8 research outputs found

    On the use of compressed sensing techniques for improving multistatic millimeter-wave portal-based personnel screening

    Get PDF
    This work develops compressed sensing techniques to improve the performance of an active three dimensional (3D) millimeter wave imaging system for personnel security screening. The system is able to produce a high-resolution 3D reconstruction of the whole human body surface and reveal concealed objects under clothing. Innovative multistatic millimeter wave radar designs and algorithms, which have been previously validated, are combined to improve the reconstruction results over previous approaches. Compressed Sensing techniques are used to drastically reduce the number of sensors, thus simplifying the system design and fabrication. Representative simulation results showing good performance of the proposed system are provided and supported by several sample measurement

    A signal processing methodology for assessing the performance of ASTM standard test methods for GPR systems

    Get PDF
    Ground penetrating radar (GPR) is one of the most promising and effective non-destructive testing techniques (NDTs), particularly for the interpretation of the soil properties. Within the framework of international Agencies dealing with the standardization of NDTs, the American Society for Testing and Materials (ASTM) has published several standard test methods related to GPR, none of which is focused on a detailed analysis of the system performance, particularly in terms of precision and bias of the testing variable under consideration. This work proposes a GPR signal processing methodology, calibrated and validated on the basis of a consistent amount of data collected by means of laboratory-scale tests, to assess the performance of the above standard test methods for GPR systems. The (theoretical) expressions of the bias and variance of the estimation error are here investigated by a reduced Taylor's expansion up to the second order. Therefore, a closed form expression for theoretically tuning the optimal threshold according to a fixed target value of the GPR signal stability is proposed. Finally, the study is extended to GPR systems with different antenna frequencies to analyze the specific relationship between the frequency of investigation, the optimal thresholds, and the signal stability

    Model design for algorithmic efficiency in electromagnetic sensing

    Get PDF
    The objective of the proposed research is to develop structural changes to the design and application of electromagnetic (EM) sensing models to more efficiently and accurately invert EM measurements to extract parameters for applications such as landmine detection. Two different acquisition modalities are addressed in this research: ground-penetrating radar (GPR) and electromagnetic induction (EMI) sensors. The models needed for practical three-dimensional (3D) spatial imaging typically become impractically large, with up to seven dimensions of parameters that need to be extracted. These parameters include, but are not limited to target type, 3D location, and 3D orientation. The new special structures for these models exploit properties such as shift invariance and tensor representation, which can be combined with strategic inversion techniques, including the Fast Fourier Transform and semidefinite programming. The structures dramatically reduce the amount of computation and can eliminate the need to store up to five dimensions of parameters while still accurately estimating them.Ph.D

    Compressed sensing current mapping spatial characterization of photovoltaic devices

    Get PDF
    In this work a new measurement technique for current mapping of photovoltaic (PV) devices is developed, utilising the compressed sensing (CS) sampling theory. Conventional current mapping measurements of PV devices are realised using the light beam induced current (LBIC) measurement method. For its realization, a light beam scans a PV device and the induced current is measured for every point, generating the final current map of the device. Disadvantages of the LBIC method are the low measurement speed, the complicated and usually expensive measurement layouts and the impractical application of the method on PV modules. With the development of CS current mapping in this work, the above issues can be mitigated. Instead of applying a raster scan, a series of illumination patterns are projected onto the PV sample, acquiring fewer measurements than the pixels of the final current map. The final reconstruction of the current map is achieved by means of an optimisation algorithm. Spatially resolved electrical simulations of CS current mapping demonstrate that theoretically the proposed method is feasible. In addition, it is shown that current maps can be acquired with even 40% of the measurements a standard LBIC system would require, saving a significant amount of measurement time. The performance of CS current mapping is the same, regardless of the features a sample may contain and measurements can be applied to any type of photovoltaic device. The ability of the method to provide current maps of PV modules is demonstrated. The performance of several reconstruction algorithms is also investigated. An optical measurement setup for CS current mapping of small area PV devices was built at the National Physical Laboratory (NPL), based on a digital micromirror device (DMD). Accurate current maps can be produced with only 40% of the measurements a conventional point by point scan would need, confirming simulation results. The measurement setup is compact, straightforward to realise and uses a small number of optical elements. It can measure a small area of 1cm by 1cm, making it ideal for current mapping of small research samples. A significant signal amplification is achieved, since the patterns illuminate half of the sample. This diminishes the use of lock-in techniques, reducing the cost for current mapping of PV devices. Current maps of an optical resolution up to 27μm are acquired, without the use of any demagnification elements of the projected pattern that the DMD generates. v A scale up of this new current mapping method is demonstrated using Digital Light Processing (DLP) technology, which is based on DMD chips. A commercial DLP projector is utilised for building a proof of concept CS current mapping measurement system at the Centre of Renewable Energy Systems Technology (CREST). Current maps of individual PV cells in encapsulated modules can be acquired, something that is extremely difficult to achieve with conventional LBIC systems. Direct current mapping of a PV module with by-pass diodes is successfully applied for the first time. Specific shading strategies are developed for this purpose in order to isolate the cell under test. Due to the application of compressive sampling, current maps are acquired even if the signal-to-noise-ratio levels are so low that a point by point scan is not possible. Through the above implementations of CS current mapping of this work, the proposed technique is studied and evaluated. The results demonstrate that this novel method can offer a realistic alternative approach for current mapping of PV cells and modules that can be cost effective and straightforward to implement. In addition, this work introduces the application of the CS theory and DLP technology to PV metrology in general
    corecore