknown patterns. The maximum

158

7.2 Neural Combustion Control in Automotive Environments

deviation of the virtual combustion sensor turned out to be 1.48◦. When
comparing this result with the outcome of the equidistantly sampled pres-
sure curve in Figure 7.20, it can be observed that the maximum deviation
increased from 0.79◦ to 1.48◦. However, this deterioration of performance is
vindicable, since the deviation is still below the predefined tolerance range
of ±2.0◦. In exchange for the drawback of a lowered accuracy, the reduc-
tion of the number of inputs from 18 to only 5 sample points, implies the
extension of the real time capability of the obtained virtual combustion
sensor.

0

10

20

30

[Output 50%-ECP/◦]

0

10

20

30

[Error/◦]

0 10 20 30
[Target 50%-ECP/◦]

-80◦

0◦

+80◦

|Emax| = 1.48◦

Figure 7.28: Presentation of the GMI selected points of the in-cylinder
pressure curve to a neural network after Extended Kalman
Filter training.

In Appendix E, all results of the neural training setups listed in Table 7.3
are outlined. It can be observed that the employment of the Extended
Kalman Filter constantly yields to better results, compared to the RTRL
algorithm. The goal was to derive a virtual combustion sensor, which is
capable to determine the 50%-ECP with a maximal deviation of ±2◦. At
the same time, the necessary number of inputs had to be reduced to a
minimum, to guarantee its computability in real time environments. It
could be impressively demonstrated that both objectives can be success-
fully achieved by employing a prior feature selection on the basis of the
GMI.

As mentioned before, the construction of an efficiently computable virtual
combustion sensor is an indispensable prerequisite for its integration into
a realtime capable, closed loop combustion controller. In Section 7.2.6, it

159

7 Application Case Studies and Proof-of-Concept

will be demonstrated how an optimized closed loop combustion controller
is implemented on the basis of this virtual sensor. Finally, it will be shown
how this combustion controller has been integrated into an experimental
automotive setup to evaluate its performance in subsequent road tests.
Prior to this, the influence of the employed feature selection method on
the performance of the derived neural combustion model, is depicted and
discussed in the next section.

160

7.2 Neural Combustion Control in Automotive Environments

7.2.5 Neural Identification with the GMI selected

features in contrast to PCA- and ICA results

To give a detailed overview of the common state-of-the-art techniques in
feature extraction, the principal component analysis and the independent
component analysis have been already described in Chapter 3. In this con-
text, a matter of particular interest is the performance of the proposed GMI
method in comparison to these well established feature extraction meth-
ods. For this purpose, the mentioned methods are employed for feature
extraction prior to the network training of the 50%-ECP. After successful
training, the performance of the neural combustion models are compared
with each other.

0

10

20

30

[Output 50%-ECP/◦]

0

10

20

30

[Error/◦]

0 10 20 30
[Target 50%-ECP/◦]

|Emax| = 1.48◦

Figure 7.29: Response of the neural combustion model after Extended
Kalman Filter training of the GMI selected features of the
combustion pressure curve.

Figure 7.29 depicts the response of the virtual neural combustion sensor
after learning the GMI selected features of the combustion curve. In this
and in all other cases of this section, a 5-10-5-1 network has been trained
for 100 epochs with the Extended Kalman Filter mentioned earlier in Sec-
tion 4.3.4. It can be observed that the value of the maximum error of this
constellation is 1.48◦ and hence meets the requirement of a maximum de-
viation of ±2◦ from the desired 50%-ECP. This outcome, which is also the
basis for the implementation of the closed loop neural combustion con-
troller in Section 7.2.6, serves as a baseline for the further comparison of
the GMI- with the PCA- and the ICA feature extraction method.

161

7 Application Case Studies and Proof-of-Concept

0

10

20

30

[Output 50%-ECP/◦]

0

10

20

30

[Error/◦]

0 10 20 30
[Target 50%-ECP/◦]

|Emax| = 19.22◦

Figure 7.30: Output of the neural combustion model after Extended
Kalman Filter training of the PCA determined features.

The response of the neural combustion model, which has been trained with
the PCA extracted features, is depicted in Figure 7.30. The absolute value
of the maximum error of this constellation can be observed to be 19.22◦.
This is by far beyond the previously mentioned acceptability threshold of
±2◦ with respect to the absolute deviation from the desired 50%-ECP.
The preceding principal component analysis was conducted to retain only
those components which contribute more than two percent to the variance
of the entire data set. Even with this realistic assumption, the PCA was
only able to identify two principal features for the construction of the neu-
ral training set. This means vice versa that, according to the result of the
conducted PCA, at least 98% of the data set variance are explained by
these two features. Anyway, experiments showed that the number of ob-
tained features stayed the same, even if the variance threshold was set to
values below one percent. It is quite obvious that the quality requirements
are not met and that the PCA is not a feasible method in this case.

162

7.2 Neural Combustion Control in Automotive Environments

0

10

20

30

[Output 50%-ECP/◦]

0

10

20

30

[Error/◦]

0 10 20 30
[Target 50%-ECP/◦]

|Emax| = 2.38◦

Figure 7.31: The neural combustion model after Extended Kalman Filter
training of the ICA determined features.

Finally, an independent component analysis has been conducted on the
data set and a virtual neural combustion sensor has been derived from the
obtained features. Figure 7.31 depicts the output of the neural combustion
model after training with the Extended Kalman Filter for 100 epochs. In
order to be able to draw a comparison between the performance of the
GMI selected features, the ICA was parameterized to identify also five in-
dependent components. Hence, the neural training set is comprised of five
input variables, as in the case of the GMI selected features.
It can be observed that the maximum absolute deviation of this neural
model is now 2.38◦. This is slightly above but very close to the specified
requirement of ±2◦ with respect to the 50%-ECP of the combustion cycle.
In contrast to the performance of the model, derived from the GMI selected
features, its error is of the same magnitude. Experiments showed that, in
this case, the neural models with GMI selected features consistently per-
formed slightly better than its ICA pendents. The reason for this might
be found in the fact, that the GMI takes into account the input- and the
output variables, whereas ICA only considers the inputs. In any case, an
adequate answer to the question which of the two methods performs better
will involve statistical significance tests. Since a detailed statistical evalu-
ation is beyond the scope of this work, this might be an excellent subject
for further research activities.

However, the essential outcome is that the performance of the GMI based
feature selection appeared to be of the same magnitude as the performance

163

7 Application Case Studies and Proof-of-Concept

of the well established ICA. Apparently, it turned out that the proposed
feature selection method on the basis of the GMI is a serious alternative to
well established methods. While comparing the GMI based method with
the principal component analysis and the independent component analysis,
it became clear that the GMI is a feasible and versatile method, which can
be flexibly employed in various constellations for the problem of obtaining
features from considerable large data sets.
In the next section, the previously described work culminates in the final
implementation of the optimized virtual neural combustion sensor in an
experimental automotive setup. It will be shown, how this virtual sensor
is integrated in a closed loop combustion controller and how it performed
in a hard real time environment.

164

7.2 Neural Combustion Control in Automotive Environments

7.2.6 Real Time Neural Combustion Control in an

Experimental Automotive Setup

This section is dedicated to the final implementation details of an opti-
mized neural combustion control in an experimental setup on the basis of
the previously presented results. The basic structure of combustion con-
trol in Figure 7.19 is used as a starting point for the implementation in a
prototype car. According to BARGENDE [Bar95b], the ignition timing is
set to an optimal value if the 50%-ECP of the following combustion cycle
is determined to be at +8◦. This statement is valid for all spark-ignition
engines regardless of their actual operating point. Hence, the static map
in Figure 7.19 can be substituted with the desired crank angle position of
+8◦. Furthermore, the existence of a linear function between ignition tim-
ing and the resulting 50%-ECP has been proved by CSALLER [Csa81]. It
implies the choice of a linear controller for the adjustment of the ignition
timing. This must not be confused with the dependency between the com-
bustion pressure curve and the 50%-ECP, which is definitely nonlinear.

Desired 50%-ECP
(+8◦)

− +

PI

Controller

optimized
Neural Network

CombustionIgnition Timing

In-cylinder Pressure

Reduced set of
Input-vectors

act. 50%-ECP

Figure 7.32: Control-structure for the verification of the GMI analysis re-
sults. Only points with the highest information content are
taken from the in-cylinder pressure curve.

Figure 7.32 depicts the control structure which is used for the verification
of the GMI analysis results obtained in Section 7.2.3. This structure has

165

7 Application Case Studies and Proof-of-Concept

been implemented on a prototype ECU which is comprised of two digi-
tal signal processors (DSP) mounted on a standard PC. The experimental
setup was an E-Class Mercedes equipped with the 2.3 liter spark ignition
engine M111E23.

Standard ECU + EMEK II

Prototype-ECU

M111E23 EMEK II

Sensor-
Signals

8x12bit
ADC
Anti-

Aliasing

TMS320

ECU

CA-Sync.

Sensors/Actuators

RS422

CAN
CPL DSP 2

DSP 1
Host PC

Figure 7.33: Hardware-Structure of the measurement setup. Communica-
tion between the series- and the prototype ECU is realized
with a Controller Area Network (CAN). The real time mea-
surement system EMEK II and the prototype ECU are com-
municating via RS422 link.

In Figure 7.33, the hardware structure of the employed measurement setup
in the car is presented. The experimental setup is comprised of a modified
series ECU, the real time measurement system EMEK II and a customized
prototype ECU. The real time measurement system EMEK II is synchro-
nized with the camshaft- and crankshaft trigger signals from the engine
when recording the sensor signals. In each segment, i.e. after each combus-
tion cycle, the data is transferred via RS422 link to DSP 2 over a Comport-

166

7.2 Neural Combustion Control in Automotive Environments

Link-Converter (CPL). The PI controller and the neural network, which is
responsible for the evaluation of the 50%-ECP, are implemented on DSP 2.
Finally, for the realization of a feedback control loop the new ignition tim-
ing is transmitted over the Controller Area Network (CAN) link to the
modified series ECU which applies it to the next combustion cycle.
Parallel to this combustion control loop, the measurements and results
are transferred from DSP 2 over the DSP communication port to DSP 1
which has direct memory access (DMA) to the host PC. The host PC is
responsible for initializing the measurement system and the configuration
of the DSP cluster. During operation, the in-cylinder pressure, 50%-ECP
and RPM can be directly accessed through the host PC.

As mentioned before, the linearity between ignition timing and the re-
sulting 50%-ECP has been proved by CSALLER [Csa81]. Hence, a linear
controller can be used for the task of adjusting the ignition timing accord-
ing to a desired value.

The employed PI controller has the following generic structure:

tign(k) = tign(k − 1) + p (ECPdesired(k − 1) − ECPact(k − 1)), (7.4)

where p is the proportional element which could be specifically adjusted
for each cylinder. Experiments showed that with p = 0.5 no unstable be-
havior was observable and the closed control loop showed an acceptable
dynamic response. However, in certain operating conditions of the engine,
the desired 50%-ECP in Equation 7.4 has to be set to values different from
8◦:

• Idle: In idle operation, the running smoothness is negatively affected
by the spark advance required to achieve a 50%-ECP of 8◦. In spite
of a lower engine efficiency the desired 50%-ECP is set to 15◦.

• Full load: In full-load operation, an optimal ignition timing would
result in knocking combustions. To prevent the engine from serious
damage, the desired 50%-ECP is set to 15◦ and an additional anti-
knock control is activated.

• Throttle cutoff: Since no fuel is injected when the engine is above
idle speed and the throttle is closed, the term 50%-ECP is not de-
fined. Under this condition the combustion control temporarily sus-
pended and the ignition timing set according to an default ignition
map.

167

7 Application Case Studies and Proof-of-Concept

In the course of this work, all experiments were carried out for regular op-
erating conditions of the engine. No special conditions, e.g. cold start with
catalyst heating have been taken into account.

1 100 200 300 400 500
Cycles

-5

5

15

25

[Crank Angle/◦] [Error/◦]

-20

0

20

Actual 50%-ECP
Desired 50%-ECP
Error

Figure 7.34: The 50%-ECPs of cylinder 3 over 500 cycles with conventional
open-loop combustion control.

In Figure 7.34, the actual- and the desired 50%-ECP are plotted over 500
combustion cycles. In this case, the ignition angle is determined from a
conventional ignition map inside the ECU as a function of engine speed
and load. The deviation of the actual and the desired value of the 50%-
ECP varies between −11◦ and +18◦.
In contrast to this, Figure 7.35 depicts the actual- and the desired 50%-
ECPs of 500 cycles while combustion control is active. Compared to
Figure 7.34, the actual 50%-ECP follows the desired value quite accurately
with a significantly smaller deviation between −3◦ and +8◦.

168

7.2 Neural Combustion Control in Automotive Environments

1 100 200 300 400 500
Cycles

-5

5

15

25

[Crank Angle/◦] [Error/◦]

-20

0

20

Actual 50%-ECP
Desired 50%-ECP
Error

Figure 7.35: The 50%-ECPs of cylinder 3 over 500 cycles with optimized
neural combustion control.

In this chapter, it could be demonstrated that a closed loop combustion
control can be successfully implemented, based on the results of an opti-
mized neural analysis of the combustion pressure curves. In Section 7.2.3,
the mutual information has been employed for the construction of optimal
neural training data with respect to the determination of the 50%-ECP.
This results have further been transferred to the problem of combustion
control. It could be successfully proved that an optimized neural evaluation
of the combustion pressure signal is also applicable to the implementation
of a combustion controller in real time automotive environments.

169

7 Application Case Studies and Proof-of-Concept

170

8 Conclusion

Since almost every interaction between entities in the real world is nonlin-
ear in the last consequence, the employed analysis method has to account
for this fact as well.
The main objective of this work was the development of a general frame-
work for nonlinear feature selection of high dimensional data, based on the
general mutual information. During the course of this work, the capability
of this reputable concept of information theory has been investigated in
various aspects of data analysis.

It turned out that data analysis, as far as necessary for the selection of
relevant features, can be generally accomplished on the level of its implicit
information content. In this context, it could be shown that the general
mutual information can be successfully employed to measure the informa-
tion content and hence render the selection of the most relevant features
for arbitrary, high dimensional data sets possible.
Due to the fact that the general mutual information is of high specificity
and sensitivity with respect to nonlinear, dynamic dependencies, it proved
to be also applicable to reveal the structural- and temporal dependencies
in nonlinear dynamic processes.
Furthermore it could be successfully demonstrated, that the general mu-
tual information can be applied in various instances of feature selection
strategies to identify the variables from which the actual training sets are
derived. Since neural networks have been chosen as the modelling approach
in this work, neural training sets are constructed as a result of the prior
data analysis. Among the investigated strategies, forward selection could
be identified to be most suitable for the construction of valuable training
sets. Since the feature selection process is solely driven by the mutual in-
formation, the obtained data sets are definitely optimal from the viewpoint
of information theory.

171

8 Conclusion

To demonstrate the striking interdisciplinary applicability of the
information-based feature selection method in this work, it has been em-
ployed to solve problems from totally different technical disciplines. As a
matter of fact, the prove-of-concept could be provided in terms of applica-
tion case studies for tasks in industrial glass production and in automotive
engineering.
In both cases, it turned out clearly that the dimensionality of the input
space could be remarkably reduced by means of the forward selection strat-
egy employing the general mutual information. Due to the flexible appli-
cation of this method, the time dependencies in the glass melting process
data could also be considered by the selection process.
The task in the automotive engineering application case, was to derive
an optimized virtual neural combustion sensor from high dimensional in-
put data. It could also be successfully demonstrated how the original 180-
dimensional input space could be impressively reduced by means of this
information based feature selection method [HS00] [HF01]. In a second
step, this virtual sensor has been used for the construction of a closed loop
combustion controller with real time capability. Finally, this hybrid con-
troller has been implemented in a real-time automotive environment and
perfectly proved to meet the required degree of accuracy.

In conclusion it can be stated that the general mutual information turned
out to be a powerful and sophisticated method to objectively analyze the
information content of arbitrary data sets. In combination with the forward
selection strategy, it also turned out that the GMI is a credible measure
for the feature selection and dimension reduction of high dimensional data.
The flexible application of this sophisticated approach is also confirmed by
its further employment for the different classes of problems [Frö03]. How-
ever, its range of applicability goes definitely far beyond automotive engi-
neering or industrial glass production.
The only mentionable restriction that emerged so far when employing the
general mutual information, is the mandatory availability of a sufficient
amount of representative quantifiable data. In this context, the issue of
missing values plays an important role. It turned out that the computa-
tion of the GMI is fairly robust for data containing less than approximately
10% missing values. In cases with more missing values, the prior applica-
tion of missing-data procedures is strongly indicated.

Finally, the versatility of the general mutual information allows it to be
employed in various constellations for further perspectives. When consid-
ering the performance of supervised neural training, the general mutual

172

information might also be employed for the online adaption of the learning
rate. The modification of the learning rate during training could then be
realized as a function of the mutual information between the input- and
the target values of the validation data set and the according network es-
timates. In this constellation, the abstract flow of information through the
neural structure is continuously monitored to measure the network perfor-
mance during training. This, in turn, allows for the formulation of adaptive
learning algorithms which incorporate the implicit properties of the train-
ing data sets.

Another interesting field for further research might be the application of
the general mutual information to biometric data. This method could be
of particular interest for the analysis of so called microarray data sets.
Besides the standard methods like clustering and principal component an-
alysis, the mutual information might also prove here to be a valuable
method for analyzing the already high dimensional gene expression pro-
files.

173

8 Conclusion

174

Appendix

175

A Properties of I2(ξ, η)

Proof A.1 (Properties of the GMI I2(ξ, η))
Statement 1 of Theorem 5.3 is determined from the symmetry of the un-
derlying entropies H2((ξ, η)) = H2((η, ξ)).

Provided that η is uniformly distributed we get

I2(ξ, η) = −log
X
m

p2
m − logN−1 + log

X
m,n

s2m,n

= log

P
m,n s

2
m,n

N−1
P

m p2
m

= log

1 +

P
m,n s

2
m,n −N−1P

m p2
m

N−1
P

m p2
m

!
= log

1 +

P
m,n(sm,n − pmN

−1)2

N−1
P

m p2
m

!
. (A.1)

Regarding the argument in the last line of Equation A.1, we can draw the
conclusion that I2(ξ, η) is always non-negative. This proves the left-hand
side of Equation 5.7.

I2(ξ, η) = 0 holds if and only if sm,n = pmN
−1, for all m = 1, ...,M and

n = 1, ..., N . This fact implies that ξ and η are statistical independent.
Hence, Statement 3 of Theorem. 5.3 is proved.

Furthermore the fact thatX
m

p2
m =

X
m

 X
n

sm,n

!2

≥
X
m,n

s2m,n, yields

177

A Properties of I2(ξ, η)

H2((ξ, η)) −H2(ξ) = −log
X
m,n

s2m,n + log
X
m

p2
m = log

0B� P
m

p2
mP

m,n

s2m,n

1CA ≥ 0

⇐⇒ I2(ξ, η) = H2(ξ) +H2(η) −H2((ξ, η))

= H2(η) − (H2((ξ, η)) −H2(ξ)) ≤ H2(η).

I2(ξ, η) = H2(η) is achieved if and only if for every m ∈ {1, ...,M} the
relation sm,n∗ = pm holds for exactly one n∗(m) ∈ {1, ..., N}, otherwise
sm,n = 0. If so, η is a function of ξ.

On the other hand we haveX
n

q2n =
X

n

 X
m

sm,n

!2

≥
X
m,n

s2m,n

and hence

H2((ξ, η)) −H2(η) ≥ 0 ⇐⇒ I2(ξ, η) ≤ H2(ξ).

In this case, the equivalence I2(ξ, η) = H2(ξ) holds if and only if ξ is a func-
tion of η. This proves the right-hand side of Equation 5.7 and Statement 4
of Theorem 5.3. ⊓⊔

178

B Algorithms

B.1 General Mutual Information I2

Algorithm B.1 (General Mutual Information I2)

function Ixy = gmi(X,Y)
begin

/* Ranking of the time series */
rX = ranking(X);
rY = ranking(Y);
rXY = cat(rX,rY);

/* Iteration process to determine epsilon */
epsilon = determine epsilon(rXY);

/* Compute entropy */
hx = h(rX, epsilon);
hy = h(rY, epsilon);
hxy = h(rXY, epsilon);

/* Compute normalized GMI */
Ixy = (hx + hy - hxy) / hy;

end /* function */

This pseudo-code function describes the basic calculation steps to obtain
the normalized General Mutual Information between the, possibly multi
dimensional, time series X and Y . It brings together the previously men-
tioned theoretical fragments, like ranking and entropy computation, as
described earlier in Chapter 5 The coarseness parameter epsilon is deter-
mined iteratively in such a way that the entropy h(rXY) is sufficiently close
to a predefined constant.

179

B Algorithms

Algorithm B.2 (Ranking)

function rX = ranking(X)
begin

for n=1:NumberOfTimeSeries(X)

/* Determine sort index */
[sortX(n,:),sort index X(n,:)]=sort(X(n,:));

/* Resort ascending sequence according to */
/* the corresponding sort index. */
rX(n,sort index X(n,:))=...
linspace(0.0,1.0,length(X(n,:)));

end /* for n */
end /* function */

The term ranking denotes the transformation of an arbitrarily distributed
time series into its uniformly distributed counterpart. The process of rank-
ing is basically implemented as a sorting algorithm, from which only the
resulting restructuring index is taken. The restructuring index is used for
reordering an ascending sequence to reconstruct the shape of the original
signal.
This function takes arbitrarily distributed time series {xi} and transforms
them into sequences {ri} of uniformly distributed relative rank numbers.
The relative rank numbers are distributed in the interval [0, 1], as described
in Section 5.3.2.

180

B.1 General Mutual Information I2

Algorithm B.3 (Entropy)

function hX = h(rX, epsilon)
begin

lenVec=LengthOfTimeSeries(rX);
numVec=NumberOfTimeSeries(rX);

/* Compute the conjunction of all binary */
/* rank distance matrices. */
for n=1:lenVec

xBinVec = ...
abs(rX(1,1:lenVec-n)-rX(1,1+n:lenVec))<epsilon;

for i = 2:numVec
xBinVec = xBinVec & ...
(abs(rX(i,1:lenVec-n)-rX(i,1+n:lenVec))<epsilon);

end /* for i */

/* Successively update correlation integral. */
Cx=Cx+sum(xBinVec);

end /* for n */

/* Finally, compute the entropy from the value */
/* of the correlation integral Cx. */
hx = -log2((1.0/lenVec)*(1.0+((2.0/lenVec)*Cx)));

end /* function */

This function implements the concept of the binary rank distance matrices
and its calculus, as described in Section 5.3.3. In order to minimize the
memory requirement, this algorithm successively computes the correlation
integral Cx on the basis of the secondary diagonals in the binary rank dis-
tance matrices.

181

B Algorithms

B.2 Backward Elimination
Algorithm B.4 (Backward Elimination)

function removed vars = BackwardElimination (X,Y)
begin

removed vars=[];
acutal X=X;

for k=1:(NumberOfTimeSeries(X) - 1)
/* Compute reference GMI for current iteration. */
ref gmi=gmi(actual X,Y);

tmp gmi(v)=[];
for v ∈ SetOfIndicies(actual X)

/* GMIs with temporarily removed variables. */
tmp gmi(v) = gmi(RemoveVar(actual X, v),Y);

end /* for v */

/* Get variable with smallest information gain. */
var index = min(ref gmi - tmp gmi);

/* Remove this variable.*/
actual X=RemoveVar(actual X, var index);
removed vars(k) = var index;

end /* for k */

/* Append last remaining variable.*/
removed vars(k+1) = SetOfIndicies(actual X);

end /* function */

The backward elimination strategy starts out with a complete set of input
variables. It removes successively those input variable from X which show
the least information gain between two iterations. Finally, backward elim-
ination returns the sequence of removed variable indices. The last entry of
this sequence depicts the variable with the highest information gain.

182

B.3 Forward Selection

B.3 Forward Selection

Algorithm B.5 (Forward Selection)

function [vars,tlags]=ForwardSelection(X,Y,maxDim,maxTLags)
begin

vars=[];
tlags=[];

/* Select the specified max. number of variables. */
for k=1:maxDim

tmp X = SelectTimeSeries(X,vars);
tmp X = ApplyTimeLags(tmp X,tlags);
tmp gmi = [];

/* Scan along variables. */
for d=1:NumberOfTimeSeries(X)

X d = SelectTimeSeries(X,d);

/* Scan along time lags. */
for t=0:maxTLags

X dt = ApplyTimeLags(X d,t);

/* GMI with temporarily added variable. */
tmp gmi(d,t)=gmi((tmp X ∪ X dt),Y);

end /* for t */
end /* for d */

/* Get variable, time lag combination */
/* with highest information gain. */
[var index, t lag] = max(tmp gmi);

/* Record the selected variable, time lag */
/* combination. */
vars(k) = var index;
tlags(k) = t lag;

end /* for k */
end /* function */

In contrast to the backward elimination strategy, forward selection starts
out with an empty feature set. In each iteration, it successively adds one
particular feature which provides the highest information gain among all

183

B Algorithms

available alternatives. The fact that forward selection starts out with an
empty feature set, renders the identification of implicit time dependencies
feasible in the first place.

184

C Feature Selection Strategies

with the GMI

C.1 Global Selection Strategy

In Tables C.1, C.2, C.3 and C.4, the indices of the input variable constella-
tions with the highest GMI values among all possible input combinations
are depicted. The set of input variables x in the expression I2(x, y1) is
defined as x = {xik

|ik 6= 0, k = 1, ..., D}, where D is the cardinality of
the feature subset, which contains the chosen variables from the N dimen-
sional superset of all features. In this particular case, the cardinality of the
feature subset, i.e. the number of variables to be chosen is D = 7.

xi1 xi2 xi3 xi4 xi5 xi6 xi7 I2(x, y1)

1 1 0 0 0 0 0 0 0.1342
...

...
...

...
...

...
...

...
...

23259 3 4 6 7 9 10 11 0.6138
23260 3 4 6 7 9 10 12 0.6308
23261 3 4 6 7 9 10 13 0.7333
23262 3 4 6 7 9 10 14 0.6547
23263 3 4 6 7 9 10 15 0.6493

...
...

...
...

...
...

...
...

...
26332 10 11 12 13 14 15 16 0.3724

Table C.1: Indices of the input variable constellation around the maximum
GMI value I2(xglob, y1) among all possible input combinations.

185

C Feature Selection Strategies with the GMI

xi1 xi2 xi3 xi4 xi5 xi6 xi7 I2(x, y2)

1 1 0 0 0 0 0 0 0.2783
...

...
...

...
...

...
...

...
...

25848 5 7 8 11 12 13 14 0.8758
25849 5 7 8 11 12 13 15 0.8730
25850 5 7 8 11 12 13 16 0.8758
25851 5 7 8 11 12 14 15 0.8331
25852 5 7 8 11 12 14 16 0.8468

...
...

...
...

...
...

...
...

...
26332 10 11 12 13 14 15 16 0.7121

Table C.2: Indices of the input variable constellation around the maximum
GMI value I2(xglob, y2) among all possible input combinations.

xi1 xi2 xi3 xi4 xi5 xi6 xi7 I2(x, y3)

1 1 0 0 0 0 0 0 0.3565
...

...
...

...
...

...
...

...
...

22202 2 5 7 8 9 13 14 0.9195
22203 2 5 7 8 9 13 15 0.9187
22204 2 5 7 8 9 13 16 0.9221
22205 2 5 7 8 9 14 15 0.8440
22206 2 5 7 8 9 14 16 0.8468

...
...

...
...

...
...

...
...

...
26332 10 11 12 13 14 15 16 0.7109

Table C.3: Indices of the input variable constellation around the maximum
GMI value I2(xglob, y3) among all possible input combinations.

186

C.1 Global Selection Strategy

xi1 xi2 xi3 xi4 xi5 xi6 xi7 I2(x, y4)

1 1 0 0 0 0 0 0 0.1600
...

...
...

...
...

...
...

...
...

22910 3 4 5 6 7 9 11 0.5238
22911 3 4 5 6 7 9 12 0.5193
22912 3 4 5 6 7 9 13 0.7790
22913 3 4 5 6 7 9 14 0.5884
22914 3 4 5 6 7 9 15 0.5821

...
...

...
...

...
...

...
...

...
26332 10 11 12 13 14 15 16 0.3023

Table C.4: Indices of the input variable constellation around the maximum
GMI value I2(xglob, y4) among all possible input combinations.

0.0

0.2

0.4

0.6

0.8

1.0[I2/%]

1 2 3 4 5 6 7
[d/Dim. Subset]

I2(xglob(d), y1)

I2(xglob(d), y4)

I2(xglob(d), y2)

I2(xglob(d), y3)

Figure C.1: The maximum GMI I2(xglob(d), yj) as a function of the maxi-
mum number of selected variables in the feature subsets.

Figure C.1 depicts the maximum GMI values as a function of the number
of selected features for each output variable yj . The set of input variables
xglob(d) in Figure C.1 is defined as

xglob(d) = argmax
vi

[I2(vi, yj)] , (C.1)

where vi = {xik
| ik 6= 0, k = 1, ..., d, i = 1, ..., G(N, d)}.

187

C Feature Selection Strategies with the GMI

C.2 Backward Elimination Strategy

0.0

0.2

0.4

0.6

0.8

1.0

[I2/%]

1 2 4 6 8 10 12 14 16
[d/Dim. Subset]

I2(xglob(d), y1)

I2(xback(d), y1)

Figure C.2: The GMI of the chosen variables from backward elimination
I2(xback(d), y1) and the global maximum I2(xglob(d), y1) as a
function of the number of selected variables in the feature sub-
sets.

0.0

0.2

0.4

0.6

0.8

1.0

[I2/%]

1 2 4 6 8 10 12 14 16
[d/Dim. Subset]

I2(xglob(d), y2)

I2(xback(d), y2)

Figure C.3: The GMI of the chosen variables from backward elimination
I2(xback(d), y2) and the global maximum I2(xglob(d), y2) as a
function of the number of selected variables in the feature sub-
sets.

188

C.2 Backward Elimination Strategy

0.0

0.2

0.4

0.6

0.8

1.0

[I2/%]

1 2 4 6 8 10 12 14 16
[d/Dim. Subset]

I2(xglob(d), y3)

I2(xback(d), y3)

Figure C.4: The GMI of the chosen variables from backward elimination
I2(xback(d), y3) and the global maximum I2(xglob(d), y3) as a
function of the number of selected variables in the feature sub-
sets.

0.0

0.2

0.4

0.6

0.8

1.0

[I2/%]

1 2 4 6 8 10 12 14 16
[d/Dim. Subset]

I2(xglob(d), y4)

I2(xback(d), y4)

Figure C.5: The GMI of the chosen variables from backward elimination
I2(xback(d), y4) and the global maximum I2(xglob(d), y4) as a
function of the number of selected variables in the feature sub-
sets.

The set of input variables xback(d) in the Figures above is defined for
d = N, ..., 2 by the following iteration:

189

C Feature Selection Strategies with the GMI

xback(d) = {x1, ..., xd} ,

xback(d− 1) = xback(d) \ argmin
vk

[I2(xback(d), yj) − I2(vk, yj)] , (C.2)

where vk is defined as vk = {xi | xi ∈ xback(d)\{xik
}, xik

∈ xback(d)} and
k = 1, ..., d.

190

C.3 Forward Selection Strategy

C.3 Forward Selection Strategy

0.0

0.2

0.4

0.6

0.8

1.0

[I2/%]

1 2 4 6 8 10 12 14 16
[d/Dim. Subset]

I2(xglob(d), y1)

I2(xforw(d), y1)

Figure C.6: The GMI of the chosen variables from forward selection
I2(xforw(d), y1) and the global maximum I2(xglob(d), y1) as
a function of the number of selected variables in the feature
subsets.

0.0

0.2

0.4

0.6

0.8

1.0

[I2/%]

1 2 4 6 8 10 12 14 16
[d/Dim. Subset]

I2(xglob(d), y2)

I2(xforw(d), y2)

Figure C.7: The GMI of the chosen variables from forward selection
I2(xforw(d), y2) and the global maximum I2(xglob(d), y2) as
a function of the number of selected variables in the feature
subsets.

191

C Feature Selection Strategies with the GMI

0.0

0.2

0.4

0.6

0.8

1.0

[I2/%]

1 2 4 6 8 10 12 14 16
[d/Dim. Subset]

I2(xglob(d), y3)

I2(xforw(d), y3)

Figure C.8: The GMI of the chosen variables from forward selection
I2(xforw(d), y3) and the global maximum I2(xglob(d), y3) as
a function of the number of selected variables in the feature
subsets.

0.0

0.2

0.4

0.6

0.8

1.0

[I2/%]

1 2 4 6 8 10 12 14 16
[d/Dim. Subset]

I2(xglob(d), y4)

I2(xforw(d), y4)

Figure C.9: The GMI of the chosen variables from forward selection
I2(xforw(d), y4) and the global maximum I2(xglob(d), y4) as
a function of the number of selected variables in the feature
subsets.

The set of input variables xforw(d) in the Figures above is defined for
d = 1, .., N by the following iteration:

192

C.3 Forward Selection Strategy

xforw(0) = { } ,

xforw(d) = xforw(d− 1) ∪ argmax
vk

[I2(vk, yj)] , (C.3)

where vk is defined as vk = {xi | xi ∈ xforw(d− 1) ∪ {xk}}. The subindex
k = 1, ..., N indicates the temporarily added variable.

193

C Feature Selection Strategies with the GMI

194

D Application of the Forward

Selection Strategy

D.1 Selection without the Consideration of

Time Lags

0.0

0.2

0.4

0.6

0.8

1.0

[I2/%]

1 2 4 6 8 10 12 14 16
[i/xi]

Highest achievable
GMI value (0.74%)

...
I2({xi, {xi1

, xi2
}}, y1)

I2({xi, {xi1
}}, y1)

I2({xi}, y1)

Figure D.1: The GMI functions and the selected variables of all iteration
cycles for output variable y1. The variables comprising 99% of
the highest achievable GMI value are: x7, x9, x13, x4, x6, x3.

195

D Application of the Forward Selection Strategy

0.0

0.2

0.4

0.6

0.8

1.0

[I2/%]

1 2 4 6 8 10 12 14 16
[i/xi]

Highest achievable
GMI value (0.91%)

...

I2({xi}, y2)

I2({xi, {xi1
}}, y2)

I2({xi, {xi1
, xi2

}}, y2)

Figure D.2: The GMI functions and the selected variables of all iteration
cycles for output variable y2. The variables comprising 99% of
the highest achievable GMI value are: x10, x6, x7, x11, x12,
x14, x8,x16.

0.0

0.2

0.4

0.6

0.8

1.0

[I2/%]

1 2 4 6 8 10 12 14 16
[i/xi]

Highest achievable
GMI value (0.94%)

...

I2({xi, {xi1
, xi2

}}, y3)

I2({xi, {xi1
}}, y3)

I2({xi}, y3)

Figure D.3: The GMI functions and the selected variables of all iteration
cycles for output variable y3. The variables comprising 99%
of the highest achievable GMI value are: x13, x7, x9, x2, x8,
x4,x16.

196

D.2 Selection including Time Lags

0.0

0.2

0.4

0.6

0.8

1.0

[I2/%]

1 2 4 6 8 10 12 14 16
[i/xi]

Highest achievable
GMI value (0.78%)

...

I2({xi, {xi1
, xi2

}}, y4)

I2({xi, {xi1
}}, y4)

I2({xi}, y4)

Figure D.4: The GMI functions and the selected variables of all iteration
cycles for output variable y4. The variables comprising 99% of
the highest achievable GMI value are: x6, x9, x7, x3, x13.

D.2 Selection including Time Lags

0 25
50

75
100

[t/days]0
5

10
15

[i/xi]

0.0

0.2

0.4

0.6

0.8

1.0

[I2/%]

Figure D.5: The GMI as a function of the input variable xi and the time
lag t for output variable y1

197

D Application of the Forward Selection Strategy

0 25
50

75
100

[t/days]0
5

10
15

[i/xi]

0.0

0.2

0.4

0.6

0.8

1.0

[I2/%]

Figure D.6: The GMI as a function of the input variable xi and the time
lag t for output variable y2

0 25
50

75
100

[t/days]0
5

10
15

[i/xi]

0.0

0.2

0.4

0.6

0.8

1.0

[I2/%]

Figure D.7: The GMI as a function of the input variable xi and the time
lag t for output variable y3

198

D.2 Selection including Time Lags

0 25
50

75
100

[t/days]0
5

10
15

[i/xi]

0.0

0.2

0.4

0.6

0.8

1.0

[I2/%]

Figure D.8: The GMI as a function of the input variable xi and the time
lag t for output variable y4

199

D Application of the Forward Selection Strategy

200

E Neural Identification of the

Combustion Process

0

10

20

30

[Output 50%-ECP/◦]

0

10

20

30

[Error/◦]

0 10 20 30
[Target 50%-ECP/◦]

(a)

|Emax| = 0.80◦

0

10

20

30

[Output 50%-ECP/◦]

0

10

20

30

[Error/◦]

0 10 20 30
[Target 50%-ECP/◦]

(b)

|Emax| = 0.79◦

Figure E.1: Neural identification results of the equidistantly sampled input
variables for the determination of the 50% ECP. (a) Network
performance after training with the RTRL algorithm, (b) Net-
work performance after Extended Kalman Filter training.

201

E Neural Identification of the Combustion Process

0

10

20

30

[Output 50%-ECP/◦]

0

10

20

30

[Error/◦]

0 10 20 30
[Target 50%-ECP/◦]

(a)

|Emax| = 1.59◦

0

10

20

30

[Output 50%-ECP/◦]

0

10

20

30

[Error/◦]

0 10 20 30
[Target 50%-ECP/◦]

(b)

|Emax| = 1.51◦

Figure E.2: Neural identification results of the GMI selected input vari-
ables for the determination of the 50% ECP. (a) Network per-
formance after training with the RTRL algorithm, (b) Network
performance after Extended Kalman Filter training.

202

F Curriculum Vitae

Persöhnliche
Daten

Geburtsort 22.12.1969 Hof, Bayern
Nationalität deutsch
Familienstand ledig

Schulen

1975-1980 Grund- und Hauptschule
Kirchenlamitz / Weißenstadt

1980-1989 Gymnasium Pegnitz
1989 Abitur

Bundeswehr

1989-1990 EloKa / Fernmeldeaufklärung

Universität

10/1990-04/1997 Informatikstudium an der
Universität Würzburg

1993-1994 Akademisches Jahr an der
University of Texas at
Austin

1996 Diplomarbeit in der
Forschungsabteilung der
Daimler-Benz AG

203

F Curriculum Vitae

Diplomarbeit

Recurrent Multilayer Perceptrons for Identification and Control with
Extended Kalman Filter Training

Wissenschaftliche Veröffentlichungen

F. Heister und R. Müller, An Approach for the Identification of
Nonlinear, Dynamic Processes with Kalman Filter Trained
Recurrent Neural Networks, Beiträge zur Leistungsbewertung
verteilter Systeme der Universität Würzburg, 1999

F. Heister und G. Schock, Nonlinear, statistical Data-Analysis
for the optimal Construction of Neural-Network Inputs with
the Concep of a Mutual Information, ES2000-23, European
Symposium on Artificial Neural Networks Proceedings, 2000

F. Heister und M. Fröhlich, Nonlinear Time Series Analysis of
Combustion-Pressure Data for Neural Network Training with the
Concept of a Mutual Information”,
Proc IMechE, Vol 215, Part D, 2001

Beruflicher
Hintergrund

08/1991 Werkstudent bei Siemens,
Abt. Projektmanagement ICE

09/1992-10/1992 Dozent in der Berufsfortbildung
der Bayerischen Arbeitgeber-
verbände

11/1994-03/1995 Wissenschaftliche Kraft am
Lehrstuhl für Informatik

05/1997-06/1997 Dozent in der Berufsfortbildung
der Bayerischen Arbeitgeber-
verbände

07/1997-06/2000 DaimlerChrysler AG, Esslingen
07/2000-04/2002 Sonem, GmbH, Würzburg
10/2002-heute F.Hoffmann-La Roche AG,

Schweiz

204

List of Figures

3.1 Scree plot of percent variability explained by each principal
component . 18

3.2 Decision tree induced from the golf example data set. 39

4.1 Internal structure of a computing neuron. 44

4.2 Activation functions for artificial neurons. 46

4.3 Graph Representations of Feedforward Neural Networks. . . 48

4.4 Graph representations of dynamic neural structures. 49

4.5 The standard back propagation algorithm. 53

4.6 Recurrent neural network and its feedforward equivalent. . 53

4.7 General description of a nonlinear dynamic system model. . 58

5.1 Mutual Information I(ξ, η). 62

5.2 Shannon’s model for the flow of information through an ab-
stract, symmetric message channel contaminated with noise. 62

5.3 Estimation of the relative frequencies cε1,K(m) for a one
dimensional time series x(k) ⊆ IR1. 71

5.4 Estimation of the relative frequencies c~ε,K(m) of a two di-
mensional signal ~x(k) ⊆ IR2. 71

5.5 Probability density function P (ηi = ym) and its cumulative
distribution function F (ym) = P (ηi ≤ ym). 73

5.6 Nonlinear transformation of an arbitrarily distributed signal
to relative ranks with a uniform distribution. 74

5.7 (a) Binary rank distance matrix Bd of the signal depicted in
Fig. 5.6. (b) Binary matrix of a white noise process, showing
no statistic dependencies. In this image representation, the
binary ones are depicted as black dots. 77

205

List of Figures

5.8 Values of the coarseness level ε(n) and the according entropy

H2((~ξ, ~η), ε(n)) during iteration. The dashed lines represent
the boundaries of the contractive interval for the search of
ε, with p = 0.02. 80

5.9 General description of the deterministic nonlinear dynamic
process, defined in Equations 5.29. 83

5.10 Response of the nonlinear dynamic system to square-pulse
input sequences. The variables u2 and u4 are used as inputs
to the dynamic process, while u1 and u3 are redundant. . . 84

5.11 The GMI as a function of the input variable ui and a specific
time lag k. 85

5.12 Spearman’s rank correlation coefficients as a function of the
input variable ui and a specific time lag k. 86

5.13 Neural identification result of a Recurrent Multilayer Per-
ceptron RMLP-4-4-2-1 with Extended Kalman Filter train-
ing and no prior input variable selection. 87

5.14 Neural identification result of a Recurrent Multilayer Per-
ceptron RMLP-2-4-2-1 with Extended Kalman Filter train-
ing. The GMI has been employed for prior input variable
selection. 88

5.15 The GMI as a function of the input variable ui and a specific
time lag k with no missing values. 89

5.16 The GMI as a function of the input variable ui and a specific
time lag k with 10% missing values. The two local maxima
are still located at the correct position. 90

5.17 The GMI as a function of the input variable ui and a specific
time lag k with 20% missing values. The two local maxima
are now unspecific and of diffuse shape. 91

6.1 System model industrial glass melting process. 100
6.2 Qualitative characteristics of the preprocessed glass melting

data. (a), (d) First and last of the 16 inputs to the glass
melting process. (b), (c), (e), (f) Response from the system
due to the applied inputs. 102

6.3 The maximum GMI I2(xglob(d), y1) as a function of the max-
imum number of selected variables in the feature subset. . . 106

6.4 The GMI of the chosen variables from backward elimination
I2(xback(d), y1) and the global maximum I2(xglob(d), y1) as
a function of the number of selected variables in the feature
subsets. 108

206

List of Figures

6.5 The GMI of the chosen variables from forward selection
I2(xforw(d), y1) and the global maximum I2(xglob(d), y1) are
depicted as a function of the number of selected variables in
the feature subsets. 110

6.6 The first iteration of the feature selection procedure: Calcu-
lation of the GMI between the one dimensional time series
{xi(n)} and the time series of the output variable y1(n). . . 113

6.7 The GMI function of the first iteration cycle for output vari-
able y1. 113

6.8 The second iteration of the feature selection procedure: Cal-
culation of the GMI between the two dimensional time series
{xi(n), {x7(n)}} and the time series of the output variable
y1(n) of the glass melting process. 114

6.9 The GMI functions of the first six iteration cycles for output
variable y1. The variables comprising 99% of the maximum
achievable GMI are: x7, x9, x13, x4, x6, x3. 115

6.10 The second iteration of the feature selection procedure in-
cluding the analysis of time dependencies. 117

6.11 The GMI as a function of the input variable xi and the
variable specific time lag t for output variable y1 118

6.12 The GMI functions of the first six iteration cycles for input
variable y1. The GMI is now a function of the input variable
xi and the time lag t for output variable y1. 119

7.1 Glass melting tank after cooling down. 123
7.2 Technical specification of a glass melting tank. (a) Glass

melting with embedded flow vectors. (b) Combustion cham-
ber with temperature distribution. 123

7.3 System model of the glass melting process. 124
7.4 Exemplary segmentation of the available process data into

training- and test data sets. 125
7.5 Neural identification results with all available input vari-

ables: (a) |µtest|=1.9, σtest=2.2, (b) |µtest|=16.3,
σtest=9.5, (c) |µtest|=0.4, σtest=4.5, (d) |µtest|=4.2,
σtest=3.9 . 127

7.6 Neural identification results with the GMI input variables:
(a) |µtest|=1.1, σtest=2.2, (b) |µtest|=10.6, σtest=7.1,
(c) |µtest|=0.4, σtest=4.1, (d) |µtest|=2.1, σtest=3.2 128

7.7 Overall errors of the best EUNITE solutions and of the re-
sult obtained from the GMI selected input variables. 129

7.8 Basic structure of a four-stroke spark-ignition engine. 132

207

List of Figures

7.9 Working cycle of a four-stroke combustion engine. 133

7.10 (a) Qualitative influence of λ on the exhaust emissions. (b)
Qualitative influence of λ on the power output P and the
effective fuel consumption be of the engine. 135

7.11 Conversion rates of the catalytic converter. 136

7.12 Sensor system of a spark-ignition engine. 137

7.13 In-cylinder pressure and energy conversion. 141

7.14 Efficiency of a combustion engine versus the deviation from
the optimal ignition timing. 142

7.15 Functional Structure of an Engine Control Unit. 144

7.16 Algorithm in the engine control unit which determines the
proper ignition timing. 145

7.17 Characteristic map of the basic ignition timing. 146

7.18 In-cylinder pressure, the 50%-ECP and the course of the
energy conversion during one combustion cycle 147

7.19 Basic structure of a closed loop neural combustion control. . 148

7.20 Equidistant down-sampling of the in-cylinder pressure and
presentation to the neural network. 149

7.21 Calculation of the GMI between i-th sample point of the
combustion pressure curves {xi(k)}

K
k=1 and the correspond-

ing 50%-ECPs {y(k)}K
k=1. 151

7.22 The GMI function reaches its maximum at the crank angle
position with the highest information content. 152

7.23 Spearman’s rank correlation coefficients adopt values around
zero for crank angle position where the GMI reaches its max-
imum. 152

7.24 Calculation of the GMI values between the two dimensional
input sequence {xi(k), (x99(k))}

K
k=1 and the corresponding

50% energy conversion points {y(k)}K
k=1. 154

7.25 The GMI function I2({xi, (xi1)}, y) resulting from the sec-
ond iteration of the selection process. 154

7.26 Sequence of GMI functions for successive iteration steps of
the selection process. 155

7.27 General mutual information I2(xi, xj) between pairs of input
variables xi and xj . The GMI values for the pairs of the
selected input variables are outlined by dots. 156

7.28 Presentation of the GMI selected points of the in-cylinder
pressure curve to a neural network after Extended Kalman
Filter training. 159

208

List of Figures

7.29 Response of the neural combustion model after Extended
Kalman Filter training of the GMI selected features of the
combustion pressure curve. 161

7.30 Output of the neural combustion model after Extended
Kalman Filter training of the PCA determined features. . . 162

7.31 The neural combustion model after Extended Kalman Filter
training of the ICA determined features. 163

7.32 Control-structure for the verification of the GMI analysis
results. Only points with the highest information content
are taken from the in-cylinder pressure curve. 165

7.33 Hardware-Structure of the measurement setup. Communi-
cation between the series- and the prototype ECU is real-
ized with a Controller Area Network (CAN). The real time
measurement system EMEK II and the prototype ECU are
communicating via RS422 link. 166

7.34 The 50%-ECPs of cylinder 3 over 500 cycles with conven-
tional open-loop combustion control. 168

7.35 The 50%-ECPs of cylinder 3 over 500 cycles with optimized
neural combustion control. 169

C.1 The maximum GMI I2(xglob(d), yj) as a function of the max-
imum number of selected variables in the feature subsets. . 187

C.2 The GMI of the chosen variables from backward elimination
I2(xback(d), y1) and the global maximum I2(xglob(d), y1) as
a function of the number of selected variables in the feature
subsets. 188

C.3 The GMI of the chosen variables from backward elimination
I2(xback(d), y2) and the global maximum I2(xglob(d), y2) as
a function of the number of selected variables in the feature
subsets. 188

C.4 The GMI of the chosen variables from backward elimination
I2(xback(d), y3) and the global maximum I2(xglob(d), y3) as
a function of the number of selected variables in the feature
subsets. 189

C.5 The GMI of the chosen variables from backward elimination
I2(xback(d), y4) and the global maximum I2(xglob(d), y4) as
a function of the number of selected variables in the feature
subsets. 189

209

List of Figures

C.6 The GMI of the chosen variables from forward selection
I2(xforw(d), y1) and the global maximum I2(xglob(d), y1) as
a function of the number of selected variables in the feature
subsets. 191

C.7 The GMI of the chosen variables from forward selection
I2(xforw(d), y2) and the global maximum I2(xglob(d), y2) as
a function of the number of selected variables in the feature
subsets. 191

C.8 The GMI of the chosen variables from forward selection
I2(xforw(d), y3) and the global maximum I2(xglob(d), y3) as
a function of the number of selected variables in the feature
subsets. 192

C.9 The GMI of the chosen variables from forward selection
I2(xforw(d), y4) and the global maximum I2(xglob(d), y4) as
a function of the number of selected variables in the feature
subsets. 192

D.1 The GMI functions and the selected variables of all iteration
cycles for output variable y1. The variables comprising 99%
of the highest achievable GMI value are: x7, x9, x13, x4, x6,
x3. 195

D.2 The GMI functions and the selected variables of all iteration
cycles for output variable y2. The variables comprising 99%
of the highest achievable GMI value are: x10, x6, x7, x11,
x12, x14, x8,x16. 196

D.3 The GMI functions and the selected variables of all iteration
cycles for output variable y3. The variables comprising 99%
of the highest achievable GMI value are: x13, x7, x9, x2, x8,
x4,x16. 196

D.4 The GMI functions and the selected variables of all iteration
cycles for output variable y4. The variables comprising 99%
of the highest achievable GMI value are: x6, x9, x7, x3, x13. 197

D.5 The GMI as a function of the input variable xi and the time
lag t for output variable y1 197

D.6 The GMI as a function of the input variable xi and the time
lag t for output variable y2 198

D.7 The GMI as a function of the input variable xi and the time
lag t for output variable y3 198

D.8 The GMI as a function of the input variable xi and the time
lag t for output variable y4 199

210

List of Figures

E.1 Neural identification results of the equidistantly sampled in-
put variables for the determination of the 50% ECP. (a)
Network performance after training with the RTRL algo-
rithm, (b) Network performance after Extended Kalman Fil-
ter training. 201

E.2 Neural identification results of the GMI selected input vari-
ables for the determination of the 50% ECP. (a) Network
performance after training with the RTRL algorithm, (b)
Network performance after Extended Kalman Filter training. 202

211

List of Figures

212

Bibliography

[Bar95a] M. Bargende. Schwerpunkt-Kriterium und automatische Klin-
gelerkennung. MTZ, 56:632–638, 1995.

[Bar95b] M. Bargende. Verbrennungs- und Ladungswechselanalyse. In
Stuttgarter Symposium Kraftfahrwesen und Verbrennungsmo-
toren, pages M8.1–M8.16, Stuttgart, 1995.

[BDSL91] W.A. Brock, W.D. Dechert, J.A. Scheinkman, and B. LeBaron.
A test for independence based on the correlation dimension.
Technical report, University of Wisconsin, 1991.

[Bel61] R Bellman. Adaptive Control Processes: A Guided Tour. Prince-
ton University Press, 1961.

[Bis99] C.M. Bishop. Neural Networks for Pattern Recognition. Oxford
University Press Inc., New York, 1999.

[Bos94] Bosch. Autoelektrik, Autoelektronik am Ottomotor. VDI Verlag,
Stuttgart, 2nd edition, 1994.

[Car91] J.-F. Cardoso. Super-symmetric decomposition of the fourth-
order cumulant tensor. blind identification of morde sources
than sensors. In ICASSP’91, pages 3109–3112, 1991.

[CC87] C.K. Chui and G. Chen. Kalman Filtering with Real-Time Ap-
plications. Springer-Verlag, 1987.

[CC01] T.F. Cox and M.M.A. Cox. Multidimensional Scaling. Chapman
and Hall, 2001.

[Chi61] A. J. Chintschin. Der Begriff der Entropie in der Wahrschein-
lichkeitsrechnung. In Arbeiten zur Informationstheorie I, vol-
ume 2, pages 7–29. Deutscher Verlag der Wissenschaften, Berlin,
1961.

213

Bibliography

[CHL96] J.-F. Cardoso and B. Hvam Laheld. Equivariant adaptive source
separation. IEEE Trans. on Signal Processing, 44(12):3017–
3030, 1996.

[Com94] P. Comon. Independent component analysis – a new concept?
Signal Processing, 36:pp. 287–314, 1994.

[Csa81] P. Csallner. Eine Methode zur Vorausberechnung der Änderung
des Brennverlaufs von Ottomotoren bei geänderten Betriebsbe-
dingungen. Dissertation, Fakultät für Maschinenwesen, Tech-
nische Universität München, 1981.

[Fad56] D.K. Faddejew. Zum Begriff der Entropie eines endlichen
Wahrscheinlichkeitsraumes. In Arbeiten zur Informationsthe-
orie I, volume 2, pages 86–90. Deutscher Verlag der Wis-
senschaften, Berlin, 1956.

[Fod02] Imola K. Fodor. A survey of dimension reduction techniques.
Technical Report, Lawrence Livermore National Laboratory,
2002.

[Fri94] Bernd Fritzke. Growing cell structures – a self-organizing net-
work for unsupervised and supervised learning. Neural Net-
works, 7(9):1441–1460, 1994.

[Frö03] M.H. Fröhlich. Informationstheoretische Optimierung
künstlicher neuronaler Netze für den Einsatz in Steuergeräten.
Dissertation, Fakultät für Informatik und Kognitionswis-
senschaften, Eberhard-Karls-Universität Tübingen, 2003.

[GSC91] P. Grassberger, T. Schreiber, and Schaffrath C. Nonlinear time
sequence analysis. Int. J. Bifurcation and Chaos, 1:521–547,
1991.

[Har28] R.V. Hartley. Transmission of Information. Bell Syst. Techn.
Journal, 7:pp. 535–563, 1928.

[HCO99] A. Hyvärinen, R. Cristescu, and E. Oja. A fast algorithm for es-
timating overcomplete ICA basis for image windows. Proc. Int.
Joint Conf. on Neural Networks, pages 3917–3920, Washington
D.C., 1999.

[Her94] W. Herden. A new combustion pressure sensor for advanced
engine management. SAE, 940379:177–184, 1994.

214

Bibliography

[HF01] F. Heister and M. Froehlich. Non-linear time series analysis of
combustion pressure data for neural network training with the
concept of mutual information. Journal of automobile engineer-
ing, 215(D2):299–304, 2001.

[HM99] F. Heister and R. Müller. An approach for the identification
of nonlinear, dynamic processes with Kalman-Filter-trained re-
current neural structures. Technical report, FT2/EA 0000-99,
DaimlerChrysler AG, Abtl. FT2/EA, 70546 Stuttgart, 1999.

[HS00] F. Heister and G. Schock. Nonlinear, statistical Data-Analysis
for the optimal Construction of Neural-Network Inputs with the
Concept of a Mutual Information. In ESANN’2000 proceedings
- European Symposium on Artificial Neural Networks, Bruges
(Begium), pages 439–444, 26-28 April 2000.

[HSW89] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedfor-
ward networks are universal approximators. Neural Networks,
2:359–366, 1989.

[Hyv97] A. Hyvärinen. A family of fixed-point algorithms for indepen-
dent component analysis. Proc. IEEE Int. Conf. on Acous-
tics, Speech and Signal Processing (ICASSP), Munich, Ger-
many, 1997.

[Hyv98] A. Hyvärinen. New approximations of differential entropy for
independent component analysis and projection pursuit. In Ad-
vances in Neural Information Processing Systems, volume 10,
pages 273–279, MIT Press, 1998.

[Hyv99] A. Hyvärinen. Survey on independent component analysis. Neu-
ral Computing Surveys, 2:pp. 94–128, 1999.

[Jac91] J.E. Jackson. A guide to Principle Components. John Wiley
and Sons, New York, 1991.

[JH91] C. Jutten and J. Herault. Blind separation of sources, part I: An
adaptive algorithm based on neuromimetic architecture. Signal
Processing, 24:pp. 1–10, 1991.

[Jol86] I.T. Jolliffe. Principal Component Analysis. Springer, 1986.

[Kar00] J. Karhunen. Nonlinear independent component analysis. In In-
dependent Component Analysis: Principles and Practise. Cam-
bridge University Press, Cambridge, UK, 2000.

215

Bibliography

[KJ98] R. Kohavi and G. John. The wrapper approach. In Feature
Extraction, Construction and Selection: A Data Mining Per-
spective. Springer Verlag, 1998.

[KL51] S. Kullback and R.A. Leibler. On information and sufficiency.
Annals of Mathematical Statistics, 22:76–86, 1951.

[Koh88] T. Kohonen. The neural phonetic typewriter. IEEE Computer,
21:11–22, 1988.

[Koh90] T. Kohonen. The self-organizing map. Proc. IEEE, 78:1480–
1484, 1990.

[KPO98] J. Karhunen, P. Pajunen, and E. Oja. The nonlinear pca in
blind source separation: Relations with other approaches. Neu-
rocomputing, 22:5–20, 1998.

[KS96] D. Koller and M. Sahami. Toward Optimal Feature Selection. In
International Conference on Machine Learning, pages 284–292,
1996.

[Kur94] R Kuratle. Meßzündkerzen mit integriertem Drucksensor. Mo-
tortechnische Zeitschrift MTZ, 55(2):120–126, 1994.

[Lam96] R.H. Lambert. Multichannel Blind Deconvolution: FIR Ma-
trix Algebra and Separation of Multipath Mixtures. PhD thesis,
Univ. of Southern California, 1996.

[Law97] Wolfhard Lawrenz. CAN System Engineering - From Theory to
Practical Applications. Springer-Verlag, 1997.

[Lee01] T.-W. Lee. Independent Component Analysis: Theory and Ap-
plications. Kluwer Academic Publishers, 2001.

[Lof90] O. Loffeld. Estimationstheorie. Oldenbourg, Siegen, 1990.

[LS98a] M. Lewicki and T.J. Sejnowski. Inferring sparse, overcomplete
image codes using an efficient coding framework. Advances in
Neural Information Processing, 10:815–821, MIT Press, 1998.

[LS98b] M. Lewicki and T.J. Sejnowski. Learning overcomplete repre-
sentations. Advances in Neural Information Processing, 10:556–
562, MIT Press, 1998.

216

Bibliography

[LWB95] U. Lindgren, T. Wigren, and H. Broman. On local convergence
of a class of blind separation algorithms. IEEE Trans. on Signal
Processing, 43:3054–3058, 1995.

[MB99] W. Maass and C.M. Bishop. Pulsed Neural Networks. The MIT
Press, Cambridge, MA, 1999.

[MKB95] K.V. Mardia, J.T. Kent, and J.M. Bibby. Multivariate Analysis,
Probability and Mathematical Statistics. Accademic Press, 1995.

[MP43] W.S. McCulloch and W.H. Pitts. A Logical Calculus of the
Ideas Immanent in Nervous Activities. Bull. Math. Biophys.,
Vol. 5:pp. 115–133, 1943.

[MP88] M. Minsky and S. Papert. Perceptrons. Neurocomputing: Foun-
dations of Research, MIT Press, 13:pp. 161–170, 1988.

[NS96] R.S. Neville and T.J. Stonham. Adaptive Critic for Sigma-Pi
Networks. Neural Networks, Vol. 9(4):pp. 603–625, 1996.

[Pea88] J Pearl. Probabilitstic Reasoning in Intelligent Systems. Morgan
Kaufman, San Mateo, California, 1988.

[PF94] G.V. Puskorius and L.A. Feldkamp. Neurocontrol of nonlin-
ear dynamical systems with kalman filter trained recurrent net-
works. IEEE Transactions on Neural Networks, 5(2):279–297,
1994.

[PFX00] J.C. Principe, J.W. Fisher, and D. Xu. Information theoretic
learning. In S. Haykin, editor, Unsupervised Adaptive Filtering,
pages 265–319. Wiley, New York, 2000.

[PGJ92] D.-T. Pham, P. Garrat, and C. Jutten. Separation of a mix-
ture of independent sources through a maximum likelihood ap-
proach. In EUSIPCO, pages 771–774, 1992.

[PH95] B. Pompe and M. Heilfort. On the Concept of the General-
ized Mutual Information Function and Efficient Algorithms for
Calculating it. 1995.

[PKTS89] R. Pischinger, G. Kraßnig, G. Taucar, and Th. Sams. Thermo-
dynamik der Verbrennungskraftmaschine. Springer, Wien, 1989.

[Pom93] B. Pompe. Measuring statistical dependencies in a time series.
J Stat. Phys., 73:587–610, 1993.

217

Bibliography

[Pom97] B. Pompe. Die Messung von Informationsflüssen mit einer
verallgemeinerten Transinformation. Math.-Naturw. Fakultät,
Ernst-Moritz-Arndt-Univ. Greifswald, Januar 1997.

[Pom98] Bernd Pompe. Ranking and Entropy Estimation in Non-
linear Time Series Analysis. Technical report, E.-M.-Arndt-
Universität Greifswald, Institut für Physik, 1998.

[Qui86] J.R. Quinlan. Induction of decision trees. Machine Learning,
1:81–106, 1986.

[Qui93] J.R. Quinlan. C4.5: Programs for machine learning. Morgan
Kaufmann, Los Altos, California, 1993.

[RB61] A. Rényi and J. Balatoni. Über den Begriff der Entropie. In
Arbeiten zur Informationstheorie I, volume 2. Deutscher Verlag
der Wissenschaften, Berlin, 1961.

[Rén77] A. Rényi. Wahrscheinlichkeitsrechnung, mit einem Anhang
über Informationstheorie. Deutscher Verlag der Wissenschaften,
Berlin, Berlin, 5nd edition, 1977.

[Rip96] B.D. Ripley. Pattern Recognition and Neural Networks. Cam-
bridge University Press, 1996.

[RM86] D.E. Rumelhart and J.L. McClelland. Parallel Distributed Pro-
cessing: Exploration in the Microstructure of Cognition, volume
1: Foundations. MIT Press, Boston, MA, 1986.

[Ros60] F. Rosenblatt. Perceptron Simulation Experiments. Proc. IRE.,
Vol. 48:pp. 301–309, 1960.

[Sch95] M. Schwervish. Theory of Statistics. Springer, 1995.

[Sea91] L. Schweizer et al. A fully neural approach to image compres-
sion. In T. Kohonen and O. Mäkisara, editors, Artificial Neural
Networks, pages 815–820. North-Holland, Amsterdam, 1991.

[Sha48] Claude. E. Shannon. A mathematical theory of communcation.
The Bell System Technical Journal, 2:379–423, 623–656, 1948.

[Spe04] C. Spearman. The Proof and Measurement of Association Be-
tween Two Things. American Journal of Psychology, 15:72–101,
1904.

218

Bibliography

[SPP06] I. Santamaria, P.P. Pokharel, and J.C. Principe. Generalized
correlation function: Definition, properties, and application to
blind equalization. IEEE Transactions on Signal Processing,
54(6):2187–2197, 2006.

[SW89] S. Singhal and L. Wu. Training Multilayer Perceptrons with
the Extended Kalman Algorithm. In Advances in Neural Infor-
mation Processing Systems, volume 1, pages 133–140. Morgan
Kaufmann, 1989.

[Tak83] F. Takens. Invariants related to dimension and entropy. Atas
do 13. Col. brasiliero de Matematicas, 1983.

[TJ91] A. Taleb and C. Jutten. Nonlinear source separation: The post-
linear mixtures. volume 24, pages 21–29, 1991.

[WZ89] R.J. Williams and D. Zipser. A learning algorithm for continu-
ally running fully recurrent neural networks. Neural Computa-
tion, 1:270–280, 1989.

[Zel94] A. Zell. Simulation Neuronaler Netze. Addison–Wesley, Bonn,
1994.

219

Bibliography

220

Index

Symbols
CO . 135
CO2 . 136
HC . 135
NOx .135
λ-value . 134
k-factor model 20
50%-ECP 148

A
Abbe, Ernst 121
activation function 45

Fermi-function 46
hyperbolic tangent 46
linear 46
linear with saturation . . . 46

actuator system.132
advanced data analysis 13
air-fuel ratio 134
air-mass sensor 137
anti-lock brake system 144
anti-spin regulation 144
arbitrary units 127
attributes . 14
automotive sensor system . . . 137

B
back propagation 50
backward elim. strategy. .40, 96,

107
Benz, Karl 131
binary rank matrix.76
blind signal separation 24
blind source separation . . . 22, 24

BPTT . 53
bubbling . 122

C
C4.5 . 38
camshaft.132
camshaft sensor 137
carbon dioxide 136
carbon monoxide.135
carburetor 131
catalytic converter 132, 135
chemical reactions 140
classification model 32
classifier . 95
clinical parameters 39
coarseness 70

estimation 79
coarseness level 79
cocktail party problem 22
combustion 140

efficiency.142
combustion chamber 132
combustion controller 148

closed loop structure . . . 148
GMI optimized 165

combustion pressure 141
communality 21
component analysis

independent.21
principal 17

compression ratio 133
compression stroke 132
connecting rod 132

221

Index

contrast function 25
conversion rates136
correlation integral 78
cost function 25
crankshaft 132
crankshaft sensor 137
cross-entropy.96
curse of dimensionality 13

D
decision trees 32

C4.5 . 38
gain ratios 37
ID3 . 36

Diesel, Rudolf.131
dimension reduction

factor analysis 20
ICA. .21
PCA . 17
techniques 14
wrapper method 30

distribution-free statistic 153
driving noise matrix.60
dynamic derivatives 55

E
EKF . 58
energy conversion 141
engine control unit 143

actuators 144
amplifiers 144
cpu . 144
EEPROM 144
RAM 144
sensors.144

entropy . 32
entropy H2 approximation . . . 69
equivocation 63
error covariance matrix 60
exhaust emission 135
exhaust stroke 132
Extended Kalman Filter 58

covariance matrix 60
driving noise 60
gradient matrix 60
kalman gain matrix 60
weight vector 59

F
factor analysis 20

maximum likelihood.21
feature extraction

ICA 163
PCA. 162

feature selection
GMI 161

feature selection strategies . . 100
features . 14
feedforward network 48
forward selection strategy . . . 41,

110
monotone convergence . . 98
time lags.117
without time lags 112

four-stroke engine 131
Fraunhofer, Joseph.121
fuel consumption 135

G
General Mutual Information

complexity 81
determination 67
estimation 69
feature selection.93
independency 67
limitation 67
missing values.88
symmetry 67
theory 64

glass melting process 121
glass melting tank 122
global selection strategy.102
glow plugs 131
GMI function 112

222

Index

greedy algorithm. 96
backward elimination . . 182
forward selection 183

H
Hartley’s entropy measure. . . .64
health-care system 39
HFM . 137
hidden components 14
hydrocarbons 135
hyper-volume 13

I
ICA model 23

general objective func. . . 28
maximum likelihood.26
mutual information 27
negentropy 28
non-linear correlation . . . 27

ID3 . 36
ignition timing 145
in-cylinder pressure 141
industrial glass production . . 122
injector . 132
intake manifold 132
intake stroke 132
irrelevance 63

J
Jacobian matrix 60

K
Kalman Filter.58
Kalman-Gain matrix 60
KL-distance.95
knock sensor 137
knocking combustion.133

L
loss function 25

M
Markov Blanket 97
matrix calculus 75
missing values.88
monotone convergence 98
motormanagement 131

structure.143
mutual information 61

N
NaN . 89
neural combustion control . . .147
neural network

feedforward 48
weight connection 44

neural network 43
neuron . 43
nonlinear dynamic process

analysis with GMI 83
nonparametric statistic 153
Not-a-Number 89

O
objective function

multi-unit 26
single-unit 26

objective function 25
Otto, Nikolaus August 131
Otto-cycle 132
oxides of nitrogen 135

P
PI controller 167
piston . 132
power stroke 132
principal factor analysis 21
propagation function 45

Q
Quicksort . 82

223

Index

R
Rényi-Entropy 64
random factors20
rank distance matrix 75
rank numbers

relative 74
ranking . 73
recurrent network 49

RMLP 49
recurrent weights 44
regression

dependent variable 30
independent variable 30

relative information 61
RTRL . 54

S
Schott, Otto 122
scree plots 19
Shannon’s message channel. . .62
Shannon-Entropy 64
spark plug 132
Spearman rank correlation . . 153
specific factors 20
statistic

distribution-free.153
nonparametric 153

stoichiometric mixture 134
synentropy 61

T
throttle . 132
topology

feedforward 48
recurrent network 49

training algorithms.50
BP. .50
BPTT 53
EKF . 58
RTRL 54

U
uniform distribution 73

V
variance

specific.21
unique 21

venturi . 132
virtual sensor 149

W
weight connection 44

Z
Zeiss, Carl 121

224

