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Abstract 

 

In this work a new measurement technique for current mapping of photovoltaic (PV) 

devices is developed, utilising the compressed sensing (CS) sampling theory. Conventional 

current mapping measurements of PV devices are realised using the light beam induced 

current (LBIC) measurement method. For its realization, a light beam scans a PV device and 

the induced current is measured for every point, generating the final current map of the 

device. Disadvantages of the LBIC method are the low measurement speed, the complicated 

and usually expensive measurement layouts and the impractical application of the method 

on PV modules. With the development of CS current mapping in this work, the above issues 

can be mitigated. Instead of applying a raster scan, a series of illumination patterns are 

projected onto the PV sample, acquiring fewer measurements than the pixels of the final 

current map. The final reconstruction of the current map is achieved by means of an 

optimisation algorithm. 

Spatially resolved electrical simulations of CS current mapping demonstrate that 

theoretically the proposed method is feasible. In addition, it is shown that current maps can 

be acquired with even 40% of the measurements a standard LBIC system would require, 

saving a significant amount of measurement time. The performance of CS current mapping is 

the same, regardless of the features a sample may contain and measurements can be applied 

to any type of photovoltaic device. The ability of the method to provide current maps of PV 

modules is demonstrated. The performance of several reconstruction algorithms is also 

investigated. 

An optical measurement setup for CS current mapping of small area PV devices was 

built at the National Physical Laboratory (NPL), based on a digital micromirror device (DMD). 

Accurate current maps can be produced with only 40% of the measurements a conventional 

point by point scan would need, confirming simulation results. The measurement setup is 

compact, straightforward to realise and uses a small number of optical elements. It can 

measure a small area of 1cm by 1cm, making it ideal for current mapping of small research 

samples. A significant signal amplification is achieved, since the patterns illuminate half of the 

sample. This diminishes the use of lock-in techniques, reducing the cost for current mapping 

of PV devices. Current maps of an optical resolution up to 27μm are acquired, without the 

use of any demagnification elements of the projected pattern that the DMD generates.  
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A scale up of this new current mapping method is demonstrated using Digital Light 

Processing (DLP) technology, which is based on DMD chips. A commercial DLP projector is 

utilised for building a proof of concept CS current mapping measurement system at the Centre 

of Renewable Energy Systems Technology (CREST). Current maps of individual PV cells in 

encapsulated modules can be acquired, something that is extremely difficult to achieve with 

conventional LBIC systems. Direct current mapping of a PV module with by-pass diodes is 

successfully applied for the first time. Specific shading strategies are developed for this 

purpose in order to isolate the cell under test. Due to the application of compressive sampling, 

current maps are acquired even if the signal-to-noise-ratio levels are so low that a point by 

point scan is not possible.  

Through the above implementations of CS current mapping of this work, the proposed 

technique is studied and evaluated. The results demonstrate that this novel method can offer 

a realistic alternative approach for current mapping of PV cells and modules that can be cost 

effective and straightforward to implement. In addition, this work introduces the application 

of the CS theory and DLP technology to PV metrology in general. 
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Chapter 1 

1. Introduction 

 

 

 

 

1.1 Introduction  

Photovoltaic (PV) electricity generation currently covers 1% of global electricity demand, 

with optimistic future scenarios of PV penetration into the energy mix increasing this to 16% 

by 2050 [1]. In order to achieve this, highly efficient, stable and cost-effective products need 

to be supplied to the market to compete with other power generation technologies. To realise 

this aim, more research has to be undertaken into existing and new materials for PV 

applications, to increase efficiencies and long term durability. For a specific output power, 

higher cell efficiency directly results in a smaller and therefore less expensive PV system, 

provided that costs do not also rise. For established technologies, optimised production 

methods have led to both higher efficiencies and cost reduction of production processes. 

These gains are closely linked to commercial transfer of research knowledge and innovation 

in the PV field [2]. Optimising current PV production technologies and developing new ones 

will keep pushing PV product prices to even lower levels [3]. 

Crystalline silicon PV modules currently dominate the market, with the record efficiency 

for single junction mono crystalline cells reaching recently a 26.3% [4], while for 

multicrystalline cells the record is set at a lower efficiency at 21.9% [5]. Thin film technologies 

have also achieved high efficiencies recently with Cu(In,Ga)Se2 (CIGS) solar cells reaching a 



7 
 

record efficiency of 22.6% [6] and CdTe cells achieving an efficiency of 22.1% [7]. Emerging 

technologies such as perovskite solar cells also exhibit respectably high efficiencies. However, 

the issue of long term stability for such technologies has not yet been resolved. Still for all the 

current technologies of solar cells, there is further room for improvement on efficiency to 

approach the Shockley-Queisser limit [8]. 

For a better understanding of the impact of material properties, cell design, cell 

structure and ageing effects on solar cell performance, PV device characterisation methods 

are extremely crucial. A large number of PV characterisation techniques are available 

nowadays, from cell to module level. Different techniques are useful for different kinds of 

samples, providing a large range of parameters of devices. The most well-known standard 

method for characterising PV devices is by using a solar simulator to acquire the current-

voltage characteristics and derived performance parameters such as the power at maximum 

power point. Such measurements are most commonly carried out under standard test 

conditions (STC). These conditions are device temperature of 25 °C, a light spectrum 

corresponding to air mass of a value of 1.5, 1000 W/m2 light intensity and normal incidence. 

This power rating provides a fast and simple indication of how a device performs under 

specific standard conditions and more importantly it sets a reference for comparison between 

different devices and technologies. 

Confirming that a cell is underperforming by acquiring the current-voltage characteristic 

curve does not necessarily reveal the reason of this reduction of energy output. Local defects 

that can be induced during production or after degradation may have a significant impact on 

performance. For a more in depth investigation of the features of solar cells that affect 

performance, spatial characterisation of devices is necessary. Non-invasively assessing local 

performance can provide useful information for many properties of PV devices: material and 

structural properties of solar cells can be acquired, as well as local optical and electronic 

properties. Spatial characterisation is important in all steps of PV product development and 

manufacturing, from small research cells to commercial-scale modules. Various methods 

have been developed over the years from nanometre to millimetre resolution regions to 

accommodate for all types and sizes of samples. The most well-established non-destructive 

spatial characterisation methods are luminescence imaging methods such as 

electroluminescence [9] and photoluminescence [10], lock-in thermography [11] and light 

beam induced current mapping (LBIC) [12][13]. These methods are used extensively on 

crystalline silicon wafer based solar cells and modules, but are also applied to other PV 

technologies, such as inorganic thin film devices.  
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The method developed in this work is focused on current mapping of PV devices. This is 

mainly achieved by using LBIC methods, for the realisation of which a light beam scans the PV 

sample, with the current response being measured via the output terminals at each point of 

the beam scan. The diameter of the light beam spot on the sample and the movement step 

chosen define the resolution of the final current map. The main advantage of this technique 

is that the same principles that generate current in real applications of solar cells are applied 

in LBIC measurements. In addition, this method is universal as it can be applied to all types of 

PV samples, as long as they can be contacted. On the other hand, a well-known drawback of 

this measurement technique is that it lacks speed. The diameter of the laser spot that scans 

the sample is usually in the micrometre scale and scanning the entire area of the cell is 

necessary for a complete current map. This means that high resolution measurements require 

long measurement times, which also scale with increasing device area. Thus, measuring entire 

PV modules or full wafer cells at useful spatial resolutions is rather time-consuming, especially 

when compared to other spatial characterisation methods. LBIC systems can also be 

complicated by elaborate high-gain signal amplification requirements, in order to achieve 

high accuracy measurements from the weak current signal that the small laser spot induces. 

This means that the majority of high performance LBIC systems utilise lock-in techniques, high 

accuracy optical elements and precise translation stages. Such components increase the cost 

and complexity of these measurement systems.  

In this work an alternative current mapping method is developed, which aims to 

mitigate the above drawbacks of LBIC systems. The method brings together current mapping 

of PV devices with the recently developed sampling theory of Compressed Sensing (CS) 

[14][15]. By applying CS theory, one can reconstruct a signal from highly incomplete or 

inaccurate information. Image compression techniques with loss of information are widely 

used in everyday life. For instance, JPEG compression is used for image files. Compression 

techniques such as this use transforms, such as the Discrete Cosine transform or the wavelet 

transform, to represent the image data in a sparse form. Only the largest basis coefficients 

for an accurate representation are kept. When reconstructing the signal, the non-stored 

coefficients are simply set to zero. This means that in most cases a large part of the 

information volume is simply discarded without degrading the data/image significantly.  

The question that arises is whether one can acquire the compressed version of the 

signal more directly, by taking only a small number of measurements of the signal in the first 

instance. Compressed sensing provides a way of acquiring a compressed version of the 

original signal. This is achieved by taking only a small number of linear measurements and 
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then reconstructing an almost exact approximation of this signal. More precisely, using 

compressed imaging, an N pixel image can be reconstructed from M<<N observations. 

Compressed imaging applications for instrumentation and measurements have started 

appearing in the literature, with the most established being the CS magnetic resonance 

imaging (MRI) for medical applications [16]. 

Through this work, the compressed sensing sampling method is used for the first time 

in PV characterisation and more generally in any PV application. In addition, it is shown that 

by using compressive sampling, the current mapping measurement speed of PV devices can 

be at least doubled, with the potential of an even further improvement. Moreover, the 

potential for application of CS current mapping on modules is investigated, which is 

something that is almost impossible with current LBIC systems. As this sampling method is 

conceptually different from the point-by-point scan method, novel experimental layouts 

needed to be developed. These measurement systems are significantly simpler than standard 

LBIC systems and demonstrate that CS current mapping can be realised by simple 

experimental layouts that are cost effective and straightforward to implement. The concept 

of CS current mapping is investigated in three different ways: spatially resolved simulations, 

an experimental setup for small samples and a projection-based measurement layout for 

larger samples and modules.  

 

1.2 Thesis structure  

Chapter 2 starts by summarising the optical and electrical properties of solar cells and 

presenting their operation principles. The most common spatial features that affect solar cell 

performance are briefly described. The most well-established spatial characterisation 

methods for solar cells and modules are then presented, with more extensive information 

about the LBIC measurement technique. In chapter 3 the methodology for CS current 

mapping is presented. The properties of the Digital Micromirror Device (DMD) [17], which is 

in all cases the core of the CS current mapping system are described. The compressed sensing 

method is then introduced and some of its current applications in instrumentation and 

measurement are presented. Finally, the application of compressive sampling to current 

mapping for PV characterisation is described, including some considerations of resolution and 

speed of this approach. 

In chapter 4 spatially resolved electrical simulations of CS current mapping are realised, 

using the PV oriented nodal analysis toolset developed in CREST [18]. The simulations utilise 



10 
 

a spatially resolved electrical model to provide an objective verification of the quality of the 

method, in the absence of measurement noise and experimental artefacts. Undersampling 

levels are investigated, as well as the impact of different features in simulated samples. 

Different parts of the CS process such as reconstruction algorithms and sampling matrices are 

evaluated, in order to be used later on during the experimental procedure.  

In chapter 5 an analytical experimental implementation of a small area CS current 

mapping system for PV devices is presented. Different stages of the implementation are 

demonstrated, alongside experimental results. The CS current mapping instrument 

developed in this work and the results presented demonstrate the first successful 

implementation of a CS current mapping system reported in the literature. This measurement 

system based on a DMD kit, can perform not only compressive sampling but also conventional 

point by point sampling. This feature allows a quantitative experimental evaluation of the 

developed method, in comparison to the conventional raster scanning method. The features 

and limitation of this measurement system are presented and discussed. 

In chapter 6 a projection system for up scaling the CS current mapping method is 

developed. A commercial projector is utilised for a proof of concept measurement system 

that shows that CS current mapping can be applied to large silicon wafer based cells as well 

as PV modules. The projector as a light source is evaluated and measurement results for PV 

cells and modules are presented. Some considerations for applying CS current mapping to 

modules are also discussed, along with the challenges and limitations when using a simple 

commercial projector for this application. Through this proof of concept system, the 

properties that a dedicated projection CS current mapping system for PV characterisation has 

to possess are demonstrated. 

Chapter 7 is the concluding chapter, in which the findings of each chapter are 

summarised and brought together to build the bigger picture. Prospects for further research 

on this subject are suggested, highlighting the aspects of this method that can be further 

optimised. The contributions of this work to metrology as a whole are also discussed. A list of 

the resulting publications, as well as other achievements and awards related to the work are 

listed at the end of the thesis. 
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     Chapter 2 

2. Solar Cell Operation and Spatial Characterisation Techniques 

 

 

 

 

2.1 Overview 

Photovoltaic (PV) devices are used to convert solar radiation into electricity and are 

mainly made of semiconducting materials. Arrays of PV cells are packed together into 

encapsulated modules. PV modules can then be connected in series or parallel to create larger 

PV arrays. In this chapter, a brief overview of the properties and operation principles of PV 

devices is presented. This includes a summary of specific properties of semiconducting 

materials that govern the performance of PV devices. Additionally, the operating principles 

and key parameters of PV cells are highlighted. Some of the spatially varying features that can 

lead to overall performance reduction are also discussed. 

Following this, the most established spatial characterisation techniques are presented. 

Since a new spatial characterisation technique is developed and described in this thesis, it is 

necessary to review the existing methods that have proved their usefulness in providing 

spatial information of PV devices. This helps to determine the specific advantages and 

drawbacks of compressed sensing (CS) current mapping against well-known methods and 

specifies what improvements it brings to the field and specifically to laser beam induced 

current (LBIC) measurements.  
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2.2 Optical and electrical properties of solar cells 

2.2.1 Semiconductors and optical absorption 

Almost all PV devices are based on specific semiconductor materials which have the 

property of absorbing light and transferring part of the photon energy to charge carriers 

(electrons). Material selection depends on solar spectrum absorption efficiency and cost of 

material and production processes. Crystalline silicon (c-Si) is the most common material for 

manufacturing PV devices, as silicon technology is well developed due to its use in the 

electronics industry. Moreover, silicon’s absorption spectrum is well matched to the 

terrestrial solar spectrum. Other materials and compounds are also used for manufacturing 

PV devices, such as amorphous silicon (a-Si), gallium arsenide (GaAs), copper indium gallium 

selenide (Cu(InGa)Se2 - CIGS) and cadmium telluride (CdTe). However, new solar cell designs 

are emerging which use non-semiconductor materials, such as organic, polymer and 

perovskite based devices [19][20]. 

Most semiconductors used for PV are crystalline materials, which means their atoms or 

molecules are periodically aligned. This structure, coupled with the atomic properties of the 

component elements, is what gives them very useful electronic properties. The key 

characteristic of a semiconductor material for PV applications is its energy bandgap Eg. A 

photon that has energy higher than the energy bandgap of the material can be absorbed and 

excite an electron from the valence band to the conduction band, thus creating an electron-

hole pair as shown in Figure 2.1. The empty states left at the valence band can be regarded 

as positively charged carriers called holes. A simplified plot of electron energy states against 

crystal momentum is shown in Figure 2.2 for a direct bandgap semiconductor. The crystal 

momentum in this instance expresses the momentum of a phonon of the crystal lattice that 

contributes to the interaction. In direct bandgap semiconductors, the minimum energy of the 

conduction band occurs at the same value of crystal momentum as the maximum of the 

valence band. On the other hand, in an indirect band gap semiconductor, such as silicon, the 

bands are not aligned and an interaction with a phonon of the crystal structure is necessary 

for a photon to be absorbed or to recombine. These processes are summarised in Figure 2.2. 
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Figure 2.1 Different processes of photon absorption in semiconductors. 

 

 

Figure 2.2 Photon absorption in direct and indirect bandgap semiconductors. 

 

The number of mobile electrons and holes in a semiconductor can be controlled through 

the introduction of atoms of impurities, or dopants, called donors and acceptors, depending 
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on whether they are inserting a negative or a positive free charge carrier. These atoms replace 

the atoms or molecules of the semiconductor at their lattice positions [21]. All impurities 

introduce additional localized electronic states into the band structure, often within the 

energy gap between the valence and conduction bands. Introducing donor and acceptor 

impurities into a semiconductor allows for the creation of n-type or p-type material, where 

electrons or holes are the primary source of electrical conduction in the semiconductor 

respectively. Semiconductor materials that have no introduced dopants are referred to as 

intrinsic semiconductors. 

A significant optical parameter that determines light absorption in a material is its 

absorption coefficient α. Although the optical absorption is a strong function of the thickness 

and geometry of a sample, the absorption coefficient is a constant for a given material and 

wavelength and is not affected by thickness [22]. The absorption coefficient describes the 

decrease in light intensity as a beam of light propagates through a material. Using the 

absorption coefficient, the absorption depth can also be determined. This is the inverse of α, 

expressing the depth into a material where, after absorption, the remaining energy of a beam 

of a specific wavelength is 1/e percent of its initial energy, where e is Napier’s constant.  

 

2.2.2 P-n junction and PV device operation 

A p-n junction is created at the interface between a p-type and an n-type semiconductor, 

as shown in Figure 2.3. Due to the high electron and hole concentrations in the n-type and p-

type sides, respectively, electrons diffuse to the p-type side and holes to the n-type side [23]. 

This diffusion of charge carriers leaves behind exposed charges, namely: positive ions in the 

n-side and negative ions in the p-side. Thus, an electric field is built up in this region. The 

charge diffusion process continues until an equilibrium is created between the charge 

concentration and the developing electric field. This region of exposed ions is called the 

“depletion region” or “space charge region”. A voltage bias due to the electric field is formed 

at the junction. Almost all photovoltaic energy conversion technologies use semiconductor 

materials in the form of a p-n junction. When the device is illuminated, minority charge 

carriers will be generated. The field at the junction pulls minority carriers across the junction, 

which results in charge separation and reduces the probability of recombination. 
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Figure 2.3 Schematic diagram of a p-n junction and charge carrier density. 

 

 

Figure 2.4 Operating principle of a photovoltaic device 

 

In Figure 2.4, a simplified common structure of a c-Si PV device is presented. The device 

usually consists of a thin highly doped n-type region and a thick p-type side, while light enters 
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the device from the n-type side. Lately, n-type bases are also used with thin p-type regions to 

realise the junction. The depletion region has a thickness W and an electric field E0 is formed 

inside it [24]. Most of the incident photons are absorbed in the depletion and p-type regions, 

creating electron and hole pairs. In the depletion region, these pairs are instantly separated. 

The electron collected at the n-type side charges the side by -e while the hole charges the p-

side +e, thus an open circuit voltage is created across the device. Longer wavelength photons 

are absorbed deeper in the p-type region, where there is no electric field to drive them to the 

n-type side. If their lifetime is 𝜏𝑒  then the electron will diffuse a mean distance (diffusion 

length) [23]: 

 𝐿𝑒 = √𝐷𝑒𝜏𝑒 (2.1) 

 

Where 𝐷𝑒 is the diffusion constant of the p-type material. Electrons generated closer 

than 𝐿𝑒 from the depletion region can travel to this region through diffusion and are then 

driven to the n-type side by the electric field. Electron-hole pairs generated at a longer 

distance are lost due to recombination. The same principles stand for holes in the n-type 

region with the diffusion length of the holes being 𝐿ℎ. 

 

2.2.3 Recombination 

When excess charge carriers are generated in a semiconductor, either by light 

absorption or by current injection, they must recombine after the source has been switched 

off or disconnected [25]. Recombination in solar cells can be distinguished between bulk and 

surface recombination. Recombination is also classified as radiative and non-radiative. 

Radiative recombination dominates in pure direct bandgap semiconductors with no defects. 

In principle, an electron in the conduction band recombines with a hole in the valence band, 

emitting a photon of energy Eg, the energy of the bandgap.  

Non-radiative recombination is divided between defect assisted and Auger 

recombination. Defect assisted or Shockley-Read-Hall recombination is described by the SRH 

theory [26] and does not occur in pure semiconductor materials without defects. A midgap 

energy state is introduced through defects in the crystal lattice or impurities. An electron can 

be trapped in this energy state and if a hole moves up to the same energy state before the 

electron is thermally re-emitted into the conduction band, then they recombine. In Auger 

recombination, an electron and a hole recombine, but rather than emitting the energy as heat 

or as a photon, the energy is given to a third carrier, an electron in the conduction band. This 
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excited electron then thermalizes back down to the conduction band edge. Different 

recombination processes dominate at different carrier injection levels [27]. Auger 

recombination is important in heavily doped materials with high carrier concentrations. All 

the different types of recombination are schematically described in Figure 2.5. 

 

 

Figure 2.5. the different types of recombinations processes present in semiconductor solar cells. 

Surface recombination is an important phenomenon that affects the dark saturation 

current and quantum efficiency of solar cells. Since the surface of the solar cell is a disruption 

of the crystal lattice, it is a site of particularly high recombination. Surfaces and interfaces 

introduce midgap states that can be described as broken (or strained) bonds and impurities, 

in other words, recombination sites. To reduce surface recombination in solar cells, a layer 

that introduces a back surface field is applied that prevents minority carriers from reaching 

the surface and hence, reduces recombination. For surface passivation, an oxide layer is 

usually used. In these cases, surface recombination velocity is strongly dependent on 

deposition conditions. 

The carrier lifetime of a material is defined as the average time that a minority charge 

carrier lives until it recombines. The usual value of carrier lifetime for high quality mono-

crystalline silicon is approximately 1ms. Equivalently, the carrier diffusion length can also be 

defined as the average distance a carrier can travel from the location of generation until it 
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recombines. For silicon, this can be some hundreds of micrometres. These two parameters 

are indicators of material quality and suitability for solar cell use. 

 

 

 

 

2.3 Solar cell operation principles 

For electrical modelling purposes, a solar cell is usually represented by the equivalent 

circuit displayed in Figure 2.6, known as the one diode model. This includes a current source 

Iph, a parallel diode with current ID, a parallel resistance Rsh that represents leakage current 

across the junction and a series resistance Rs. The I-V characteristic is described by equation 

[28]: 

 

 𝐼 = 𝐼𝑝ℎ − 𝐼𝑜 [𝑒
𝑉+𝐼𝑅𝑠
𝑛𝑉𝑇 − 1] −

𝑉 + 𝐼𝑅𝑠
𝑅𝑠ℎ

 (2.2) 

 

Where n is the diode ideality factor (between 1 and 2 for a single junction cell), I0 is the 

saturation current, and VT is the thermal voltage given by 𝑉𝑇 =
𝑘𝑇

𝑞
, k being Boltzmann’s 

constant, T is the temperature of the cell and q the elementary charge. 

 

 

Figure 2.6. The one diode model for PV cells 

 

The cell generates maximum power PM at a voltage VM and current IM, and it is 

convenient to define the fill factor (FF) as: 
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 FF=
IMVM

ISCVOC
=

PM

ISCVOC
 (2.3) 

 

Where ISC and VOC are the short circuit current and open circuit voltage of the cell, 

respectively. These parameters are labelled in the typical I-V characteristic curve shown in 

Figure 2.7. 

The maximum efficiency is the ratio between the maximum power and the incident light 

power, given by the equation: 

 

 𝑛max =
𝑃𝑀

𝑃𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡
=
𝐼𝑀𝑉𝑀
𝐴𝐺

 (2.4) 

 

Where A is the cell area (m2) and G is the incident irradiance (W/m2).  

 

 

Figure 2.7 The I-V curve of an ideal solar cell. 

 

In practice, the I-V curve of a real solar cell is different from the above case. For a more 

physically meaningful modelling, a two-diode model is often used to fit an observed curve, 

with a second diode [29]: 

 

 𝐼 = 𝐼𝑝ℎ − 𝐼01 [𝑒
𝑉+𝐼𝑅𝑠
𝑉𝑇 − 1] − 𝐼02 [𝑒

𝑉+𝐼𝑅𝑠
2𝑉𝑇 − 1] −

𝑉 + 𝐼𝑅𝑠
𝑅𝑠ℎ

 (2.5) 
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The second diode I02 in parallel with the first represents recombination in the junction 

and its ideality factor is set to 2. The diode I01 represents recombination in the bulk of the 

device and its ideality factor is set to 1. 

Another significant metric of solar cell performance is the quantum efficiency. This is 

the ratio of the number of carriers collected by the solar cell to the number of photons of a 

given energy (wavelength) incident on the solar cell. One can define external (EQE) and 

internal quantum efficiencies (IQE) where all photons incident on the cell surface are 

considered in the value of the EQE, but only photons that are not reflected out of the PV 

device are considered in the value of IQE. The values of the internal and external quantum 

efficiency are measured using interference filters or monochromators, in order to access the 

performance of a PV device as a function of the wavelength of the incident light. Quantum 

efficiency can be expressed in terms of spectral response: 

 

 𝐸𝑄𝐸(𝜆) = 𝑆𝑅𝑒𝑥𝑡(𝜆) ∙
ℎ𝑐

𝑞𝜆
 (2.6) 

 

 𝐼𝑄𝐸(𝜆) =
𝐸𝑄𝐸(𝜆)

1 − 𝑅(𝜆)
 (2.7) 

 

 𝑆𝑅ext(𝜆) =
𝐼𝑆𝐶
𝐺(𝜆)𝐴

 (2.8) 

 

Where SRext is the external spectral response of the solar cell under consideration, λ is 

the wavelength of the incident light, h Planck’s constant, q the electron charge, c the speed 

of light in vacuum, and G the intensity of the incident light and A the area of the sample. 
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2.4 Spatial features affecting the performance of PV devices 

Non-uniformity of material properties and local defects have an impact on overall 

performance of solar cells and eventually modules and systems. Local features and defects 

present in silicon wafer based solar cells and modules are usually different from defects and 

structures detected in thin film devices. This is mainly because crystalline PV modules and 

thin film PV modules possess a very different design, different properties and are produced 

using different manufacturing processes. In addition, new emerging technologies introduce 

new types of defects, spatial properties and degradation profiles that make spatial 

characterisation crucial for solar cell material development. While there is a huge variety of 

defect types and local features in PV devices that can affect performance, in this section the 

most common ones will be summarised. These features concern mainly PV device material 

properties and features at cell level, therefore they do not include additional effects at 

module scale, such as delamination, discoloration or module breakage. 

 

2.4.1 Cracks 

Cracks in PV devices are a very common occurrence, mainly in crystalline wafer solar 

cells and modules. It is difficult to avoid cracks in PV modules and even harder to evaluate 

quantitatively their influence on module lifetime and durability. Cracks and micro cracks 

usually have only a minor effect on the power of a PV module if there are no areas of cells 

separated and electrically disconnected. For new modules, the reduction of power due to 

cracks is usually lower than 2.5% [30]. However, as a PV module containing cracks ages, it is 

exposed to severe thermal and mechanical stresses. This potentially results in crack 

propagation that could electrically disconnect large areas of PV cells and reduce the power at 

the module terminals. In addition, even if only one cell suffers from significant power losses 

due to cracks, this cell affects the performance of the whole sub-string of cells within the 

module. 

It has been shown that the initial orientation of cracks in cells plays a significant role in 

crack propagation and subsequently power losses after thermal and mechanical stresses. 

Cracks parallel to the busbars are more prone to cause electrical separation of cell areas while 

cracks perpendicular to the busbars seem to have a much smaller impact [31][32]. Production 

processes such as soldering can also cause cracks [33]. Transport, handling and installation 

cause additional mechanical stresses, while cell type and thickness also have an impact on 

crack propagation due to these mechanical stresses [34][35]. On the other hand, if a crack is 
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already present in the wafer before the emitter deposition, it can lead to a strong ohmic shunt. 

This is because an emitter layer may be established across the crack and short the emitter 

against the base contact, creating a linear (ohmic) shunt along the crack [36]. An 

electroluminescence image of a commercial mc-Si PV module is presented in Figure 2.8. A 

large number of cracks and several disconnected areas that reduce the performance of the 

module are visible in the image. Such defects are very typical for such PV modules. 

 

 

Figure 2.8. Electroluminescence image of a commercial PV module. Cracked cells with 

disconnected areas are visible. 

 

2.4.2 Shunts 

As described in [36] a shunt can be defined as “any position in a solar cell showing under 

forward or reverse-bias a dark-current contribution additional to the diffusion current”. In 

other words, local dark leakage current sites can be characterised as shunts. In the cases that 

such shunts are sufficiently strong, the fill factor and subsequently the efficiency of a device 

can be reduced, as presented in Figure 2.9. Moreover, shunts can lead to high current flow in 

these defective regions, which may result in the creation of hot spots. This effect becomes 

critical in the case of an illuminated PV module; when the cell that contains a strong shunt is 
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shaded or electrically mismatched, a large current generated by the illuminated cells is forced 

to flow through its shunted region, creating a strong reverse bias. The result can be high local 

overheating that can permanently damage the PV cell and subsequently the module [37][38]. 

Wafer based crystalline silicon solar cells almost always contain shunts that result in 

some local leakage current. The most common are edge shunts, where the emitter may not 

be perfectly separated from the rear contact of the device [39]. Other shunts present in PV 

cells may be due to scratches on the emitter or cracks formed in the wafer before the emitter 

diffusion [36]. Shunts caused by damage to the emitter of the device most often show the 

electrical behaviour of a Schottky contact.  

 

 

Figure 2.9. The effect of increasing shunt current from increasing shunt density on PV device 

performance 

Shunts are not only an issue in wafer based silicon solar cells; they also appear in thin 

film devices. Shunts in CIGS PV modules can be observed using electroluminescence imaging, 

although they have a minor effect on device performance [40]. Shunts also appear in organic 

PV devices [41]. It has been shown that the leakage current due to shunts exhibits very similar 

features in all thin film PV devices [42]. This is mostly because the formation of the usual 

shunting defects in such devices is very similar; non-uniform deposition or fabrication can 
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lead to the metals or transparent conductive oxides coming into direct contact with the 

absorber layer, to form a parasitic metal-semiconductor structure. 

 

2.4.3 Material micro-structure 

The microstructure properties of the active material are essential for any multi 

crystalline material used for PV applications. Material structure properties of PV devices can 

lead to local features that affect overall device performance. Multicrystalline Si PV cells are 

not only affected by defects induced during or after the manufacturing process, but they are 

also influenced by the inherent structural properties of the initial silicon material. The most 

common are grain boundaries and dislocations, which are always present and whose impact 

depends on material quality and the technique of initial material production [43].  

Grain size mainly depends on the manufacturing technique used to produce the silicon 

wafers. Grain boundaries, if electrically charged, can attract or repel minority charge carriers 

and consequently can become active recombination centres for photo-generated charge 

carriers. The electrical activity of grain boundaries is determined by their impurity decoration 

(specifically by transition metals) and strongly increases with higher impurity concentrations. 

Nevertheless, it has been demonstrated that at high contamination levels, larger precipitation 

of metal impurities in grain boundaries is usually preferable to having a higher density of 

smaller precipitates and point defects distributed in the bulk of the material [44]. Configuring 

growth conditions, metal contaminants can be controlled and their impact on device 

performance can be minimised.  

Dislocations in crystalline silicon are formed during crystal growth, as plastic 

deformation take place in order to reduce the thermal stresses. Some of these dislocation 

networks can be strong recombination centres and consequently they can have a negative 

impact on the lifetime of minority charge carriers, which dominates the PV device 

performance. In similar fashion to grain boundaries, dislocations are sites of high metal 

impurity concentrations [45], which determine their electrical activity.  

Dislocations and grain boundaries are also present in the active material of CdTe and 

CIGS solar cells. In the case of CdTe devices, although the effect of grain boundaries on 

untreated CdTe has been recognised as a limiting factor to performance, the role of grain 

boundaries in finished (treated) devices is still controversial [46]. While using specific 

experimental techniques it has been revealed that grain boundaries in treated devices can 

significantly enhance collection current [47], other studies show that grain boundaries have 
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a negative effect on performance [48]. More research in this matter using additional 

characterisation techniques is necessary in this case. Grain boundaries also influence the 

performance of CIGS solar cells [49][50]. It has been demonstrated recently that chemical 

modification of grain boundaries in CdTe and CIGS solar cells is possible, in order to tune and 

suppress their negative effects on solar cell performance [51]. 

 

2.4.4 Effects of degradation 

Material degradation in all types of PV devices is a major source of non–uniformities 

and local defects. Regarding crystalline silicon PV devices, alongside module impacts such as 

corrosion, delamination and discoloration, degradation can also increase crack and shunt 

density in PV cells of a module [52]. It has been demonstrated that ageing of PV cells and 

modules usually leads to increasing crack density and broken front contact fingers [53][54]. 

This has a major effect on power losses, as series resistance increases while the fill factor 

decreases. Most material degradation effects in crystalline Si based solar cells such as cracks, 

shunts and broken fingers are localised features that eventually affect the overall 

performance of the device. Degradation issues also affect inorganic thin film solar cells. Aside 

from module issues, ageing CdTe devices can  also result in a decrease in local contact quality, 

creating localised areas of underperformance [55].  

Degradation and stability behaviour always leads to local defects and non-uniformities 

and is extremely important for new emerging materials for PV devices, such as organic and 

perovskite PV devices [56]. The most frequent local defects introduced in such material types 

are degraded areas due to decomposition of the active material [57]. The characterisation of 

such spatially varying features is extremely important for the progress and development of 

such novel concepts for solar cell materials.  
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2.5 Spatial characterisation of solar cells 

Characterization has a significant role in the advancement and realisation of 

photovoltaic (PV) technologies. More specifically, spatial characterization of the optical, 

electrical and material properties of PV devices is used for the detection of various kinds of 

defects, which can arise due to production processes, material properties or degradation of 

the device under study. Thus, PV device characterization leads to an increase of PV product 

quality through detection and prevention of production induced defects and better 

understanding of material and degradation properties of PV devices. Moreover, 

characterization techniques are also necessary for research into new PV materials and designs 

and for optimization of manufacturing methods.  

The most common methods for spatially resolved non-destructive measurements are 

Light (or Laser) Beam Induced Current Measurements (LBIC), luminescence methods such as 

Electroluminescence (EL) and Photoluminescence (PL) and finally Lock-in Thermography (LIT). 

Since in this work a new method is developed with more similarities to LBIC measurements, 

this specific technique is described in more detail here. Luminescence and thermography 

methods will also be reviewed in this chapter, to provide a means of comparison with LBIC 

and the CS current mapping method under development. 

Luminescence techniques such as Electroluminescence (EL) and Photoluminescence (PL) 

are much faster as they can capture images in seconds [58], but cannot deliver such a high 

resolution as the LBIC technique. With such methods, qualitative analysis can be realised for 

imaging specific parameters of a PV sample, such as series-resistance, implied voltage or 

saturation current density imaging as will be discussed later. Lock-in Thermography (LIT) is 

also faster than LBIC, though slower than EL or PL, but usually yields lower resolution images 

[59]. Using LIT imaging, spatial information about several solar cell parameters can be 

acquired. The main disadvantage of the aforementioned methods for acquiring a sample’s 

performance parameters is that they rely on a number of assumptions in order to be applied. 

One of the assumptions is that the short circuit current is spatially homogeneous. This has 

been shown to be untrue in most cases and large local variations of the short circuit current 

density are observed in the majority of PV samples [13].  

A more significant argument is that electronic properties of solar cells, such as the 

diffusion length of minority charge carriers, are usually extracted from quantum efficiency 

(QE) data. The values of these properties are typically measured in an energy range slightly 

above the band-gap energy, where the QE is still close to its maximum [60]. For this reason, 

quantitative current mapping provided by LBIC measurements is essential for directly 



28 
 

assessing the electronic, optical and material properties of PV devices. Particularly for 

research devices, new materials and new design concepts where any assumptions are difficult 

to rely on, LBIC systems can provide accurate local quantification of the electrical properties 

of a sample. For these reasons, LBIC measurements are often used as reference for validation 

of luminescence methods. 

LBIC measurements can be applied to solar cells and modules (encapsulated or not), but 

not to wafers or, more generally, samples with no way of contacting. Through this section, it 

will become clear that the different characterisation methods of PV devices are not 

competing with each other but rather are complementary. Different characterisation 

methods are necessary for different cases, samples, parameters to be measured, time 

margins or for validation of results [61][62]. Apart from a brief description of each 

characterisation technique, the LBIC systems in CREST will be described in this section. 

 

2.5.1 Light beam induced current (LBIC) measurements 

2.5.1.1 Overview 

Light/Laser Beam Induced Current (LBIC) imaging is a non-destructive characterization 

technique, which can be used for mapping the current response of PV cells and modules. For 

its realisation, a light beam scans the PV sample and the induced current is measured for each 

point. Using a light beam to probe a p-n junction was introduced as a method for the first 

time in the 50’s by Goucher et al [63], for scanning a Germanium p-n junction with infrared 

light. Since then, such methods have been widely used for characterizing semiconductors. The 

application of LBIC to solar cells was introduced in the late 70’s and early 80’s [64][65][66]. A 

variety of different system approaches have been proposed, allowing LBIC measurement 

systems to deliver spatial maps of electrical properties, reflectivity, performance parameters 

and material properties of solar cells. However, this technique lacks speed as the small spot 

size (usually of a diameter of some micrometres) has to scan the entire area of the cell for a 

complete cell map, which means the smaller the spot size the lengthier the measurements. 

On the other hand, the resolution that can be achieved with LBIC, which can be as good as 

several micrometres, cannot be accomplished with other imaging methods.  

One of the first analytical descriptions of an LBIC measurement system is found in [66]. 

The setup consisted of two He-Ne lasers, one of which operated at 632.8nm and the other at 

1150nm. One of the lasers was selected for the scan, with beam being focused on the sample 

using a lens. The cell was placed on an x-y translation stage with a motor drive for making line 



29 
 

scans of the sample. Although modern systems differ somewhat from this setup, they all share 

some common principles. These are: a light source; an optical system for manipulating and 

focusing the beam on the sample; a system that enables movement of the sample in relation 

to the beam; and the necessary electronic equipment and software for recording the signal 

and subsequently realising the LBIC measurements. 

 

2.5.1.2 Experimental approaches and development 

The first and most significant part of an LBIC system is the light source. The most 

common approach is to use one or more laser sources in the wavelength range of 400nm to 

1150nm. For scanning crystalline silicon solar cells, the wavelength range most widely used is 

from 600nm to 1000nm, as shorter wavelengths cannot penetrate more than 1μm into silicon. 

In addition, for longer wavelengths there is parasitic absorption from free charge carriers and 

the back surface of the solar cell [67]. Usually multi-wavelength systems are used for 

providing more information about the properties of the sample under consideration. The 

initial aim of LBIC systems that used multiple laser sources was to obtain an approximation of 

the local effective diffusion length of silicon devices, through LBIC measurements[68][69]. 

This was achieved by using lasers of several wavelengths from 750nm to 900nm and applying 

P. Basore’s IQE analysis [70][71]. Multi wavelength LBIC systems allow measurement of a 

larger variety of samples and not only crystalline silicon. Local spectral response at the 

available wavelengths can also be measured when more wavelengths in the solar cell’s 

operating range are available [13]. Different depths or layers of a PV device can be also 

accessed and compared when using multiple wavelengths [72]. Concentrated solar light has 

been used as a light source in an LBIC system [73]. Recently a local solar simulator which is 

simultaneously an LBIC system was reported [74]. This system used a super continuum laser 

along with optical elements to create a beam with a spectrum that simulates the standard 

solar spectrum. 

It has been shown than semiconductor lifetime and subsequently the diffusion length 

of minority carriers depends on the carrier injection level, which is the level of light intensity 

incident on the cell or the level of forward bias [75][27]. For this reason, bias illumination was 

introduced to LBIC systems in several cases at a very early stage, especially when the intensity 

of the light used for scanning the cell was low [76]. The bias illumination is either inserted in 

the optical system [76] or applied from the side onto the sample [77]. Uniformity of bias light 

is important for accurate measurements, especially in nonlinear samples or when mapping 
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multiple cell devices, as indicated in [78]. Modern systems that include bias light utilise arrays 

of lamps to achieve uniform bias light of adequate intensity [12][79].  

Control of the laser or light beam and focusing it to a small spot on the sample is very 

important for LBIC systems. Early systems used an objective lens just above the sample for 

focusing the beam to a small spot, while the sample was placed on a x-y translation stage 

[80][66]. This approach is also the most widespread in modern experimental setups as it is 

convenient for scanning relatively small samples. However, different approaches are used for 

module-scale devices and generally larger samples. The CELLO (solar CELL LOcal 

characterization) LBIC system [12] utilizes a piezo-controlled mirror system for guiding a beam 

of 100μm spot size focused on the sample, which is in a stable position. This approach was 

introduced very early in LBIC systems [81].  A similar approach is presented in [79] where the 

beam is guided to the required position on a solar cell or module by a pair of mirrors. Using a 

mirror system is convenient for larger samples, when movement with an x-y translation stage 

is not a practical option. Background illumination is also more easily integrated into these 

systems, as the position of the optical system away from the sample prevents shadowing. On 

the other hand, systems that use mirrors can introduce interference patterns in current maps 

when scanning PV devices that are encapsulated in glass, due to multiple internal reflections 

of the beam between the sample surface and the outer glass  surface [81][78]. Reflectivity 

measurements are also difficult to implement in such systems 

In an LBIC setup, the beam that scans the solar cell is focused to a very small spot on 

the cell, with a size of several to some hundreds of micrometres, usually with the utilization 

of a microscope objective. Even initial systems managed to achieve a spot of less than 10μm, 

utilizing microscope objectives, pinholes and laser sources [80][82]. Using an optical system 

of several lenses and a pair of mirrors can provide an adjustable spot size, with a range of 

2μm to 100μm, as reported in [83]. For achieving such a small spot size, a well collimated light 

beam with a small diameter is required. It is possible to achieve sub-micron resolution levels 

in LBIC measurements, by adopting a confocal microscope configuration, as it is reported in 

[84].  If optical fibres have to be used, single mode fibres are preferable because of their small 

core size and small numerical aperture [85][72]. When a focused beam with spot sizes of the 

order of 1 µm is used, the local laser intensity can easily become large enough to cause local 

heating effects. As a consequence, extra care has to be taken for reducing the light power 

density while reducing the spot size in order to avoid such effects. 

Over time, more features have been added to the initial elementary setup for measuring 

more electrical, optical and material properties of samples. As presented in [80], the LBIC 
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measurement setup utilizes a beamsplitter for monitoring the incident beam intensity. This 

approach has been adopted for almost every system that has been presented in the literature, 

as measuring the intensity of the beam while scanning a sample enables both monitoring the 

stability of the light source and being able to calculate local EQE of the scanned solar cell for 

the specific wavelength. By monitoring the incident light intensity, even small intensity 

fluctuations can be cancelled out. This is necessary even with the most stable light sources. It 

is especially necessary for outputs of optical fibres, through which light is sometimes guided 

from the light source to the optical system [85]. Any minor movement of the optical fibre will 

slightly alter the output intensity of the fibre. Measuring the reflected beam from the sample 

is also important as reflectivity maps can be produced [86]. Moreover, the reflectivity is 

necessary when calculating IQE, in order to acquire approximations for the diffusion length. 

For efficient measurement of the local ISC of a sample, lock-in amplifiers synchronized to the 

laser beam modulation signal were introduced into LBIC setups at a very early stage [87].  

The latest improvements in LBIC system have moved the spot size to a sub-micron level, 

using microscopy configurations, for thorough investigation of localized defects, especially in 

thin film PV devices [88][89][90]. Advancements in laser technology have also benefitted LBIC 

system development, as supercontinuum lasers have been used recently [74][91]. 

Supercontinuum lasers have a very broad spectrum, covering the whole useful range for PV 

devices and delivering high power of more than 20W. Due to the broad range of emitted 

spectrum, parabolic mirrors are used for focusing. On the contrary, there has been little 

improvement of the speed of the LBIC technique, which means scans are still time consuming, 

especially when compared to other imaging methods. A significant time improvement was 

achieved by introducing an on-the-fly mode for LBIC systems [92][93]. When an LBIC system 

works in this mode, the laser spot moves continuously on the sample while measurements 

are acquired, without the spot stopping at each point. Measurements are significantly 

accelerated, although some minor distortions are inserted in the current maps. In the same 

work it was also demonstrated that specific areas of the sample can be selected and measured 

with different levels of resolution, achieving a resolution of up to 1μm. 

LBIC measurements are also useful in research of alternative architectures of crystalline 

silicon solar cells. Current mapping of Interdigitated Back Contact (IBC) solar cells revealed 

that although IBC cells avoid optical shading losses by placing the metal grids on the backside 

of the cell, electrical shading losses still exist, due to rear side recombination in the regions of 

the base fingers [94][95]. Diffusion length measurements using an SR-LBIC setup have helped 

the optimization of metal wrap through (MWT) solar cells, by detecting areas of lower 
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diffusion length [96]. Recently, a very high resolution LBIC setup with a scanning spot size of 

less than 5μm was utilized to investigate local defects in the a-Si/c-Si interface of silicon 

heterojunction with intrinsic thin layer (HIT) cells [97]. 

The LBIC measurement technique is a useful characterization tool in research of novel 

thin film devices, as its application has been demonstrated not only on new inorganic material 

devices but also on organic and dye-sensitized solar cells (DSSC). Current mapping and 

performance parameter characterization of an InGaP/InGaAs/Ge triple junction solar cell 

using an LBIC system is reported in [98] while the local EQE of a CZTSe solar cell is delivered 

in [99]. Spatial current mapping and degradation studies have been performed for organic 

solar cells [100] and modules [101]. LBIC maps in organic devices provide valuable insight into 

spatial distribution of photocurrent and its subsequent degradation behaviour, by 

determining whether the loss is occurring uniformly over the sample or locally as in the case 

of pinhole formation [102]. The use of LBIC scans on DSSC devices is limited, as the very slow 

response time of DSSCs in the decay process makes this method extremely time consuming 

[103]. However, some new methods have been explored for the utilization of LBIC 

measurements on such devices [104][105].  Silicon nanowire-based solar cells on glass have 

also been characterized using the LBIC technique, as presented in [106]. 

 

 

2.5.1.3 The LBIC systems in CREST 

Two LBIC systems are available at CREST, each using different principles and serving 

different purposes. The initial large area system able to perform measurements on both PV 

cells and modules is presented in Figure 2.10. The system includes three different laser 

sources, which have wavelengths of 410, 633 and 785 nm. A piezo electric mirror system is 

utilised to realise the scans and background bias light is applied with an array of lamps. 

Measurements take place in a large dark chamber. The lasers are frequency modulated and 

a lock in system is used for accurate measurements. The spot size of the beam on the sample 

is approximately 150μm. The system has been analytically described in [79][78]. 
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Figure 2.10. The initial large area LBIC system in CREST, for solar cells and modules. 

 

 

 

Figure 2.11 the small area LBIC system in CREST, consisting of 11 laser sources. 
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The second and more recent laser system is a small area LBIC measurement setup [107]. 

It consists of 11 laser sources, frequency modulated, fiber coupled into one laser beam. A 

multimode fiber guides the light to the measurement head. The output goes through a 

beamsplitter; a part of the beam propagates towards the sample and another part towards a 

photodiode for reference measurement of light intensity. A microscope objective lens focuses 

the beam to a small spot on the sample, while collecting the reflected light, which is guided 

to the reflectivity measurement photodiode. A lock-in amplifier is used for measuring the 

response for each of the modulated laser sources. In this way, measurements with all 11 laser 

sources can be performed simultaneously. Part of this thesis work included the design of the 

optical configuration of this small area LBIC system. 

 

 

2.5.2 Electroluminescence imaging 

In electroluminescence (EL) imaging, a PV device is electrically contacted and forward 

biased, resulting in electrons being excited into the conduction band of the semiconductor 

device. During this forward bias, a CCD array or similar camera detector captures an image of 

the emission due to radiative recombination of minority carriers. The technique was 

introduced by Fuyuki et al. [9] as a contactless photographic surveying method for the analysis 

of silicon solar cells and photovoltaic modules. The typical set-up for an electroluminescence-

based inspection system comprises the solar cell sample connected to a power supply for 

forward biasing and a silicon charge-coupled device (CCD) camera used to capture the picture, 

which is then processed for correction of imaging artefacts [108]. A schematic of the system 

layout of the small area EL system at CREST is presented in Figure 2.12 [109], along with an EL 

image of a silicon solar cell.   

It has been demonstrated that EL imaging is a very useful technique for fast spatial 

imaging of PV cells and modules. Various faults regarding PV module damage are detectable 

by EL imaging, such as cracks, disruptions within the metal front contact grid of the solar cell, 

shunts between base and emitter, and disruptions of the electrical interconnections [110]. 

The main disadvantages of EL imaging are that images are dominated by radiative 

recombination and series resistance losses and the images do not accurately reflect the 

performance of the device under actual operating conditions. The current paths when 

forward biasing a PV device are different to those when illuminating it [111]. When injecting 
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current into a PV device, the current density is larger in the cell areas close to the top metal 

fingers and lower in the central region of the device, away from the metal grid. On the other 

hand, under actual operating conditions of illumination, the current flow in the cell is reversed, 

resulting in a higher operating voltage in the central emitter region. 

  

 

 

Figure 2.12. On the left, the EL imaging setup at CREST. On the right, an EL image of a ribbon 

mc-Si PV cell, obtained with the system. Cracks, broken fingers and other defective areas are 

visible. 

The wavelength range of the luminescence excitation signal of crystalline silicon PV 

devices varies from 950 to 1250 nm, with the peak occurring at approximately 1150 nm. 

Emission intensity is dependent on the density of defects in the silicon, with fewer defects 

resulting in more emitted photons, as the minority charge carrier concentration is larger. 

Methods have been developed to calculate several parameters using EL imaging, such as the 

diffusion length [112][113][114], the local junction voltage [115][116], and the series 

resistance of a solar cell [117][118][119]. Degradation mechanisms of PV modules can also be 

investigated using EL imaging [120]. A method for mapping the apparent absorber bandgap 

using EL imaging has also been demonstrated recently, with measurements applied on a CIGS 

PV module [121]. Such parameters can be approximated using a combination of spectral and 

spatial EL measurements and several assumptions. That is achieved by capturing EL images 

under different operating conditions and with the use of optical filters that control the 
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detectable luminescence spectrum. However, such calculation methods require larger 

exposure times and multiple images. Still, measurement time is shorter than other spatial 

characterisation methods.  

 

 

Figure 2.13. On the left, an LBIC current map of an EFG mc-Si solar cell, acquired with the latest 

LBIC system in CREST, using a laser wavelength of 980nm. On the right, the EL image of the 

same sample. 

EL provides useful results also for thin film solar cells. EL imaging has been applied and 

its usefulness has been investigated for CdTe solar cells [122]. A methodology for evaluating 

the local value of VOC of CdTe solar cells using EL measurements is demonstrated in [123]. A 

method for calculation of the sheet resistance of the transparent conductive oxide (TCO) layer 

in thin film PV modules has been introduced recently [124] Moreover, local series resistance 

analysis of the window and back contact layers can be realised using EL imaging for CIGS 

modules [40][125]. EL imaging can also be useful for investigating degradation processes of 

perovskite solar cells [126][127]. 

 

2.5.3 Photoluminescence imaging 

Photoluminescence (PL) imaging also utilises the emission due to recombination of 

minority carriers in semiconductor devices and captures images of the PV devices using CCD 

cameras or InGaAs detectors, just as with EL imaging [10]. However, the PV device under test 

is not excited by forward bias but by illumination with an external light source. In this way, PL 

imaging avoids physical contact with the sample in most cases, an important practical aspect 
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for inline applications in terms of both measurement throughput and reduced risk of 

mechanical damage. It is also obvious that PL imaging can be applied to every stage of PV 

manufacturing procedure, from wafers to completed cells and modules. Since in principle the 

emission is the same as with EL imaging, the emission band is also the same, so it can be 

detected partially with silicon CCD cameras and almost completely with InGaAs detectors. 

PL mapping was initially introduced as a point by point microscopy scanning technique 

for PV characterisation [128][129]. PL scanning microscopy is still an extremely useful method 

for investigating material structure and recombination properties of structural defects, 

especially in thin film devices [130]. Using a confocal configuration, resolution can be 

significantly increased, which results in an essential tool for material research [89]. 

 PL imaging with a camera detector was then demonstrated as a very fast technique to 

measure the minority carrier lifetime with high spatial resolution [131]. Using PL imaging, the 

effective minority carrier lifetime images of passivated silicon wafers can be acquired at 

megapixel resolution within seconds. This is orders of magnitude faster than is possible with 

e.g. microwave photoconductance decay mapping tools [132] that are usually used for 

measuring lifetime in silicon wafers. Moreover, PL imaging can be useful also for other solar 

cell manufacturing technologies. 

As in the case of EL imaging, there are several device parameters that can be calculated 

or approximated with the use of PL imaging, especially for crystalline silicon wafers and solar 

cells. Information about minority charge carrier lifetime can be acquired with PL imaging, with 

inline application to quality control of silicon wafers [133][134]. Interstitial iron 

concentrations in multicrystalline silicon wafers can be also imaged using PL [135][136]. The 

series resistance of finished silicon solar cells can be spatially evaluated, as is demonstrated 

in [137][138]. Nevertheless, in this case contacting the cell is necessary, as current has to flow 

over the contacts of the PV device. Imaging the series resistance using PL is preferable to using 

EL imaging, as PL imaging combined with current flow in the PV device simulates more closely 

the actual operating conditions. Specific operation points on the IV can be selected, 

equivalent to the maximum power point. By acquiring several PL images, it has also been 

demonstrated that a set of performance parameters of the cell such as local power, fill factor 

and efficiency can be calculated [139]. 

 Most of the time such methods require specific assumptions that do not always hold 

true. One of the most common being that the light generated current density is uniform 

across the cell area. Moreover, PL imaging methods need accurate calibration that is 
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sometimes sample specific. Lateral variations of minority carrier lifetime can affect calibration 

procedures and insert errors in measurements [140]. 

 

2.5.4 Lock-in Thermography 

Infrared (IR) thermography is a spatial non-destructive characterization technique that 

utilizes the radiation in the infrared range of the electromagnetic spectrum (approximately 

0.9–14 µm) to produce images of a specific temperature pattern. Infrared radiation is emitted 

by all objects and it is proportional to their temperatures, hence, IR thermography makes it 

possible to determine the surface temperature of a PV device. As steady-state thermography 

of PV devices shows very poor spatial resolution because of lateral heat spreading in the 

device, lock-in techniques have been utilized. 

The technique of infrared (IR) camera-based lock-in thermography (LIT) was introduced 

for the first time by Kuo et al [141]. This technique has been further developed and 

established as a successful spatial characterization technique for solar cells and other 

electronic devices. The lock-in process requires a periodic signal from the solar cell to be 

measured. This can be achieved by applying a pulsed voltage to the sample or by illuminating 

the cell with pulsed light and by measuring the surface temperature modulation with a 

sensitive infrared (IR) camera. The high cost of such detectors is a disadvantage of LIT. The 

choice of frequency is a compromise between spatial resolution and detection sensitivity 

[142]. For low frequencies, lateral heat diffusion makes the acquired images appear blurrier, 

although the signal is stronger. On the contrary, using higher frequencies improves spatial 

resolution, but the signal is much weaker. Lateral resolution of thermography images always 

depends on the diffusion of the thermal waves in the material. The signal-to-noise ratio is 

determined by the measurement time, that is, the number of lock-in periods used for the 

measurement. LIT is schematically described in Figure 2.14.  

The primary results of a LIT measurement are an in-phase image (0° image) and an out-

of-phase image (-90° image). These acquired signals can easily be converted into images of 

the amplitude and the phase. The phase signal is scaled in degrees expressing the phase shift 

between the signal and the lock-in reference signal. The amplitude signal cannot be evaluated 

quantitatively but it provides a good resolution image of local heat source and it is the 

standard way to display LIT results.  

 



39 
 

 

Figure 2.14. Measurement principle of LIT 

 

Due to the dynamic character of the measurement, lateral heat diffusion is limited, 

resulting in an improved effective spatial resolution. Lock-in thermography is applicable not 

only for single solar cells but also for solar modules [143]. Initially LIT was developed for 

application in the dark (DLIT). In DLIT, the modulated bias voltage is applied in the dark and it 

is the method that was introduced for quantitative evaluation of shunts in solar cells [11]. 

Illuminated or Light modulated LIT (ILIT or LimoLIT) utilises a modulated light source to 

provide the pulsed signal, instead of pulsed bias voltage [144]. In this way, a contactless way 

of applying LIT is provided, although additional voltage bias provides more realistic 

measurement conditions, simulating actual operating conditions. In similar ways to PL and EL 

imaging, LIT can evaluate several parameters and features of solar cells. Local series 

resistance investigations can be realised with i-LIT [145]. 

 

2.5.5 Corescan 

The Corescan (COntact REsistance Scan) method is a destructive method for series 

resistance measurements in wafer based crystalline silicon solar cells [146][147]. Current is 

generated locally using a light beam large enough to cover the fingers closest to the scanning 

point. A probe centred in the light beam is continuously in contact with the surface of the 

sample, measuring the potential at the front surface of the cell and moves together with the 
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light beam over the cell to implement the scan. The probe is made of tungsten and is pressed 

against the surface by the probe holder weight. This means that the surface is scratched, 

removing the anti-reflection coating to enable electrical contact with the silicon surface.  

 

 

Figure 2.15. Measurement principle of the Corescan method 

 

Effectively, this technique measures the potential difference between a finger of the PV 

cell and the local point of contact. Using this technique, the series resistance and shunts of 

wafer based PV cells can be mapped. This becomes useful especially for development and 

validation of non-destructive measurement methods for series resistance, such as 

luminescence methods [138][148]. A drawing of the measurement principle of Corescan is 

presented in Figure 2.15. 

 

 

2.5.6 Electron Beam Induced Current (EBIC) measurements 

The EBIC method uses similar principles to LBIC measurements, but instead of scanning 

the semiconductor area with a light beam, an electron beam provided by a scanning electron 

microscope (SEM) is used [149]. Classic SEM mapping measurements on PV samples would 

need the samples to be cleaved and the electron beam would scan the side of the sample as 

is summarised on the left of Figure 2.16. A typical EBIC measurement system also consists of 

an SEM and a low noise current amplifier. In this case, the electron beam by the SEM scans 

the surface of the solar cell, generating electron–hole pairs within the volume that the beam 
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penetrates in the cell. The carriers can be collected and amplified, so that a current map is 

generated, where variations in the generation or recombination of these carriers can be 

displayed. EBIC imaging is very sensitive to electron–hole recombination and thus it is very 

useful for determining specific defects that act as recombination centres in semiconductor 

materials. The general principles of the EBIC method are summarised on the right of Figure 

2.16. 

 

 

Figure 2.16. On the left, a drawing of the standard way of performing SEM measurements on 

PV samples. On the right, the measurement principles of the EBIC technique. 

 

EBIC measurements can only be applied to bare cells that are not encapsulated. They 

have been useful for characterising grain boundaries, dislocations and generally the electrical 

behaviour of microstructure. EBIC has been used for crystalline silicon[150], although for 

small areas and not whole cells. The very high resolution it yields and the ability to electrically 

characterise microstructure, makes it more suitable for characterisation of small research 

samples such as small CdTe solar cells [151] or organic PV samples [152]. 
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2.6 Conclusion  

As has been described in this chapter, the overall performance of PV cells, and 

consequently PV modules, can be dominated by local defects and areas of underperformance 

within the cells. Local features can be inactive areas or can act as recombination centres that 

reduce the efficiency of PV devices. These spatial features can be production induced, can 

appear due to ageing of devices or can be just features of specific intrinsic material properties. 

Different types of PV devices suffer from different types of defects and local features. New 

emerging technologies such as organic and perovskite solar cells are very unstable and exhibit 

a large number of defects when aged. For all the above reasons, the development of high 

efficiency, cost effective solar cells is strongly connected with the development of useful PV 

spatial characterisation techniques. 

In this chapter the established characterisation methods were summarised. It became 

clear that each of the methods described is more suitable for detecting and investigating 

specific features. Moreover, some methods are more useful for specific types of solar cells 

than others. All these methods are not necessarily competing with each other but are 

complementary, as other authors have also pointed out [153][154][155]. Within this context 

of spatial characterisation methods, this work focuses on the development of a new current 

mapping technique, which uses different sampling principles to LBIC measurements, which is 

the standard current response mapping method. This new development will not only provide 

an alternative new method for current mapping, but has the potential to significantly reduce 

measurement time for current mapping of PV devices. 
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    Chapter 3 

3. Compressed sensing imaging and application to PV spatial 

characterisation 

 

 

 

 

3.1 Overview 

The novel spatial characterization method that is developed in this work is based on a 

recently reported data acquisition theory named compressed (or compressive) sensing, 

introduced by D. Danoho [14] and J. Candès, J. Romberg  and T. Tao [156]. This theory has 

offered a new sampling concept which can become very useful in situations where the classic 

point by point sampling procedure is very time consuming, impractical or expensive. 

According to this theory, one can reconstruct a signal from highly incomplete or inaccurate 

information.  

Lossy compression techniques for datasets are widely used in everyday life; MP3 music 

files are compressed audio files, JPEG compression is used for image files. In such instances, 

a large dataset is transformed and represented by a different basis. For instance, a dataset 

can be represented in the Fourier space, using the Fourier coefficients. In the case of JPEG 

compression for images, the complete dataset (typically several megapixels) of the image is 

initially available but after lossy compression, only the largest basis coefficients are stored. 

When reconstructing the signal the non-stored coefficients are simply set to zero. This means 
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that on almost all occasions a large part of the information is simply thrown away during the 

compression process.  

In many cases, large effort is spent in order to obtain full information of a signal of N 

elements and afterwards most of the information is discarded at the compression stage, 

where only K elements are kept. One might ask whether there is a practical way of obtaining 

the compressed version of the signal more directly, by taking only a small number of 

measurements of the signal in the first instance. This can be extremely useful in cases when 

measurements have a high cost and reducing the number of measurements can efficiently 

reduce cost and time of the measurement procedure. It is not obvious at all whether this is 

possible, since directly measuring the largest coefficients requires their location to be known 

beforehand. Nevertheless, compressed sensing provides a way of constructing a compressed 

version of the original signal by taking only a small number of linear and non-adaptive 

measurements. The precise number of required measurements is comparable to the 

compressed size of the signal, though clearly the measurements have to be suitably designed. 

The traditional approach to measuring signals follows the well-known Shannon-Nyquist 

sampling theorem, which states that the sampling rate must be at least twice the highest 

frequency of a signal [157]. In many applications, including digital imaging and video cameras, 

the Nyquist rate is so high that more samples are acquired than are practical to manipulate, 

making compression a necessity prior to storage or transmission. In other applications, 

including imaging systems (medical scanners and radars) and high-speed analog-to-digital 

converters, a higher sampling rate is prohibitive, either because of a high cost per sample, or 

because specific samplers cannot achieve the high sampling rates required by the Shannon-

Nyquist theorem. Compressive sensing (CS) can potentially overcome these difficulties, 

demonstrating that certain signals or images can be recovered from what was previously 

believed to be a highly incomplete measurement set.  

In order to have a reduced number of acquired measurements and still adequately 

describe a signal, its compressibility has to be exploited. The measurements in the CS case are 

not point samples but more general linear combinations of the signal. An overview of the 

compressed sensing theory, compressed imaging and its applications in instrumentation 

development is given in this chapter. At the core of almost all physically realised CS imaging 

systems is a Digital Micromirror Device (DMD), the properties of which and applications to PV 

characterisation will be discussed. Finally the general methodological approach of applying 

CS to current mapping will be described, along with some considerations for this specific 

application.  
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Figure 3.1 A photograph of the APV group in CREST and a reconstructed image of the initial 

photograph, using only the largest 2% of the Discrete Cosine Transform (DCT) coefficients. 

 

 

 

 

 

3.2 The Digital Micromirror Device (DMD) 

The micromirror elements that are the heart of the DMD are optical micro-electro-

mechanical (MEMS) components and were introduced and patented in 1987 as spatial light 

modulators [158]. Their usefulness for digital projection applications was proposed some 

years later [159][160]. After several improvements over time, the micromirror array device 

design in current use was invented and patented in 1996 [161]. Any display device that is 

based on a DMD chip for creating the projections is referred to as Digital Light Processing 

(DLP). DLP technology has been adopted for almost all display applications, such as simple 

projectors, television sets, and cinema projectors. 

 

3.2.1 Properties 

The structure of the DMD chip is illustrated in Figure 3.2. The micromirror array area 

consists of thousands of individual aluminium micromirrors, the actual number depending of 

the maximum resolution the specific DMD model can provide. Maximum resolution varies 

from 1024 x 768 to 2560 x 1600. The size of the micromirror array and the individual 

micromirrors also depend on the DMD model. The mirror array area is square in almost all 

cases, with each micromirror having a size of 13.7 µm by 13.7 µm for the lower resolution 
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models and down to 7.6 µm by 7.6 µm for the high resolution ones. In every case, the distance 

between micromirrors is approximately 1 μm. The micromirrors sit on a silicon oxide memory 

cell, which defines the state (0 or 1) of each mirror. Mechanical stops limit the micromirror 

tilt angle to ±10o depending on the digital state of the underlying CMOS (complementary 

metal–oxide–semiconductor) memory cell. Thus, each one of the micromirrors can reflect 

light in one of two distinct directions, depending on if it is set on the “on” or “off” state. This 

is achieved with the use of a yoke relative to the substrate which enables each micromirror 

to tilt about a pair of hinges. These components are illustrated in Figure 3.2. The maximum 

switching rate between states depends on the model of the DMD array and can be as fast as 

22.7 kHz.  

 

 

Figure 3.2 Drawing of the micromirror array and details of its specific components. 
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The reliability and lifetime range of DMD chips has been extensively tested and it has 

been demonstrated that their lifetime without degradation can exceed 100,000 hours [162]. 

Initial durability experiments revealed specific failure mechanisms associated with hinge 

memory and surface contamination [163][164]. The problem of hinge memory lifetime has 

the impact that a micromirror after a long period of use that specifically lands the pixel on 

one side more often than the other, the micromirror may not return its exact actual position. 

Contamination of the surface of the micromirror array area with foreign particles can lead to 

difficulty of movement and even damage to the micromirrors. After 100,000 hours of 

operation, calculated MTBF (mean time between failures) has been reported to be higher 

than 650,000 hours [162]. DMD chips have shown robustness under extreme environmental 

conditions of temperature and light intensity.  

 

 

3.2.2 Application to PV characterisation 

Apart from the method that is described in this work, there are only a few cases where 

DMD chips have been used directly or indirectly in instrumentation for characterisation of PV 

devices. The first time a DMD chip was used for PV characterisation was a tomographic line 

scan setup for current mapping of PV devices reported in [165]. This was also the first time 

that a pattern projection sequence (line scan) was adopted instead of a point by point scan 

for current mapping. Current mapping measurements of a solar cell using a DLP projector 

were also reported in [166]. The spatial resolution achieved was approximately 1.5 mm.  

DMD use has also been proposed for building small scale solar simulators or solar cell 

spectral response characterisation layouts. By utilising a super continuum laser and a DMD, a 

small scale solar simulator useful for PV characterisation can be realised, that can reproduce 

very accurately the AM1.5 spectrum [167]. This is achieved by combining a prism or grating 

and a DMD to create an optical filtering procedure that can accurately control the output 

spectral radiance of the system. In the same way, a spectral response measurement system 

can be built [168]. Frequency modulation of the micromirrors in such a system can result in a 

decrease in spectral response measurement times by a factor of 500 [169]. The work of this 

thesis adds one more application of the DMD chip to PV characterisation.  
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3.3 Compressed sensing  

3.3.1 Summary of compressed sensing theory 

Following the usual sampling process for measuring a signal x[n], n=1,2,…N, a 

potentially large number of samples N have to be acquired. This is the case even when the 

data will be compressed to a K element vector, where K<<N. After acquiring N measurements, 

the system must compute all of the N transform coefficients, even though it will only keep 

the values and locations of the K largest elements needed for an accurate representation in 

the transform domain (compressed form) and discard the rest. The purpose of compressive 

sampling is to directly measure these K coefficients, applying M<<N number of measurements, 

where K<M. Since the locations of the K coefficients are not known, one has to apply a slightly 

larger number of measurements M>K to ensure that the K coefficients are captured. 

The signal to be sampled is a real-valued, finite-length, one-dimensional, discrete-time 

signal x. It is represented as an N×1 column vector in RN with elements x[n], n = 1, 2…, N. Any 

image can be represented as a long, one-dimensional vector. For instance, an image of size 

√N×√N pixels can be described by an N×1 vector. Using compressed sensing, a compressed 

representation of a signal, x, is acquired using M<N linear measurements between x and a set 

of test functions {𝜑𝑚}𝑚=1
𝑀 , forming 𝒚[𝑚] = 〈𝒙, 𝜑𝑚〉 in which y is the actual measurement. 

Stacking test functions {𝜑𝑚}𝑚=1
𝑀  as rows in an MxN matrix 𝛷 = [𝜑1, 𝜑2, 𝜑3 ,…𝜑𝑚] , the 

problem can be written as [170]: 

 

 𝒚 = 𝛷𝒙 (3.1) 

 

In general there is loss of information as a result of the transform from x to y, as y has 

significantly fewer dimensions than x. Since M < N, there are infinitely many {𝒙: 𝒚 = 𝛷𝒙}. This 

is an underdetermined problem with infinite solutions. However, a sensing matrix Φ can be 

designed such that an almost exact approximation of signal x can be recovered from 

measurement y, if x is sparse or compressible. A signal being sparse means that almost all of 

its elements are zero. In practice, few real-world signals are truly sparse, although almost all 

of them are compressible, meaning that they can be well-approximated by a sparse signal, or 

are sparse after a transform [171]. 
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Figure 3.3. Sampling a signal of N elements with an MxN sensing matrix results in the 

measurement vector consisting of M elements. 

The sensing matrix Φ should have some specific properties so that a successful CS 

process can be achieved [172]. As mentioned above, real signals are compressible, which 

means they have a sparse representation after a transform, Ψ. When 𝛹 ∈ 𝑅𝑛𝑥𝑛  is a 

representing basis (or dictionary), the sparse version of x is α, satisfying  

 

 𝒙 = 𝛹𝜶 (3.2) 

 

It has been shown that in order to achieve successful CS measurements, a matrix Φ 

must be chosen having minimal coherence with Ψ [170]. In other words, a matrix 𝐵 = 𝛷𝛹 is 

desired to have columns with the smallest possible correlations. A second important property 

is that Φ must satisfy the Restricted Isometry Property (RIP) [173]. A matrix Φ satisfies the RIP 

of order k if there exists a 𝛿𝑘 ∈ (0,1) such that [171]:  

 

 (1 − 𝛿𝑘)‖𝒙‖2
2 ≤ ‖𝛷𝒙‖2

2 ≤ (1 + 𝛿𝑘)‖𝒙‖2
2 (3.3) 

 

If a matrix Φ satisfies the RIP of order 2k, then it is ensured that Φ approximately 

preserves the distances between any pair of k-sparse vectors. This is especially important for 

signal recovery when measurements are contaminated with noise. 
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In practical applications it is difficult to test if a sensing matrix satisfies the 

aforementioned properties. In most cases, Φ would have thousands of rows and columns. 

However, both the RIP and incoherence can be achieved with high probability simply by 

selecting Φ to be a random matrix [174]. Several types of matrices have been used in CS 

applications; Gaussian random matrices [14], scrambled Fourier (SF) matrices [156], binary 

orthogonal transform matrices [175] and sparse matrices generated from block diagonal 

matrices, such as the scrambled block Hadamard (SBH) matrix [176]. As mentioned above, 

even scrambled random binary matrices work with high efficiency, as long as they are highly 

sparse [177]. For applying compressive sampling, the matrices do not have to be binary (ones 

and zeroes) but can have any values, as long as they possess the necessary incoherence with 

the representation basis and that they satisfy the RIP. 

The signal reconstruction algorithm must take the M measurements in the vector y, the 

random measurement matrix Φ, the basis Ψ (transform) and reconstruct the N-length signal 

x or, equivalently, its sparse coefficient vector α, as 𝒙 = 𝛹𝜶 and 𝒚 = 𝛷𝒙 = 𝛷𝛹𝜶. Among a 

large variety of algorithms in the literature, the ℓ1 minimisation algorithm is mostly preferred 

in this work. The reasons are the simplicity of the algorithm, its well-characterised 

performance and the open access software packages available. It has been shown that using 

the ℓ1 minimisation optimisation one can exactly reconstruct k-sparse vectors and closely 

approximate compressible vectors stably with high probability using a small number of 

random measurements [14]. In other words the solution to the underdetermined problem is 

the x vector (or more precisely the α vector) with the minimum ℓ1 norm [174]: 

 

 �̂� = argmin‖𝒙‖1 subject to 𝛷𝒙 = 𝒚 (3.4) 

Or 

 �̂� = argmin‖𝜶‖1 subject to 𝛷𝛹𝜶 = 𝒚 (3.5) 

 

This problem is called basis pursuit and can be reduced to a linear problem [14][170]. 

There are many algorithms available in the literature, as well as open access code for their 

solutions. In this work the main algorithm used is the primal dual ℓ1 minimisation, included in 

the open access “ℓ1 magic” toolbox in MatLab, which is written by Justin Romberg [156]. 

Other methods that were also examined in this work are the SPGL1 algorithm (spectral 

projected-gradient for ℓ1 minimisation) [178] and the Danzig selector algorithm, included in 

the “ℓ1 magic” toolbox [179]. Additionally, the ℓ1 minimisation algorithm can also be altered 

to take into account measurement noise (ℓ1 denoise).  
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Apart from the ℓ1 minimisation, other algorithms were also investigated in this work, in 

order to determine the most suitable for this specific application. “Greedy” algorithms exist 

for CS reconstruction. Greedy algorithms choose the locally optimal solution at each iteration 

with the hope of finding a global optimum. A greedy strategy does not in general result in an 

optimal solution, but may yield locally optimal solutions that approximate a global optimal 

solution in reasonable time and accuracy. Among the available greedy algorithms for CS, the 

Orthogonal Matching Pursuit algorithm (OMP) [180] was used, as it can be more useful in very 

specific cases, as will be demonstrated in the next chapter. The Compressive Sampling 

Matching Pursuit (CoSaMP) algorithm [181] and the Total Variation (TV) minimisation 

algorithm (included in the “ℓ1 magic” package) were also tested. More than 40 open access 

toolsets for CS reconstruction were found in the literature. This means that an evaluation of 

all the available software is not possible and also not within the scope of this work. 

Additionally it is outside the aim of this work to build a new algorithm or code one of the 

existing methods from scratch. Nevertheless, among the algorithms explored here, the ℓ1 

primal dual algorithm provided the most reliable and accurate solutions, as will be illustrated 

in the next chapter. 

 

3.3.2 Compressed imaging systems 

For building a CS imaging system, there are several important considerations to bear in 

mind. The design should be a compromise between physical considerations, such as size and 

cost, reconstruction accuracy and reconstruction speed. One of the first examples of a CS 

imaging system was the Rice single-pixel camera [182], where a single pixel detector is used 

to image a scene. In this single pixel camera system, the scene of interest is projected on the 

DMD pattern generator, like it would be projected on the pixel detector array of a CCD camera. 

The DMD inserts the binary patterns and the total intensity of each projection is measured 

with the single detector. Since the individual orientations of the micromirrors in the DMD can 

be altered very rapidly, a series of different binary random projections can be measured 

successively in a relatively short period of time. The original image is then reconstructed from 

the resulting observations using the techniques described in the previous section. Any binary 

projection matrix can readily be implemented in such a system, so that existing CS theory can 

be directly applied to the measurements. The main disadvantage is that the camera has to be 

focused on the object of interest until enough samples have been collected for reconstruction. 

This also means that the time required may be prohibitive in some applications.  
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This initial CS imaging demonstration with the single pixel camera reflects the general 

measurement principles that CS imaging systems follow. In all systems the sampling is 

achieved using a sensing matrix consisting of the binary projection sequence that is inserted 

in the system by the DMD. Any CS imaging system will have to rely on an encoding device that 

inserts the patterns/test functions into the sampling procedure. The two cases of CS imaging 

system approaches are presented in Figure 3.4. The approach adopted in this work is the one 

illustrated on the left of Figure 3.4. A collimated beam overfills the DMD, which creates the 

patterns. With suitable optics, the sequence of patterns is projected onto the sample, in our 

case a PV device. In the second case, the sample or the object to be observed is 

excited/illuminated and the DMD is actually spatially encoding the image with the pattern 

sequence just before a detector measures the overall signal, as is illustrated on the right of 

Figure 3.4.  

 

 

Figure 3.4. CS imaging experimental layout approaches mainly used in CS applications. 

This latter system architecture is extremely useful for applications in which the 

detectors are expensive and building a high resolution multi-pixel camera has a prohibitive 

cost. Adopting the CS imaging approach, systems that can provide spatial information can be 

realised based on just a single pixel detector. This feature has been highlighted to have great 

potential for applications in astronomy [183]. There are other specific cases where data are 

already encoded, incomplete or are compressively sampled without the need of an external 

encoder such as the DMD. In such cases the application of compressive sampling is even more 

attractive for successfully reconstructing spatial information. Another significant feature that 

is specifically essential for this work is that using compressive sampling, the number of 

measurements that a system has to acquire in order to provide an estimation of a signal can 
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be significantly reduced, to something much smaller than the number of elements of the 

reconstructed signal.  

 

 

3.3.3 Applications in spatial characterisation instrumentation 

The first application of CS was in the medical domain. One of the first CS systems 

demonstrated was CS Magnetic Resonance Imaging (MRI) [16][184]. CS has the potential to 

reduce the total scan time and cost of MRI acquisitions and consequently to minimise the 

burden of imaging to patients. This can lead to greater patient throughput, reducing the cost 

of MRI, or permit more accurate imaging to be completed per unit time. Another medical 

imaging application of CS that has been proposed is CS x-ray computed tomography, which 

can potentially reduce the x-ray dose to patients, due to the reduction of sampling 

requirements [185]. Apart from medical applications, CS applications in radar systems have 

also been presented, in order to reduce data size, complexity, instrument weight, power 

consumption and system cost [186][187].  Similarly, ground penetrating CS radar systems 

have been proposed [188].  

Recently CS has been proposed as a more efficient way of sampling in hyperspectral 

imaging applications. Compressive sampling has been demonstrated for fluorescent 

microscopy, with the same system being able to provide spatial as well as spectral information 

of biological samples [189]. Utilising CS in imaging instruments is a very convenient way of 

adding an extra dimension. Projecting the series of patterns while measuring the spectrum 

for each pattern, maps for each wavelength can be produced. This makes the acquisition of 

spatial and spectral information of samples possible [190][191]. Due to this reason the 

implementation of compressed sensing Raman imaging has been proposed, with the actual 

optimal configuration of such an instrument still being under research [190][192].  

CS microscopy instruments have been proposed and demonstrated in different 

applications and adopting different approaches. Applying compressive sampling to 

holographic microscopy shows that such a data acquisition strategy is robust to high noise 

levels and can significantly reduce measurement time [193]. Compressive confocal 

microscopy has been demonstrated, with the significant advantages of increased signal levels 

and the fact that the spatial filters necessary for the typical confocal configuration can be 

omitted [194]. This is achievable due to the double operation of the micro mirrors of the DMD 

as a pattern generator as well as pinholes for spatial filtering. Compressive sampling has also 
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been proposed for surface morphology characterisation measurements [195], electron 

tomography [196] and atomic force microscopy [197].  

Apart from CS MRI, almost all other CS applications for spatial characterisation 

instrumentation are at a preliminary stage. There is a large number of reconstruction 

algorithms reported in the literature and more are being developed constantly. Its complexity, 

especially regarding the reconstruction process, is also a factor that hinders its adoption and 

development for further spatial characterisation applications. Moreover, the high prices of 

the DMD chips until recently were also an extra aversive factor, although prices have dropped 

significantly lately, with the utilisation of DMD chips in DLP projectors and televisions. Due to 

this last reason, more applications of CS are expected to appear in the near future, the 

techniques developed in this work being one of them. 

 

 

 

 

 

3.4  Applying compressed sensing to PV current mapping 

3.4.1 General approach 

It has been made clear that the application of compressed sensing in spatial 

characterisation instrumentation can lead to some significant advantages; a lower number of 

measurements needed for acquiring a measurement map and increased signal levels. 

Consequently, CS can also prove useful for current mapping of PV devices and the principles 

of this approach are presented in this section.  

The standard approach of current mapping that conventional LBIC systems use is a point 

by point scan of a laser beam across the sample. The current response is measured at the 

device electrical terminals or contacts for each laser point position, in order to produce the 

current map. For the application of CS for current mapping, sampling has to be achieved using 

the test functions in the sensing matrix. These test functions are in reality random binary 

patterns. This sequence of patterns has to be projected on the cell so that compressive 

sampling can be achieved. The sampling procedure is illustrated in Figure 3.5. The patterns 

are expressed as rows in the binary sensing matrix Φ. The sample under test is illuminated 

with the sequence of binary patterns, and the current response is measured for each pattern, 

thus populating measurement vector y. 



56 
 

Following this procedure, the measurement vector y is acquired, its number of elements 

depending on the level of undersampling; for 50% undersampling, y has half the elements 

that the final current map vector has (the number of image pixels in that latter case). The 

sensing matrix Φ is known by construction; in this work uniformly distributed random 

patterns are used as test functions. Equation (3.4) can be then used to acquire the current 

map in vector form x. In practice, the sensing matrix is transformed using the Discrete Cosine 

Transform (DCT) before being inserted in the reconstruction algorithm. In this work the 

transformed sensing matrix is inserted into one of the available CS reconstruction solvers in 

MatLab, along with the measurement vector y. For the ℓ1 reconstruction algorithm, equation 

(3.5) is used and the output of the reconstruction algorithm is vector a. The inverse DCT 

provides the result, which is current map x.  

 

 

Figure 3.5. The compressive sampling procedure for PV current mapping; the binary patterns 

in sensing matrix Φ are projected on the PV device under test. For each pattern, the current 

response is measured, populating measurement vector y. 

The compressive sampling and reconstruction procedures are realised in different steps 

and are not embedded in the same software throughout this work. The flowchart of the 

overall process is illustrated in Figure 3.6.  
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Figure 3.6. Flowchart of the CS current mapping procedure that is used in this work 

The compressive sampling software is implemented in LabView in all cases, with an 

extra step in C++ in the simulations case, as will be described in the next chapter. The sensing 

matrices are always constructed in LabView before the sampling procedure, the DCT 

transform is also applied in LabView. The reason is that the hardware control is done with 
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LabView for the experimental implementations of this work, so the initialisation of the system 

and final representation is implemented in LabView. A MatLab script is used in LabView to 

call the functions for reconstructing, so the user actually never uses MatLab directly. The 

straightforward implementation of transforms with LabView with its internal functions is also 

a useful feature that has been exploited. 

The reconstruction is an offline process, which means that while a set of measurements 

is being processed, another sampling process can begin. This is extremely practical as it allows 

the reconstruction of a set of data which in realistic use can require around a minute, while 

more measurements are being acquired. Moreover, the reconstruction software produced in 

this work is universal for all sampling occasions. In detail, the raw data (Φ, y) are inserted 

once again into LabView, which applies the DCT transform to Φ and calls the chosen MatLab 

algorithm with a MatLab script within the LabView environment. The inverse DCT is then 

applied to solution a of equation (3.5) in LabView to yield the actual current map x. 

 

 

 

 

3.4.2 Resolution considerations 

In any kind of numerical analysis, the time required for reconstruction depends on the 

number of points to be used and in many cases increases exponentially. Given a specific final 

resolution of the current map, it must be verified that for the application in this work the 

reconstruction process is achieved within realistic time limits. One needs to make certain that 

the overall measurement time, i.e. the time required for acquisition and reconstruction, is 

acceptable for the intended purpose. This was investigated at the very beginning by utilising 

an electroluminescence (EL) image. This type of image was chosen as it can be easily acquired 

and local current measurements have a similar structure. Thus, such an image provides a 

realistic test-case. Four cases of different levels of resolution were examined; 40 x 40, 60 x 60, 

80 x 80 and 100 x 100 pixel images, all presented in Figure 3.7.  
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Figure 3.7. The four parts of an EL image used for the investigation of the impact of the 

measurement resolution on the reconstruction process (Upper row) and virtual CS 

measurements (bottom row), with 50% of measurements used for reconstruction: (a) 40 x 40 

pixels, (b) 60 x 60 pixels (c) 80x80 pixels (d) 10 0x 100 pixels. 

The images were digitised and expressed as matrices, with the values of their elements 

depending on the EL signal of the equivalent pixels of the image. The procedure for applying 

CS sampling illustrated in Figure 3.5 was followed. To achieve that, the image matrices were 

multiplied by the necessary patterns of the sensing matrix, realising a virtual compressive 

sampling procedure. This procedure was also used as a test process to validate that the 

available algorithms and the constructed sensing matrices actually work as they should. 

The reconstruction time using the ℓ1 minimisation algorithm was recorded for each 

case and the results are presented in Figure 3.8. Most algorithms used in this work exhibit 

convergence speed of the same order of magnitude, with the ℓ1 being the fastest among the 

ones investigated. The performance of different algorithms is evaluated in more detail in the 

next chapter. Measurements in the graphs are presented as a percentage, expressing the 

ratio of the measurements acquired (patterns virtually projected on the sample) to the total 

number of pixels of the final current map. A conventional point by point method would 

require as many measurements as the total number of pixels. As expected, higher resolution 
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current maps will require more time for reconstruction. In this work a resolution of 100 x 100 

pixels will be used in most cases, since the time constraints for the reconstruction process are 

now well defined. An Intel i5, 3.4 GHz, 28 GB of RAM is used in this work. A maximum of 

around 4 minutes is observed in the case of the acquisition of 90% of measurements. However, 

as will be shown in the following chapters, a 50% measurement acquisition is enough for an 

almost exact approximation of a sample’s current map. The time required for such a 

reconstruction is approximately one minute. Since the procedure is an offline process, this 

time is not directly added to measurement time, as a new set of measurement can start while 

the previous one is still processed. This last feature proved extremely useful throughout this 

work and it can be crucial for actual future applications. 

For the purpose of analysing each case of different resolution levels, the numerical root 

mean square error (NRMSE) was calculated, as a function of the number of measurements 

acquired for reconstruction. The NRMSE for each case is presented in Figure 3.9. It is clear 

that the higher the resolution, the faster the optimisation algorithm converges and provides 

a solution. High resolution current maps will converge slightly faster in terms of number of 

measurements. Fewer measurements can be applied, thus saving considerable time in actual 

measurements. This effect however, saturates as resolution increases.  

 

 

Figure 3.8. Reconstruction time in seconds for four different resolution cases. Numbers of 

measurements used for reconstructing the current map are presented as percentages of the 

total final image pixel count. 
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Figure 3.9. NRMSE of four different resolution cases. Numbers of measurements used for 

reconstructing the current map are presented as percentages of the total final image pixel 

count. 

 

 

 

3.5 Conclusions  

Compressed sensing theory was summarised in this chapter and some of its applications 

to spatial characterisation were presented. The DMD chip is an essential part of most 

experimental applications when compressive sampling is used and so its features were briefly 

explained.  The CS current mapping procedure that is developed in this work for PV device 

characterisation and its properties were described in detail. These procedures will be used 

throughout this work. Some insights for the best practices to use were gained from previous 

CS applications to instrumentation reported in the literature. The ℓ1 minimisation algorithm 

will be mostly used for reconstruction throughout this work, although other algorithms will 

also be tested. This choice is made as this algorithm has also been tested and used in other 

CS applications, its performance is well known, it is open access and straightforward to 

implement. Nevertheless, additional algorithms are used and evaluated in the following 

chapters. 
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The investigation of CS current mapping is realised using electrical spatial simulations 

as well as experimentally. Regarding the experimental case, a DMD chip is utilised in any case, 

either directly or indirectly; in the first case, a prototype optical setup will use the DMD 

directly for generating the necessary patterns; a second approach is to use a commercial 

projector in order to apply the necessary patterns, indirectly using the DMD integrated within 

the projector. In the following chapters the potential of CS current mapping will be explored 

through these implementations, applying the principles already presented. 
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     Chapter 4 

4. Spatially Resolved Electrical Simulations of Compressed 

Sensing Current Mapping 

 

 

 

 

4.1 Overview 

Spatial variations of solar cell parameters are crucial for understanding device 

performance. Spatial variability of generated photocurrent densities in PV devices and even 

small local flaws can have very significant impacts on overall device performance. Even in 

ideal cases, the local photocurrent density is not perfectly uniform across a PV device. As was 

highlighted in the previous chapters, current mapping of PV cells is mainly realised by LBIC 

measurements. This technique has been widely used for spatial characterisation of electrical 

properties of solar cells  as well as photodiodes [198] and other semiconductor devices.  

An alternative method of PV device current mapping that uses a different sampling 

approach is developed in this work. As it was described in the previous chapter, this method 

utilises the compressive sensing (CS) sampling theory, which can extract a signal from 

incomplete or inaccurate observations [156][14]. CS current mapping is realised by projecting 

a series of patterns onto the sample while measuring its current response for every pattern. 

The final current map is acquired via a reconstruction algorithm. The aim of this procedure is 

to produce an accurate current map having acquired far fewer measurements than is required 



65 
 

by a point-by-point approach. Undersampling and increased signal to noise ratio have the 

potential to significantly increase measurement speed and simplify measurement layouts.  

The proposed method is potentially a useful tool, but its performance for identifying 

different types of defects and features in semiconductor devices is not well defined. This will 

be achieved in this chapter, through a series of electrical simulations. Investigations are 

realised of whether the performance of this technique depends on the type of localised 

features in the devices to be measured. Additionally, the theoretical performance limits of 

the method are explored. It is shown that the technique is applicable to all types of solar cells, 

regardless of them being thin films or wafer based semiconductors. A demonstration of 

applying the method to integrated series connected devices (PV modules) is presented.  

Simulated measurements are selected to provide an objective verification of the quality 

of the method. Electrical simulations involve modelling spatially varying solar cell 

characteristics. A controlled environment is provided and this enables the quantification of 

realistic undersampling levels for PV measurement using structured illumination and CS. A 

spatially resolved model based on a circuit network is used and the PV-Oriented Nodal 

Analysis (PVONA) toolset [199] is used to calculate the PV devices’ response to various 

illumination patterns. Simulation results of CS current mapping measurements for the cases 

of c-Si samples and thin film solar cells are demonstrated. Different defect schemes are 

investigated, to test whether the CS current mapping method can reconstruct every kind of 

current response caused by non-uniformities of samples.  

The potentially strongest feature of this method is also demonstrated, which is the 

inherent ability to scan multiple cell PV devices (modules), limiting the cell under 

measurement while biasing the others in the module. This means that a fully encapsulated 

module can be scanned at high speed, using the method’s undersampling principles. The need 

to limit the cell under test when conducting current mapping measurements on PV modules 

has already been highlighted in [78]. The electrical simulations also offer a way to test some 

different sensing matrix groups and reconstruction algorithms.  

 

4.2 Compressive Sampling Using the PVONA toolset 

PV-Oriented Nodal Analysis (PVONA) is a software toolset developed in CREST for 

solving the spatially-resolved model (SRM) of PV devices [200]. A PV cell can be described by 

an SRM in the form of a discrete nonlinear circuit network as shown in Figure 4.1. In the SRM, 

a PV cell is modelled as an array of virtual sub-cells. Each local sub-cell corresponds to a finite 



66 
 

rectangular-shaped area of the physical cell. The nonlinear behaviour of the local sub-cells, 

which are represented by the blocks with an arrow in Figure 4.1, is described by local diode 

models. The contact schemes are represented by two resistor networks, one on top and one 

at the bottom of the cell.  

 

 

 

Figure 4.1. Schematic diagram of the circuit network structure of the SRM of a PV cell. A 

random pattern is projected on the cell for compressive sampling and the PVONA toolset 

solves the SRM and provides the electrical output parameters. 

In the circuit of Figure 4.1, a node is a point where circuit components and branches 

connect. Hence, using nodal analysis the potential difference between nodes can be 

determined. A nodal equation system is generated by applying Kirchhoff’s current law to each 

node. The PVONA toolset can solve the SRM efficiently by utilising an optimised parallel solver 
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based on a Newton-Raphson method as described in [18]. It allows high-resolution (mega-

pixel level) simulations of PV cells with significantly reduced computation time and memory 

usage. It is thus useful for investigation of the effects of inhomogeneities in PV cells and 

modules [199]. 

Compressive sampling is simulated by feeding the PVONA toolset the spatially non-

uniform irradiance produced by each sensing pattern; in the sensing matrix Φ every row 

represents a pattern that is projected on the simulated device under test. When an 

illumination pattern is set for projection on the simulated devices, the PVONA toolset solves 

the SRM for these specific illumination conditions that the binary projection creates. The 

solver provides the electrical output parameters, which in this case are the global and local 

current and voltage values of the simulated device. The global current response to each 

pattern is of interest for simulating CS current mapping, as every reading populates vector y, 

as described in the previous chapter. The complete procedure simulates CS current mapping 

measurements but unlike an actual experimental procedure, the results include no noise or 

other measurement artefacts. Consequently, the theoretical performance limits of CS current 

mapping can be realistically evaluated.  

Two cases are examined: a crystalline silicon (c-Si) single cell and a thin film device 

consisting of 3 individual cells connected in series are virtually constructed for the purpose of 

the simulations. The simulation of the front contact layer of the c-Si sample is illustrated in 

Figure 4.2 (left). The sample consists of 60 × 60 virtual sub-cells which also defines the 

resolution of the final current map. A front contact layer is used to model the metal busbar 

and fingers and a top resistance layer is introduced to model lateral current paths. The busbar 

occupies 10 columns and each of the three fingers occupies one row. The resistivity of the 

back metal contact can be assumed to be very low and uniform, thus the back contact 

resistance is neglected in this study [18]. The one-diode model is used to describe local 

electrical properties of sub-cells, using the input parameters listed in Table 4.1. More 

elaborate diode models can be used but the one-diode version is used here since the aim is 

to assess the behaviour of the CS approach rather than precision modelling of specific PV 

device designs.  

To assess the performance of CS current mapping measurements for different types of 

features, defects are introduced by changing the diode model parameters of the virtual PV 

cells in small, localised groups. For example, a crack or defective area can be modelled by a 

series of sub-cells with reduced or zero photocurrent Jph and a very high emitter resistance 

R∎emitter value, R∎ being the sheet resistance. For the case of the virtual thin film device, a 3-
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cell 60x60 pixel device is configured as presented in Figure 4.2 (right). Each individual cell has 

a size of 20x60 with the individual cells being series interconnected. The values of the main 

parameters set for the thin film virtual cells are also presented in table 4.1.  

 

TABLE 4.1 

Electrical Parameters of the Simulated Samples 

 c-Si Thin film  

Jph (A/cm2) 0.035 0.0135 

Jsat (A/cm2) 5.0×10-7 1.0×10-10 

n 1.4 2 

Rsh (Ω·cm2) 8.35×104 5.3×104 

Rs (Ω·cm2) 0.05 0.1 

R∎emitter (Ω/⧠) 80.0 80.0 

R∎grid (Ω/⧠) 1.0×10-3 10 

 

 

 

Figure 4.2. (a) The layout of the front contact layer of the c-Si virtual sample. (b) The layout of 

the 3 cell thin film virtual device. 

The cell size is represented in arbitrary units. However, considering that a finger of a c-

Si PV cell front contact has a typical width of approximately 100 μm, the simulated c-Si sample 

would correspond to a 6 cm by 6 cm area of a cell. This is a reasonable measurement area for 

a small area optical setup, such as the one that will be presented in the next chapter. Similar 
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considerations can be made for the thin film simulation. The size is arbitrary as in the previous 

case. Having fewer pixels for each cell (20 x 60) means that when making an approximation 

to actual size, an even smaller area is eventually measured. This would correspond to a small 

research device, where shunts or other defects would be visible. In the case of the series 

interconnected simulated module, the principles of compressed sensing are tested for 

modules, making the size totally arbitrary. This means that in actual commercial PV modules 

such resolution would not suffice for detection of extremely small local defects. Nevertheless, 

as will be demonstrated in chapter 6, the principles used for these simulations with such a 

low resolution can be applied also to actual PV modules. The low resolution used here is 

enough to demonstrate the feasibility of CS current mapping for modules, and to test the 

performance limits of the method.  

 

 

 

Figure 4.3. The compressive sampling process for the cases investigated in this work. (a) For 

the c-Si case the generated random patterns are projected on the whole area of the virtual 

samples. (b) For the thin film 3-cell mini-module, the series of random patterns are projected 

onto each individual cell while uniform illumination is cast on the remaining cells. As a result, 

the cell under measurement is the current-limiting cell of the module. 

The simulation of CS current mapping measurements is done using the irradiance 

configuration capabilities provided by PVONA and applying the principles described in section 
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3.4. The sensing matrix Φ consists of binary matrices expressed as rows that represent the 

patterns to be projected onto the virtual samples. For an illuminated simulated sub-cell (pixel), 

the photocurrent Jph listed in Table 4.1 is applied. For an inactive area such as a finger or a 

busbar, the Jph is set as zero. For an underperforming sub-cell Jph has a reduced value. For 

each pattern projected, the short circuit current (ISC) of the overall simulated cell for the given 

conditions is calculated with PVONA, populating the CS measurement vector y. Up to this 

point, simulations are realised in C++, since the PVONA software is programmed in this 

environment, with the output being vector y . The current map is finally reconstructed by 

applying a reconstruction algorithm. The ℓ1 minimisation algorithm of the ℓ1 magic toolset is 

used if not stated otherwise. This final step is implemented in the LabView environment, using 

a MatLab script to call the necessary algorithms, as described in the previous chapter. 

 

 

 

 

4.3 Simulation Results 

4.3.1 Simulated Crystalline Silicon PV samples 

For the simulated c-Si sample, several cases of the 60 x 60 pixel cell of one busbar and 

three fingers were explored. As illustrated in Figure 4.4, six different cases were investigated; 

an ideal cell with no defects, 3 cells with cracks of different orientations and positions, a cell 

with a dead spot and a cell with a combination of these features. For the network’s sub-cells 

(pixels) forming the defects, zero photocurrent and a much higher series resistance were set, 

except for the last case, in which the crack is simulated by reducing the photocurrent to 50% 

of the initial value, in order to achieve a more realistic case. At the points of fingers and 

busbars, the resistance towards neighbouring points was set close to zero, in order to 

simulate the high conductivity, while photocurrent was set to zero.  

When applying compressive sampling, a random illumination pattern is projected on 

the simulated device and the PVONA toolset provides the local and global electrical output. 

As an example, the local current response and voltage maps generated by PVONA for a 

random pattern projected on the sample are presented in Figure 4.5. The simulated sample 

with the combination of defects is used as the input. The defects exist but are barely visible 

in the current response map, as the local current generation due to the projected pattern 
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dominates. Only the diagonal crack appears in the local voltage map. The global current 

response results (i.e. the current flowing from the terminals of the device) for each pattern 

are of interest for simulating CS current mapping. The total current generated for each 

projected pattern provides the current measurements that populate vector y. These are the 

measurements then used to reconstruct the final current map.   

 

 

Figure 4.4. The actual current maps of the configured c-Si samples for the simulations of the 

CS current mapping method. 

 

Figure 4.5. On the left, the local voltage map that PVONA generates for the simulated c-Si 

device with the crack and the dead spot, when projecting a random pattern on the device. On 

the right, the generated current response of the same simulated device when projecting a 

random pattern. 



72 
 

 

Figure 4.6  Reconstructed current maps of all the different simulated c-Si cells, with different 

levels of undersampling. The percentages in the left column express the ratio of number of 

measurements to the total number of pixels. 
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The reconstructed current maps for all the simulated c-Si cells with different defects are 

presented in Figure 4.6. The percentages in the left column express the ratio of the number 

of measurements to the total number of pixels. For instance, the 40% current maps consist of 

3600 pixels and were reconstructed by acquiring 1440 measurements, which mean that 1440 

patterns were projected on the samples, calculating the current response for each pattern. In 

practice, one measurement is considered to be one pattern projected on the device to 

achieve a current reading. Applying a conventional raster scan, 3600 point measurements 

would be needed to create the 3600 pixel current map. Almost all the features of the cell are 

distinguishable at 30% undersampling, even if the reconstruction is still rather noisy. Adding 

more and more measurements the image quality increases gradually and converges to the 

actual current map, producing a perfect reconstruction when using 100% of the 

measurements (3600 measurements). In actual CS applications, the 40% or 50% current maps 

would already be sufficient for characterising the local current response of a device with 

minimal errors. The above simulation results initially confirm that CS current mapping is 

realistic and can in practice provide results with much fewer measurements than a traditional 

point by point scan would need. The reconstructed current maps give accurate quantitative 

results for the local current response and additionally, the method exhibits similar 

performance for all types of defect shapes and orientations for this simulated sample.  

For a quantitative evaluation of the performance, the actual and reconstructed current 

maps were compared at a pixel by pixel level. Pearson’s correlation coefficient and 

Normalized root mean squared error (NRMSE) were calculated for each level of 

undersampling used for reconstruction and are presented in Figure 4.7. The correlation 

coefficient is calculated by dividing the covariance of the real and reconstructed current map 

by the product of their standard deviations: 

 

 𝜌(�̂�, 𝒙)  =  
𝑐𝑜𝑣(�̂�, 𝒙)

𝜎�̂� ∙ 𝜎𝒙
 (4.1) 

 

Where x is the real current map and x̂ is the reconstructed current map, in vector form. 

As expected from the above results, the proposed measurement technique 

demonstrates quantitatively almost identical performance for all the different features 

investigated, as is presented in the graphs of Figure 4.7. The slightly different behaviour in the 

case of the samples with the vertical and parallel crack is due to the symmetry present in 

these samples. The DCT transform is used for providing the sparse representation, which 
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means symmetrical structures can exhibit slightly different performance. An absolutely 

symmetrical structure would be rare in reality, but not impossible. However, even samples 

with highly symmetrical actual current maps will have minimal differences in convergence 

practically. 

 

 

Figure 4.7. Correlation coefficient and NRMSE for the configured c-Si samples between the CS 

and the real current maps, as a function of number of measurements. 

Current maps using more than 40% of measurements for reconstruction have 

Normalised Root Mean Square Error (NRMSE) below 10% and correlation coefficient greater 

than 0.95. Bearing in mind the reconstruction considerations in the previous chapter, it is 

probable that for higher resolution samples the performance of the CS current mapping 

technique can have an even better performance. This means that higher degrees of 

undersampling can be achieved for reconstructing a reliable high resolution current map. 

A reconstruction error map is presented in Figure 4.8, for the case of the combination 

of defects and for 50% undersampling. The error is normalised and expressed as a percentage, 

stating the difference between actual and reconstructed values. A maximum of 48% can be 

observed, at the position of the dead spot. This is due to the current value of the spot being 

very close to zero, making the relative error value very large. Nevertheless, the fingers and 

busbar areas which also have an almost zero value current exhibit a very small error, in the 

range of 5%. This indicates that very small local defects may be more difficult to quantitatively 

evaluate with compressive sampling than larger structures. Nevertheless, such small defects 

are still detected, but in order to accurately determine their values further measurements 

(projected patterns) are needed. 
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Figure 4.8. On the left, the reconstructed current map of the cell with all the defects combined, 

using 50% undersampling (1800 measurements). On the right, the error map, calculated from 

the actual current map and the reconstructed map. 

 

4.3.2 Simulated Thin Film PV Devices 

For the thin film PV device case, 3 different cells were individually simulated and then 

combined to a single PV device. This simulates a series interconnected mini module consisting 

of these three cells. Three different cases of individual cell features are configured and PVONA 

is used to solve the SRM for each cell, with a resolution of 60 x 20 for each case. The first is 

an ideal cell without any defects, with a very uniform current response. The second case 

includes a cell with a large area of underperformance at one end of the cell, which in reality 

could represent a degraded area. The third case simulates a cell with a single small local shunt. 

All three cases for individual cells are presented in Figure 4.9. The parameter values of a pixel 

with no defects for simulating the thin film cells are presented in table 4.1. 

The reconstructed current maps for these individual cells are presented in Figure 4.9, 

with different levels of undersampling. The simulated ideal cell is almost completely uniform, 

which may be a rare case in reality but it is possible to find high performance thin film solar 

cells with no defects. It is clear from the results that due to increased pixelation, the 

reconstruction process yields a rather noisy current map with the ℓ1 minimisation algorithm. 

This is an artefact that this algorithm inserts when current maps are very uniform, as will be 

demonstrated also in the next chapter. For this reason the OMP (Orthogonal Matching Pursuit) 

algorithm was used and its reconstruction results are compared with ℓ1 minimisation in 

Figure 4.9. The configured samples have low display resolution (60x20 pixels) and as a result 

reconstruction is not as successful as for the case of the previous 60x60 pixel cells, but it still 
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gives reliable current maps for 60% of measurements and above. Higher resolution sampling 

would allow higher levels of undersampling, as was discussed in section 3.4.2. Nevertheless, 

the resolution used is enough for this specific investigation. 

 

 

Figure 4.9. CS current maps for the different cases of thin film samples, reconstructed from 

different numbers of measurements, with the percentages expressing the ratio of number of 

measurements to the total number of pixels of the device. Reconstruction results with both ℓ1 

minimization and OMP algorithms are presented. 

For the cell with the small shunt, reconstruction with the ℓ1 minimisation algorithm 

produces a much better result compared to OMP reconstruction. For the other two cells 

(uniform, degraded area) OMP delivers superior results, as the actual current maps are rather 

uniform with no sharp structures. Between the aforementioned algorithms, the ℓ1 

minimisation is the most suitable choice where there is no prior knowledge of the structure 

of the samples under test as will be discussed later, when different algorithms are compared. 

Each algorithm apparently has advantages and drawbacks, as some artefacts will always be 

inserted in the solution. The ℓ1 minimisation algorithm may result in pixelation when used 

for very smooth signals while the OMP may miss small local defects, although it works better 

for smooth signals. Nevertheless, there is a wide range of algorithms available in the literature 
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for reconstruction after compressive sampling. The algorithms used here were selected due 

to their known performance and use in other CS applications, their simple implementation, 

their open access availability and because they belong to two different major families of 

reconstruction algorithm for CS. 

By connecting in series all three different cells, a mini module can be simulated. CS 

current mapping of this PV device can be achieved by applying the necessary patterns on the 

cell under test while fully illuminating the others (as illustrated in Figure 4.3(b)). This is 

necessary to ensure that the correct current is measured every time, as has been 

demonstrated experimentally in [78]. The ratio of on and off pixels in the random patterns 

projected can be specified to ensure that the cell under measurement is always the limiting 

cell of the device. This feature could be crucial for devices that consist of cells with serious 

defects. If the current of the defective cell when fully illuminated is lower than the current of 

the cell under measurement, compressive sampling will not work. In this case, the current 

readings at the contacts of the module will not be governed by the cell under measurement 

but by the defective cell, producing false results. However, by reducing the number of pixels 

(elements of the sensing matrix) in the “on” state until the current of the measured cell is 

below the current of any other defective cell, such issues can be eliminated. Thus CS current 

mapping can work regardless of the performance of each cell in a module. The use of sensing 

matrices with different sparsity levels (number of pixels at the “on” state) is demonstrated in 

the next chapter. CS current mapping of a module with cells of different performance is 

demonstrated in chapter 6. In these simulations there are no such cases, as the performance 

of the cells is predefined.  

An overview of these simulations for the PV mini module is presented in Figure 4.10. A 

thin film device consisting of the three individual cells already investigated separately above 

is used for simulations of CS current mapping. Applying the method according to Figure 4.3(b), 

cell by cell compressive sampling is realised. In order to achieve higher reconstruction 

performance, the ℓ1 minimisation algorithm is used for reconstruction of the current map for 

the cell with the shunt, while the OMP algorithm is used for the other cells. The resulting 

current maps show that this technique can be applied to characterisation of series 

interconnected devices such as PV modules. This would be extremely difficult to achieve with 

conventional LBIC methods, as mechanical shading of the cell under measurement (to force 

current limiting) would be necessary in order to obtain meaningful results. 
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Figure 4.10. CS current maps for the 3-cell device, reconstructed from different numbers of 

measurements, with the percentages expressing the ratio of number of measurements to the 

total number of pixels of the device. The ℓ1 reconstruction algorithm is used for the middle 

cell, while the OMP algorithm is used for the rest of the cells. 

In Figure 4.11 the correlation coefficient and NRMSE are presented as a function of the 

number of measurements obtained, similar to the c-Si cell case. Compared to the 60 x 60 c-Si 

cell, the reconstructed current map converges towards the actual current map significantly 

slower. However, both this graph and the reconstructed current maps in Figure 4.9 confirm 

that even with this low resolution the method works and results can be obtained with fewer 

measurements than a point by point scan, which is the purpose of this technique.  

 

 

Figure 4.11. Correlation coefficient for the configured thin film device consisting of three cells, 

as a function of number of measurements with the CS current mapping method. 
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4.4 Comparison of Reconstruction Algorithms 

The simulation environment provides the opportunity to test several reconstruction 

algorithms available in the literature. This is because no measurement noise or other issues 

encountered in experimental work can influence results. Hence, reconstruction artefacts and 

convergence speed mainly depend on the reconstruction algorithm used. Several algorithms 

are investigated in order to select the most appropriate to be used throughout this work. The 

algorithms included are open access implementations in MatLab and were not developed in 

this work, neither were any changes applied to them. The algorithms compared are ℓ1 norm 

minimisation, Total Variation (TV) norm minimisation, Spectral Projected-Gradient ℓ1 (SPGL1), 

Dantzig selector algorithm for ℓ1, Orthogonal Matching Pursuit (OMP) and Compressive 

Sampling Matching Pursuit (CoSaMP). The first four are norm minimisation algorithms and 

they are all variations of the ℓ1 norm minimisation algorithm, apart from the TV which uses a 

different norm. The OMP and CoSaMP are greedy algorithms. A brief summary of each of 

these algorithms is given in the Appendix of this work. The reconstruction accuracy and speed 

of these algorithms are evaluated through these simulations and are presented in this section.  

The accuracy of the reconstruction is investigated by calculating the NRMSE and the 

correlation coefficient of reconstructed current maps, when compared with the actual 

current map of the cell. The simulated c-Si cell with the combination of defects is used in this 

instance. The results are presented in Figure 4.12 for different levels of undersampling 

(number of measurements). All algorithms converge to the real current map as the number 

of acquired measurements increases. All of them also exhibit similar trends but different 

performance. 

 

Figure 4.12. On the left, the NRMSE for the reconstructed current maps using the different 

algorithms. On the right, the correlation coefficient between the reconstructed current maps 

and the actual current map, using different algorithms. 
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The results indicate that among the algorithms used, the ℓ1 minimisation algorithm has 

clearly the best performance for reconstruction for this specific CS application. The difference 

may be small, but especially in the range of interest, above 30% of measurements acquired, 

the ℓ1 minimisation algorithm consistently outperforms the others. Reconstructed current 

maps with 50% undersampling using all these algorithms are presented in Figure 4.13. There 

are visually very small differences, but it can be observed that the ℓ1 exhibits slightly better 

performance than the others in the comparison. The defects inserted in the simulated cell 

(crack, spot) are slightly sharper in the case of ℓ1 reconstruction, although the differences are 

marginal. 

 

 

Figure 4.13. Current map comparison of the different reconstruction algorithms included in 

this work, using 50% undersampling (50% acquired measurements). 

A second property of the algorithms that is studied is the processing time needed for 

reconstructing a current map, depending on the levels of undersampling. This will help to 

select the best performing algorithm not only in terms of accuracy but also in terms of 

reconstruction speed. An Intel i5, 3.4 GHz, 28 GB of RAM computer is used. In Figure 4.14, 

reconstruction time is presented in seconds, as a function of number of measurements, for 

all the investigated algorithms. The graph clearly indicates that the ℓ1 and SPGL1 algorithms 

are the fastest and they exhibit almost identical speed, reconstruction is achieved within 
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several seconds. The OMP algorithm also has similar performance up to 60% of 

measurements acquired, when reconstruction time starts increasing significantly. The rest of 

the algorithms are slightly slower, but still reconstruction is always achieved in less than a 

minute, except for the case of CoSaMP. In this latter case, reconstruction time is much larger 

compared to the other algorithms, in the range of minutes. It is also apparent from the graph 

that the two types of algorithms used here have different behaviour; the OMP and CoSaMP 

(Greedy algorithms) exhibit similar trends, although in different magnitude ranges. The same 

stands for the norm minimisation algorithms. 

 

 

Figure 4.14. Reconstruction time in seconds that each algorithm needs for the case of the c-Si 

with the combination of defects. 

The results presented in this section clearly indicate that the most suitable 

reconstruction algorithm for this application among those investigated is the ℓ1 minimisation 

algorithm. There are a vast number of reconstruction algorithms available in the literature, 

most of them having open access usage rights. Nevertheless, it is outside the scope of this 

work to benchmark all the available algorithms in order to define the best for this CS 

application. Although some effort has been spent for a minimal comparison of the most 

established algorithms, it is possible that better performing algorithms exist but have not 

been considered in this work for this application. In addition, it is very likely that better 
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algorithms will be developed in the future, utilising advances in mathematics and processing 

power of computers. 

It is expected that increasing resolution will result in increasing reconstruction time. This 

consideration was investigated in section 3.4.2 of the previous chapter. In this case of CS 

current mapping simulations, 60 x 60 pixel maps were used. In the following chapters in which 

experimental implementations are presented, the selected resolution is in most cases 100 x 

100 pixel maps. Reconstruction time is slightly increased, but is always under a minute for 

such a resolution level. 

 

 

 

4.5 Sensing matrix comparison 

In this section the sampling end of CS current mapping is investigated. Two different 

approaches for producing the sensing matrices to be used for compressive sampling are 

explored. The first is by generating random binary matrices based on several different 

distributions. The second is using structured binary matrices, in our case, scrambled block 

Hadamard (SBH) binary matrices, as it has been reported that they can be used for 

compressive sampling [176]. The ℓ1 norm minimisation algorithm is used in all cases for the 

reconstruction of the current maps. The results for the correlation coefficient and NRMSE for 

the reconstructed current maps as a function of number of measurements acquired are 

presented in Figure 4.15. For each point, an average of 100 runs was calculated, generating a 

new sensing matrix in each run for compressive sampling. For the randomly distributed 

matrices the generators used were Gaussian noise, Bernoulli noise, Poisson noise and uniform 

noise. This means that the generation of random ones and zeroes in the sensing matrix was 

based on different distributions. The aim of exploring different distributions is to study if they 

have any influence on the performance of the method. Zero is set as the mean value of all 

distributions, with negative values generating zeroes and positive values ones, which 

populate the sensing matrix in every case. This means that each element has the same 

probability to be one or zero. 

The graphs indicate that random matrices have better performance in the range below 

30% of measurements than SBH. However, in the range of interest (above 40%) there is no 

difference in the performance of the different approaches so the choice of one or the other 

has no impact on reconstruction. Similarly, the different types of random binary matrices 
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themselves have almost an identical performance. In this work uniformly distributed random 

binary matrices will be used for sampling, as they are very easy to implement. There are 

several approaches of creating sensing matrices for CS in the literature of either structured or 

random types and it is possible that a better approach may exist. Nevertheless, random 

sensing matrices are favoured here since they are guaranteed to meet the necessary 

incoherence criterion (chapter 3). 

 

 

Figure 4.15 Correlation coefficient and NRMSE of reconstructed current maps in comparison 

to the real current map, using different sensing matrices. 

 

 

 

 

4.6 Signal levels, dynamic range and noise considerations 

As was presented above for the case of the simulated c-Si cell, the maximum current 

value of a pixel-point of a virtual cell is approximately 11 μA, which in real applications would 

represent an area corresponding approximately to a 100 μm diameter spot, as discussed 

earlier. This is the signal level that a conventional LBIC system would have to accurately 

measure to produce the current map. In addition, a higher optical resolution scan would result 

in even smaller current values, in the range of nA. In Figure 4.16, the values of the elements 

of the CS measurement vector y for the case of the simulated c-Si cell are presented. All the 

values are in the range 15.1 mA to 16.1 mA, which means that the current signal is enhanced 

by at least three orders of magnitude. This is an important feature that can be highly 
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advantageous in cases where the signal level of individual pixel-points is very weak to 

measure with a point by point process, as will be demonstrated in the next chapter. 

 

 

Figure 4.16. The values of all the elements of the measurement vector y resulting from CS 

current mapping simulations. All the values are within a very small range. Each element 

(measurement) is the global current response of the simulated cell when projecting a single 

pattern. 

Another significant feature that can be observed in Figure 4.16 is the fact that all values 

are within a very narrow range (15.1 mA to 16.1 mA). This means that when acquiring 

measurements, the minimum and maximum measurement reading range can be set easily in 

a way that provides a very high dynamic range for the sampling procedure, which can increase 

accuracy of measurements. This feature of compressive sampling has already been 

demonstrated in the literature [201]. Additionally, problematic measurements will appear as 

outliers and can be excluded easily from the reconstruction process. Although the signal levels 

are greatly enhanced with compressive sampling, actual measurements will be contaminated 

with noise, which slightly influences the reconstruction process.  

In order to evaluate the influence of noise on the reconstruction process, the simulated 

compressive sampling measurements (vector y) are contaminated with several levels of 

uniform white noise. The levels of noise selected are randomly distributed in the range of 

0.1%, 0.2% and 0.5% of the signal value. The reconstruction results are presented in Figure 

4.17. Apart from the ℓ1 minimisation reconstruction algorithm, the implementation of ℓ1 

minimisation reconstruction including measurement noise is used (ℓ1 denoise). This 

algorithm has slightly more relaxed constraints to include measurement noise, as described 
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in the Appendix. It is clear from the graph that background noise has an impact on the 

reconstruction process, while the use of the ℓ1 denoise algorithm does not provide better 

results in any case. Reconstruction for 100% sampling fails completely in all instances and this 

is also confirmed in the next chapter where actual experimental results are used.  

In practice, as signal levels are significantly enhanced by using compressive sampling, 

the measurement noise levels are kept very small, in most cases below 0.1% of the signal. As 

will be demonstrated in the following chapters, there are occasions where compressive 

sampling can provide current maps where point by point scans fail completely due to weak 

signals or high background noise levels. 

 

 

Figure 4.17. Correlation coefficient as a function of number of measurements, between the 

reconstructed and the real current map, with increasing levels of measurement noise, using 

two different implementations of the ℓ1 norm algorithm. The random noise is expressed as a 

percent of the signal value. 
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4.7 Conclusions  

Simulations of CS sensing current mapping were implemented in this chapter, to 

theoretically confirm the feasibility of the method and evaluate its performance. The spatially 

resolved electrical simulations were realised using the PVONA toolset for solving the SRM of 

solar cells. Both simulated c-Si and thin film devices were investigated. A realistic 

undersampling level demonstrated is approximately 40% of the measurements a standard 

LBIC system would require. This shows that this method can be at least one order of 

magnitude faster than the LBIC method, saving a significant amount of time. The performance 

of CS current mapping is the same, regardless of the features a sample may contain. Finally, 

results demonstrate that CS current mapping can be theoretically applied to any type of 

photovoltaic device. A significant feature of CS current mapping that is demonstrated through 

these simulations is the ability of the method to provide current maps of PV modules. This 

will also be experimentally verified in chapter 6 [cross ref]. Current mapping of PV modules 

with series interconnected cells is almost impossible to achieve with conventional raster 

scanning LBIC systems. 

Since the simulations provide an environment where measurement noise is absent, the 

performance of different reconstruction algorithms and sensing matrices was explored. 

Among the several algorithms explored, the ℓ1 minimisation exhibited the best performance 

and is selected for used throughout this work. For the sampling procedure, random binary 

sensing matrices are preferred to structured matrices as they are easy to implement and their 

performance is slightly better.  

A vast number of reconstruction algorithms and sensing matrices exist in the literature 

and can be tested for this application. However, a benchmarking of all the algorithms and 

sensing matrices available is outside the scope of this work. As the role of the reconstruction 

algorithm is essential, future work can concentrate on more investigations for the 

determination of the most suitable algorithms for this specific application of compressive 

sampling. The most significant characteristics of a reconstruction algorithm are speed and 

ability to solve large-scale problems, as well as tolerance to measurement noise. This can 

enable the application of CS current mapping for very fast acquisition of high resolution 

current maps of solar cells and other semiconductor devices. 

A significant advantage of compressive sampling is that the patterns that are projected 

on the sample illuminate a large area instead of just a small point, which is the case in 
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conventional raster scanning LBIC systems. As a result, the signal levels can be greatly 

enhanced by at least three orders of magnitude, depending on the sensing matrices used. 

This can be very practical when samples have a very weak signal, or when the background 

noise levels are too high to implement a point by point scan. Nevertheless, it will become 

clear in the next chapter that in CS current mapping there is a compromise between 

measurement accuracy and amplification of the signal. The ℓ1 minimisation algorithm 

performs well even in the presence of noise, although reconstruction for 100% sampling 

always fails in this case. On the other hand, the sampling range of interest when CS is used is 

within 40% to 70% of measurements, thus the reconstruction problems in the presence of 

noise over 90% are irrelevant in this application.  

The insights of this chapter will prove useful for the experimental implementation 

presented in the next chapter. The choices of sensing matrices and algorithms made here will 

also be adopted for the experimental cases. Compressive sampling is expected to significantly 

enhance the current signal and measurement results are expected to be within a small range 

of values. Reliable reconstructed current maps are expected for measurement acquisition of 

more than 40%. Noise will always be present in the experimental implementation of such 

measurements, thus reconstruction using 100% compressive sampled data is expected to fail. 

Whether these expectations are met or not is discussed in the following chapters, where 

experimental implementations of CS current mapping for PV devices are presented. 
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Chapter 5 

5. Small Area Compressed Sensing Current Mapping System 

 

 

 

 

5.1 Overview 

The main advantage of LBIC mapping is that the same principles that generate current 

in real applications of solar cells and modules are applied. On the other hand, a well-known 

drawback of this measurement technique is that it lacks speed. The small laser spot, usually 

of a diameter in the micrometre scale, needs to scan the entire area of the cell for a complete 

current map. This means the smaller the laser spot size or the bigger the sample under test, 

the lengthier the measurements. Thus, measuring entire PV modules or full wafer cells is 

usually very time consuming as the production of maps at useful spatial resolutions requires 

large numbers of individual point measurements. In addition, LBIC systems are usually 

complicated, high precision systems that also require lock-in methods for accurately 

measuring the very low current response of the device under test to the small area 

illumination. 

The aim of this chapter is to demonstrate a hardware implementation of an alternative 

approach for current mapping of PV devices, which has the potential to reduce measurement 

time and simplify experimental layouts. The main aspects of the proposed method are the 

utilisation of a DMD kit and the application of compressive sampling for acquiring 
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measurements. As discussed in chapter 3, according to the CS theory one can reconstruct a 

signal from highly incomplete or inaccurate information. Compressed sensing provides a way 

of acquiring a compressed version of the original signal by taking only a small number of linear 

measurements and then reconstructing an almost exact approximation of this signal. More 

precisely, using compressed imaging, an N pixel image can be reconstructed from M<<N 

observations. Instead of applying a raster scan, a series of patterns are projected on the PV 

sample using a DMD, acquiring fewer measurements (M) than the pixels of the final current 

map (N). The final reconstruction of the current map is achieved by means of an optimisation 

algorithm, exploiting the compressibility (sparse representation after a transform) of the 

measured signal.  

In the previous chapter, spatially resolved electrical simulations showed that CS current 

mapping is theoretically possible and can actually decrease measurement acquisition time to 

half of what a raster scan would need. Additionally, it can be applied to both crystalline silicon 

and thin film devices and the performance of the method is independent of the specific spatial 

features or type of defect a sample possesses. The next step of this work aims on confirming 

experimentally the simulation results of the previous chapter. 

 In this chapter an analytical experimental implementation of a small area CS current 

mapping system for PV devices is described.  The implementation was realised in several 

stages and it was an ongoing development process until the final experimental 

implementation. The layouts of two different stages are presented in this chapter; the first 

design and implementation related to this work, including measurement results; the final 

optimised version of the CS current mapping measurement system and final measurement 

results. All the experimental work described in this chapter took place at NPL where the 

optical setup was built. 

 

  



91 
 

5.2  Initial CS Current Mapping System  

5.2.1 Optical system design 

The experimental setup is presented in Figure 2.1. Two laser sources are available, a 40 

mW laser at 658 nm wavelength and a 100 mW laser at 785 nm. A single mode fibre delivers 

the light to the optical system in both cases. The beam is expanded and collimated in order 

to overfill the micro-mirror array (DMD), which is a V-7000 module. It has a size of 

approximately 1.4 cm x 1.0 cm and consists of a 1024 by 768 array of square micro-mirrors, 

each of 13.7 μm x 13.7 μm size. The DMD is the most significant part of this system, as it plays 

the role of the pattern generator. The output of the single mode fibre creates a beam with a 

Gaussian profile.  Overfilling the DMD with the central part of the beam results in a quasi-top-

hat beam profile, which means it is not perfectly uniform but sufficient for this series of 

experiments. The maximum difference in intensity due to this non-uniformity is below 10%.  

 

 

Figure 5.1. Schematic diagram of the first version CS current mapping experimental setup at 

NPL developed in this work. 

2-lens systems with spatial filters are used for rejecting out of focus, diffracted beams 

and cleaning the image to be projected. This is necessary as diffraction from the DMD may be 

minimised but is still present. Achromatic doublets of 25.4 mm lens diameter were used. 

These 2-lens systems also create the projection of the pattern onto the sample.  However, 

the pinhole should not be extremely small, as it has to include the first order high frequencies, 
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or else the projection will lack sharpness and the reconstructed current map will appear more 

blurred. The sample is placed vertically with a sample holder at the focal length of the last 

achromatic doublet. Electrical measurements of the PV cell’s current response are achieved 

using a Vinculum SP042-series current-to-voltage amplifier while the voltage output is 

measured using a National Instruments NI USB 6211 AD converter. 

Using an x-y translation stage for a raster scan, some milliseconds would be required to 

move from one point to the next. A significant advantage of using the DMD is that its response 

time is under 20 μs, a property that can result in increased measurement speed, which would 

be only limited by the sampling rate and the number of samples taken for each pattern. The 

sampling speed of this initial system in this series of experiments was 2 samples (patterns) 

per second. Thus, when taking half the measurements a point by point scanning system would 

need (50%) and considering that a 100 x 100 pixel image (10000 pixels) is acquired, 

measurements last approximately 40 minutes. The main reason for the limited sampling 

speed was that the current measurement of this system was slightly noisy and not very 

accurate due to the low reading accuracy of the Vinculum SP042. A reference measurement 

is also acquired for monitoring laser light intensity. The maximum laser intensity on the 

sample that can be achieved is approximately 100 W/m2 for the 658 nm laser and 300 W/m2 

for the 785 nm one, considering the illuminated areas of the sample. The experimental results 

presented in this work are all acquired with these irradiance levels on the sample, for an 

illuminated pixel. Although the laser sources have relatively high power and could 

theoretically provide higher irradiance on the sample, there are a lot of losses due to the 

expansion of the beam and the optical elements included. All measurements are normalised 

with the reference measurement, in order to correct for any laser instability.  

The experimental compressive sampling procedure is also included in Figure 5.1. The 

projected binary patterns that apply compressive sampling are physically projected on the 

sample with the utilisation of the DMD. The current response of the PV device is measured 

for each pattern, thus populating measurement vector y, which is also illustrated in the figure. 

The patterns-test functions populate sensing matrix Φ and the required current map in vector 

form x is acquired by solving the resulting underdetermined optimization problem. The 

discrete cosine transform is applied as a basis Ψ to provide the sparse representation of the 

signal. Reconstruction of the final current map is implemented in MatLab, using the ℓ1 MAGIC 

package [15].  
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5.3 Initial experimental results  

5.3.1 Multicrystalline Silicon Sample  

An 8cm by 8cm ribbon mc-Si cell was encapsulated and characterised at CREST in order 

to be used as a sample for CS current mapping with the experimental setup at NPL and be 

durable enough to be exchanged between the laboratories. Results using this sample are 

presented to evaluate this first version of the experimental setup. The sample contained a lot 

of defects, as can be seen from the EL image presented in Figure 5.2. Characteristic twin 

boundaries typical for ribbon silicon cells are also visible [43]. 

 

 

Figure 5.2. EL image of the mc-Si encapsulated cell used for CS-current mapping (right) and a 

small area 48 x 48 pixel CS current map at the edge of the sample, delivered by the prototype 

CS setup (left). 

Initially an area at the edge of the sample was measured, as presented in Figure 5.2. 

The sharp transition from the active area to the area outside of the sample gave a first 

reference point to detect, which helped to confirm the functionality of the setup and optimise 

alignment of the measurement setup. The 658 nm laser was used at this stage. By grouping 

different numbers of the micro-mirrors of the DMD together, current maps with several levels 

of resolution can be realised. Although the DMD consists of 1024 x 768 pixels, a 768 x 768 

area of the DMD was used for creating a square projection for simpler analysis. As a result, 

current maps of 48 x 48, 64 x 64, 96 x 96 and 128 x 128 pixels were acquired with the current 
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setup. For instance, when acquiring measurements with 48 x 48 resolution, 265 (16 x 16) 

micromirrors are binned together for each pixel, producing a current map of 2304 pixels. The 

same approach is followed for the other levels of resolution. Depending on the number of 

measurements implemented, maps up to 64 x 64 need several seconds to reconstruct using 

the ℓ1 minimisation algorithm, while achieving higher resolution requires several minutes. 

This does not include measurement time but only data processing when sampling has finished. 

For the initial step of alignment and optimisation, 48 x 48 maps of the area at the edge of the 

sample were acquired.  

When using the 658 nm wavelength laser, light does not penetrate deep into the cell 

and mainly the surface is scanned, rather than the bulk. This means that internal cracks, grain 

boundaries and defects of the cell that are visible in the EL image cannot be detected. The 48 

x 48 current maps of a small area of the cell using this laser are presented in Figure 5.3. The 

image consists of 2304 pixels and current maps reconstructed acquiring different numbers of 

measurements are presented as a percentage of the total number of pixels of the current 

map (i.e. 100% being the number of measurements a raster scan would need). For instance, 

the 30% current map was produced with 691 measurements. The measurements acquired 

with compressive sampling will be expressed as a percent throughout this chapter, following 

this logic. 

In this first low resolution set of measurements several issues are noticed. The Gaussian 

top-hat distribution of the irradiance of the beam is obvious in the current maps of Figure 5.3. 

In addition, the fingers of the sample do not appear perpendicular to the side finger as they 

should be, but seem to have an inclination. This is because the projection plane does not 

exactly coincide with the plane of the sample, thus the image appears distorted, as if it were 

observed from an angle. Although the collimated beam is incident on the DMD 

perpendicularly, the patterns are inserted into the optical system by an angle and this is the 

reason for this specific artefact. Despite these artefacts in the final images, current maps are 

producible by acquiring only 40% of the measurements a raster scan would need. Below 20% 

there is not enough information for a proper reconstruction of a current map, but adding 

more measurements from that point the features of the sample start to become visible. 

Above 40% no significant improvement of the images is noticed. No other features except the 

edge of the sample and its finger are visible, due to the short wavelength of the laser having 

limited penetration into silicon and the low resolution selected.  
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Figure 5.3. 48 x 48 pixel CS current maps at the edge of the sample, delivered by the prototype 

CS current mapping setup. The percentages represent the ratio of the number of 

measurements to the total pixels of the image. The current signal is expressed in arbitrary 

units. 

To penetrate deeper into the PV sample, the 785 nm laser source was used and an area 

of the PV sample with a crack was measured, as presented in Figure 5.4. Penetration depth 

at this wavelength is not more than a few micrometres, however, it is adequate for detecting 

the cracks visible in the EL images. The same artefacts as before are apparently present in the 

reconstructed current map: imperfectly uniform irradiance on the sample and the difference 

between the plane of the projection and the plane of the sample distorting the current map, 

making the fingers look inclined and not perpendicular to the busbar.  

Measurements with several levels of resolution using this laser wavelength were 

realised for this small 1cm x 1cm area containing a crack and two very small spots. The lowest 



96 
 

resolution was 48 x 48 pixel images, corresponding to a resolution of 220 μm and the highest 

128 x 128 pixel maps, corresponding to an 82 μm resolution, considering that each 

micromirror has a size of 13.7 μm by 13.7 μm. Increasing optical resolution makes the features 

of the sample such as fingers, cracks and spots become sharper.  

 

 

Figure 5.4. EL image of the mc-Si encapsulated cell used for CS current mapping (left) and a 

small area 96 x 96 pixel CS current map at an area of the sample where a crack is present, 

delivered by the prototype setup (right). 

In the 48 x 48 pixel images presented in Figure 5.5 the crack is barely visible, which is 

expected at this level of resolution. However when increasing optical resolution the defects 

of this small area become visible, as presented in the 96 x 96 pixel current maps (9216 pixels) 

of Figure 5.6. In this case the crack and the small spots are visible already with 2765 

measurements (30%) and above 3787 measurements (40%) there is no significant 

improvement of the current map quality. Above 8294 measurements (90%) measurement 

noise starts to affect the reconstruction process, making the reconstructed current map 

rather noisy. When acquiring 9216 measurements (100%), which is what a point by point scan 

would need, the reconstruction process fails completely. The 99.9% reconstruction current 

map included in Figure 5.6 shows that no useful results are acquired when approaching 100% 

of measurements. This was expected from the predictions in the previous chapter, where 

noise was inserted in the simulation process. 
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Figure 5.5. 48 x 48 pixel CS current maps at the area of the sample where a crack is present, 

delivered by the prototype CS current mapping setup. The percentages represent the ratio of 

the number of measurements to the total pixels of the image. The EL image of this area is also 

included for comparison. The signal is expressed in arbitrary units. 

By considering only that fewer measurements are needed for a current map, this first 

series of measurements shows that a reduction of solar cell current mapping measurement 

time using this approach is realistic. A CS current mapping system would require less than half 

of the time of what a standard LBIC system would need to scan the same area with the same 

resolution, assuming the same sampling speed for both cases. This on its own is a significant 

improvement compared to standard LBIC measurements. Above 90% measurements, noise 

begins to impact on the optimisation algorithm that reconstructs the images, thus the image 

is contaminated with random noise. It is clear from the results in Figure 5.6 that for this level 

of resolution the highest quality images are delivered in the range of 40% to 80% of 

measurements. However, as discussed in the previous chapter, this optimum range will 

depend on the amount of noise present in the measurement process. In reality, this will be 

determined by the design of the measurement setup, the sampling equipment and the 

sample under measurement.  
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Figure 5.6. 96 x 96 pixel CS current maps at the area of the sample where a crack is visible, 

delivered by the prototype CS current mapping setup. The percentages represent the ratio of 

the number of measurements to the total pixels of the image. All the features of the cell’s area 

are clearly visible above 40% of measurements. The signal is expressed in arbitrary units. 

In Figure 5.7, high resolution 128 x 128 pixel (16384 pixels) reconstructed current maps 

with different numbers of measurements acquired are presented, alongside the EL image of 

the same area for comparison. The defects present in this area of the sample become visible 

already from 25% of measurements (4096 measurements) upwards and adding more 

measurements results in a sharper reconstruction. The 40% map already provides a very high 

resolution current map, showing the power of the compressive sampling method, even with 

this initial experimental setup. Adding more measurements offers no real improvement of 

the current map. It is also evident that higher resolution reconstructed current maps converge 

faster to the real solution, which is consistent with the findings of section 3.4.2. This means 

that for large-scale current mapping, compressive sampling is more favourable than point by 

point sampling and has the potential for even larger measurement time reduction. 
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Figure 5.7. 128 x 128 pixel CS current maps at the area of the sample where a crack is present, 

delivered by the prototype CS current mapping setup. The percentages represent the ratio of 

the number of measurements to the total pixels of the image. The EL image of this area is also 

presented for comparison 

The measurement results of this experimental approach confirm the functionality and 

the potential of the CS current mapping technique, and validate the simulation results of the 

previous chapters. Nevertheless, some improvements were identified so this setup was 

optimised and some of the concerns eliminated.  

 

 

5.3.2 Thin film sample 

A thin film sample was also used for measurements with the initial setup. The sample is 

a 2 mm by 3 mm solution processed CIGS cell [31] produced at CREST. The 658 nm, 40 mW 

single mode fibre coupled laser is used for measurements in this case. CS current mapping 

results are presented in Figure 5.8, with an LBIC map of the same sample for comparison, 

acquired with the LBIC system in CREST with a laser wavelength of 635 nm [107]. The CS 

current maps have a display resolution of 100 x 100 (10000) pixels and different levels of 

optical resolution were realised. This can be achieved easily by grouping a smaller number of 

micromirrors of the DMD chip together and measuring a smaller area of interest on the 
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sample. The different pixel resolutions in Figure 5.8 were realized by binning 5 x 5, 3 x 3, and 

2 x 2 pixels of the DMD together for control. 5000 (50%) measurements were acquired to 

produce the current maps of Figure 5.8 as they provide a reliable reconstruction as shown in 

previous results. An optical resolution of 27 μm is achieved without any demagnification 

optical elements. Measurements are made here on an area of interest with a large local defect 

on the top left area of the cell, to provide more information on current non-uniformities of 

that specific area. 

 

 

Figure 5.8. 100 x 100 pixel CS current maps of the area of the sample where a pinhole is present. 

The percentages represent the ratio of the number of measurements to the total number of 

pixels of the image. An LBIC scan of the same sample is also presented for comparison (top 

left). The pixel size is also noted for each CS current map. 

The small device under test was produced in-house at CREST and consists of several 

different cells on the same substrate. However, the cells are not perfectly isolated and signal 

from adjacent cells is also measured as can be seen by the CS current maps. The probes used 
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for contacting are clearly seen on the top right corner of the CS map and at the top left corner 

of the LBIC map in Figure 5.8. As measurement points do not overlap each other when using 

compressive sampling, there is some pixelation in very uniform areas of the cell in the CS 

current maps. Additionally, the sample exhibited serious preconditioning issues. When it was 

illuminated, its stabilisation time was in the range of several seconds. This inserted significant 

amounts of noise in the measurements, which is clear in the reconstructed images, especially 

when comparing the results with those of the mc-Si sample.  

 CS current maps of the area with the defect with different numbers of measurements 

acquired are presented in Figure 5.9. Acquiring more than 5000 (50%) measurements 

provides no further improvement of the current map, while even 4000 measurements 

provide a reliable map of the sample. The performance of the method for this thin film device 

is similar to that for the mc-Si sample case, with the useful region of undersampling being in 

the range of 40% to 80%. Even with this initial experimental setup, these results confirm that 

the CS current mapping method has similar performance for different types of PV samples. 

 

 

Figure 5.9. 100 x 100 pixel CS current maps at the area of the thin film sample where a pinhole 

is present. The percentages represent the ratio of the number of measurements to the total 

number of pixels of the image.  
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5.4  Optimised CS current mapping setup  

5.4.1 Optical System design 

The approach for the optimised CS current mapping setup considers the issues 

identified in the initial implementation of the previous section.  A major improvement is that 

the setup is significantly simpler and more straightforward to realise with specific differences 

from the previous approach; larger achromatic doublets are used, with a lens diameter of 

50.8mm, for reducing lens distortion effects; the sample is placed horizontally on a z-stage 

platform; a more accurate current measurement instrument is used. The setup is analytically 

described below. With the enhanced optical and measurement performance of this 

implementation, both compressive and point by point sampling modes were realised 

successfully so that a direct pixel by pixel comparison between the two sampling methods is 

possible. 

The experimental setup is presented in Figure 5.10. The available laser sources are the 

same as before; a 40 mW laser at 658 nm wavelength and a 100 mW laser at 785 nm. Both 

sources are single mode fibre coupled. The light output of the fibre is collimated at a size so 

that the beam overfills the micro-mirror array (DMD). The DMD is the same V-7000 module, 

consisting of a 1024 x 768 pixel micromirror array, each micromirror having a pixel size of 

13.7μm x 13.7μm. In order to insert the CS patterns into the optical system without any 

distortion, the collimated beam is incident on the DMD at an angle in this revised setup. 

Another small benefit is that the beam projection onto the DMD chip has a larger area. A 

central region of this area is used, which leads to a slight enhancement of final projection 

uniformity, compared to the previous implementation. The plane of the micromirror area is 

perpendicular to the spatial filter system. This eventually leads to the coincidence of the plane 

of the projected pattern and the plane of the sample for this setup. However, as the DMD 

consists of finite elements (micromirrors) and the beam is incident at an angle, diffraction of 

the beam is inevitable. To minimise diffraction, the incident angle is set to the blaze angle of 

the DMD [202]. The blaze angle is wavelength dependent and within a very small range, so 

precise alignment is necessary to achieve it for the different laser wavelengths. Using the 

blaze angle, diffraction is suppressed but not completely eliminated. Therefore the spatial 

filter is once again used to reject diffracted and non-collimated components of the beam. This 

is necessary for a much clearer laser spot or pattern projection onto the sample. Finally, a 

mirror is used for guiding the beam onto the sample, which is placed horizontally on a z-stage 
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platform. This is a much more convenient approach for placing all types of samples and 

provides a higher degree of accuracy in positioning the sample in the projection plane. 

 

 

 

Figure 5.10. Schematic diagram of the DMD based current mapping experimental setup. The 

random patterns used for the case of CS current mapping are also included in the picture. The 

diagram is not drawn to scale. 

A National Instruments PXIe-4139 system source measure unit (SMU) is used for 

measuring the current response of the sample. This instrument provides much higher 

accuracy than the previous measurement setup, being able to measure current even in the 

μA range with pA resolution. Pictures of the experimental layout are presented in Figure 

5.11Figure 5.10 and Figure 5.12. The experimental layout is kept as compact as possible, in 

order to demonstrate that the realisation of such a system is simple and that only a small 

amount of space and optical elements are required. The sample is placed at the focal plane 

of the last lens, so that the scanning spot or the patterns are actually projected on the sample. 

Nevertheless, a small misplacement from this plane has almost no effect on measurements 

due to spatial filtering. The optical setup is suitably enclosed for minimising external light 

contamination as well as for laser safety reasons, as it is illustrated in the photographs of 

Figure 5.13. 
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Figure 5.11. The optimized version of the current mapping setup based on the DMD chip 

developed at NPL.  

 

Figure 5.12. Detail of the mounting of the DMD and the laser launch and collimation. The 

collimated beam is incident on the micromirror area at an angle. 
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Figure 5.13. The enclosure and workstation of the CS current mapping optical setup developed 

in this work.  The cover of the setup consists of three pieces with handles for easier access. 

In order to apply a point by point scan, a number of micromirrors are grouped together 

for control depending on the desired optical resolution, similar to the case of compressive 

sampling. It was observed that for this setup, if only one pixel of the micromirror array is used 

for the scan, the signal is rather low, which results in very noisy measurements. For this reason 

the minimum group of pixels used in this series of measurements is 9 (3 x 3), which results in 

an optical resolution of 41.1 μm and the maximum is 49 (7 x 7), which gives a resolution of 96 

μm. In the case of a point by point scan the spot shape on the sample is square. 100 x 100 

pixel current maps were acquired in the case of CS current mapping, in order to achieve a 

more straightforward performance analysis of the measurement system.  

As previously discussed, an important advantage of using the DMD module even for a 

raster scan is that its response time is under 20 μs. This property can result in increased 

measurement speed, which would be limited only by the sampling rate and the number of 

samples taken for each pattern in the case of compressive sampling. The sampling speed of 

the system in this second series of experiments is set at 10 samples (positions of the spot or 

patterns) per second. 30 readings are actually acquired for each sample (point or pattern 

projected), with the average being recorded, as well as the standard deviation. This sampling 

speed is comparable with the speed of a typical LBIC system. However, a good LBIC system 

can achieve even higher sampling speed. Higher measurement speeds can also be achieved 

with the setup described here with optimisation of the control software, which is now still in 

a primitive stage. 

When taking half the measurements (50%) a point by point scanning system would need 

and considering that a 100 x 100 pixel image (10000 pixels) is acquired, measurements require 

approximately 8 minutes in total. A reference measurement is also acquired for monitoring 
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laser light intensity. All measurements are once again normalised with the reference 

measurement, in order to correct for any laser instability. 

 

 

Figure 5.14. The CIGS sample on the left and the mc-Si sample on the right, which are used for 

measurements in this work. The CIGS sample consists of several individual cells, one of which 

is contacted by probes. The pattern used for compressive sampling is also visible on the 

samples, a 532 nm alignment laser is used in the picture on the right. 

A different CIGS sample that consists of several individual cells is used in this series of 

measurements, as well as the mc-Si PV sample which was used in the previous iteration. The 

samples are presented in Figure 5.14, placed on the z-stage platform. The patterns projected 

on the PV cells under test are also visible in the picture. The individual CIGS cell used for 

measurements had a size of 1 cm by 1 cm and was contacted with probes. This device had no 

preconditioning issues so measurement noise was significantly decreased. As also mentioned 

above, the mc-Si cell was 8cm by 8cm and an area of interest of 1 cm by 1 cm was selected 

for measurements. 

 

 

5.4.2 Point by point scan 

As a first step, point by point current mapping was realised using this optimised setup. 

In Figure 5.15, two 100 x 100 pixel current maps of the CIGS PV cell are presented, using a 

different optical resolution each time and applying a point by point scan using the DMD. It is 

clear that by grouping different numbers of micromirror elements together one can focus on 

different areas of a sample with various levels of resolution. This is a very convenient feature 

of a DMD based system, as it allows much more freedom of resolution and scanning settings 
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without the need of any additional mechanical equipment for focusing or moving the sample. 

In Figure 5.15, the PV cell’s current response appears rather uniform, apart from local tiny 

spots, more visible in the higher resolution map on the right of Figure 5.15. The probe used 

for contacting the cell is also visible at the top of the current map. The local current values 

are below 1 μA. A slight general non-uniformity is due to the initial non-uniformity of the 

Gaussian collimated beam that overfills the DMD micromirror area. However, only the central 

part of the beam is used and the rest is rejected as it does not fall on the micromirror area, 

reducing this non-uniformity to less than 10% for the final current map.  

 

 

Figure 5.15. 100x100 pixel currents map of the CIGS sample. On the left, 7x7 groups of 

micromirrors are used for the point by point scan, measuring the whole cell. On the right, 4x4 

groups are used, achieving a higher optical resolution, for a smaller area of the sample. 

A high resolution scan of this individual cell of the CIGS sample is presented in Figure 

5.16. 3 x 3 groups of micromirrors were used to create the spot for the raster scan, achieving 

a resolution of 41.1 μm. Multiple but barely visible interference patterns are present in the 

current response map. The source of this artefact is the multiple reflections from the surfaces 

of the optical elements (lenses) of the spatial filter. Such effects can be significantly reduced 

by using optics with high performance antireflective coatings, specifically designed for the 

system’s laser sources. It should be highlighted that this resolution of 41 μm is achieved 

without any demagnification optics such as a microscope objective or any other lens system. 

There are only three achromatic doublets used in the system, one for beam collimation and 

two in the spatial filter and none of them has any effect on spot size. Adding a microscope 

objective lens at the sample end of this system could boost optical resolution and achieve nm 

scale scans, if desired. 
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Figure 5.16. A 240 x 240 pixel current map of the CIGS cell, using groups of 3 x 3 micromirrors 

for the point by point scan, which provides an optical resolution of 41.1 μm.  

It was not possible to perform point by point scans of the mc-Si sample due to the high 

noise levels; since the small spot used for the raster scan has a low relatively intensity and 

only a small area for that large area sample is scanned, the signal levels are comparable to 

the background noise. This was partly expected, as no lock in techniques are used, which 

would make the separation of the current response reading from the noise easier. 

Nevertheless, it is demonstrated below that current mapping of a larger sample or more 

generally of a sample that exhibits such high noise levels is possible. This is achieved by 

applying compressive sampling instead of a point by point scan, which significantly enhances 

signal levels.  

 

 

5.4.3 Compressive Sampling 

The same procedures as in the previous implementation were followed in this instance. 

7 x 7 groups of micromirrors were used and 100 x 100 pixel current maps were produced. This 

resolution was selected for easier data analysis and comparisons with the point by point scan 
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case. For the case of the CIGS sample the whole area of an individual PV cell is measured. As 

the aim of compressive sampling is to apply fewer measurements in order to reconstruct the 

final current map, different levels of undersampling were investigated. The unique property 

of the experimental layout demonstrated in this work is that it can apply both point by point 

and CS current mapping, which means a pixel by pixel comparison can be made, for a more 

accurate and quantitative experimental evaluation of CS current mapping. This is the first time 

that an optical system has been built that can perform both compressive and point by point 

sampling, making it an ideal instrument for investigating reconstruction algorithms and 

sensing matrices for experimental CS applications.  

In Figure 5.17, the reconstructed current maps are expressed as a percentage, the ratio 

of samples (projected patterns) acquired for reconstruction to the total number of pixels or 

equivalently, the number of measurements the LBIC scan needs, to provide the current map. 

The total number of pixels of the current maps is 10000. The main features of the PV cell 

become visible from 3000 measurements (30%) while adding more and more measurements 

the result converges to the point by point current map. Above 70% the improvement is 

marginal, similar to previous results. 

 Some pixelation effects are very similar to the case of the simulations for the uniform 

thin film devices, as well as the results with the thin film CIGS sample of the previous section. 

For this reason the OMP algorithm was also used for reconstruction, as in the case of the 

simulations in chapter 4 it provided slightly better results for very uniformly performing 

devices. The reconstructed current maps using the OMP algorithm for this sample are 

presented in Figure 5.18. Visually, the difference is marginal. The OMP algorithm seems to 

initially converge faster to the true current map and pixelation effects seem to be slightly 

reduced, especially when using fewer measurements (<50%). Nevertheless, the same number 

of measurements needs to be acquired for detecting the small sharp spots that are obvious 

in the point by point scan. For a more quantitative comparison of the performance of each 

algorithm, the correlation coefficient between the reconstructed current maps and the raster 

scan was calculated. The results are presented in the graph of Figure 5.19. 
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Figure 5.17. Reconstructed current maps of the CIGS PV cell, using the ℓ1 minimisation 

reconstruction algorithm. The percentages indicate the ratio of samples used to the total 

number of pixels.  

 

Figure 5.18. Reconstructed current maps of the PV cell, using the OMP reconstruction 

algorithm. The percentages indicate the ratio of samples used to the total number of pixels. 
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Figure 5.19. Correlation coefficient between the reconstructed current map and the raster 

scan, as a function of number of measurements acquired, for both the ℓ1 and the OMP 

reconstruction algorithms. 

 

From the correlation coefficient graph, the main finding is that the OMP algorithm 

performs better for up to 65% of measurements acquired than the ℓ1 minimisation algorithm 

for this sample and this level of resolution. The main reason is the pixelation observed in the 

ℓ1 case for this undersampling range. However, when acquiring over 60% of measurements, 

the ℓ1 performs better as it seems it is less affected by measurement noise. It should be noted 

that for this resolution, the OMP algorithm is significantly slower. While the ℓ1 needs seconds 

or a few minutes to reconstruct the current map depending on the number of measurement 

acquired, when acquiring more than 60% of measurements the OMP needs up to several 

hours for large sampling levels, making processing time at least two orders of magnitude 

longer. This was not completely unexpected as it was also demonstrated in the previous 

chapter. It is clear that the choice of reconstruction algorithm can have a significant impact 

for this current mapping method. The step down at 50% of measurements for the ℓ1 is 

unexpected as it has not occurred in previous results. It could be explained due to the 

symmetry of the sample and the fact that the discrete cosine transform (DCT) is used, which 

can be influenced by symmetric structures. This is not a feature of the specific sensing matrix 
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used, since it is observed for any sensing matrix applied to this sample when using the ℓ1 

algorithm, as will be shown later. Such a step is not observed for the OMP algorithm. 

Although a point by point current mapping scan could not be realised for the large mc-

Si sample due to the high amounts of background noise, compressive sampling can still 

provide reliable results, as also demonstrated already with the previous implementation. 

Similarly to the previous set of measurements, the same small 1 cm by 1 cm area of the cell 

is measured, that is known to contain cracks and spots. The CS current mapping results are 

presented in Figure 5.20. A raster scan with our setup results in an extremely noisy current 

map, which is included in the same figure, where even the sharpest features of the cell area 

are barely distinguishable. As this is a large area sample, the noise levels are very high, the 

current signal of the point by point scan is very weak and even with the best amplification the 

signal is lost within the noise, even though readings are normalised to a reference 

measurement. No lock-in techniques are used for measurements, which could help reduce 

measurement noise significantly. In this case, acquiring a current map seems impossible. 

However, when using compressive sampling, the current signal is greatly enhanced, 

exceeding the background noise threshold. The reconstructed current maps using the ℓ1 

minimisation reconstruction algorithm are presented in Figure 5.20. 

LBIC maps of the sample using the latest high precision LBIC system at CREST are also 

presented in the figure, using similar laser wavelengths [107]. Both the CS current mapping 

and the LBIC scans were implemented with a sampling rate of 10 S/s. This means, that when 

CS current mapping is applied, the acquisition of fewer measurements leads to a decrease in 

measurement time. For producing the CS current maps, both available laser sources were 

used for measurements, having wavelengths of 658 nm (red) and 785 nm (infrared). By using 

the IR laser, the crack which is obvious in previous EL images and in the 78 5nm LBIC map 

image becomes visible when increasing the number of measurements. Since the light still 

does not penetrate deeply into the cell, the crack still appears much thinner than in the EL 

image. The results are almost identical with the maps of the previous implementation, 

although illumination uniformity has been slightly improved and there are no misalignment 

distortions such as the inclination of the grid fingers observed previously. Even though there 

is some pixelation as a result of the reconstruction process, the reconstructed maps exhibit 

comparable sharpness and accuracy to the LBIC maps. This is evident especially from 60% of 

measurements and above. 
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Figure 5.20. In the top row, the noisy raster scan of the small area of the mc-Si cell using the 

optical system of this work and LBIC scans with the latest system at CREST. In the 2nd and 3rd 

rows, the reconstructed CS current maps, using the two available laser sources and the ℓ1 

minimisation reconstruction algorithm. Both the CS current mapping and the LBIC scans were 

implemented with a sampling rate of 10 S/s. 

In Figure 5.21 the reconstructed current maps using the OMP algorithm are presented. 

The results are visually almost identical to the ones when the ℓ1 minimisation algorithm is 

used. Similar to the CIGS sample case, the OMP algorithm gives better results when fewer 

than 60% of measurements are used, while it has the same performance when acquiring more 

measurements. Unfortunately, when acquiring more than 60% of measurements 
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reconstruction time becomes very large, in the range of hours, which makes the OMP 

algorithm impractical for high throughput of measurements with such sampling levels.  

 

 

Figure 5.21. The reconstructed CS current maps, using the two available laser sources and the 

OMP reconstruction algorithm 

Direct pixel by pixel comparison of the reconstructed results with a raster scan made 

with the DMD is not possible for this sample since the raster scan map is extremely noisy and 

cannot be used as a reference for comparison. Comparing with the accurate LBIC maps would 

also not yield meaningful results as they were acquired using a different measurement system 

and a spatially accurate pixel by pixel comparison would not be possible due to image 

alignment mismatch. Nevertheless, combining the results from both samples it is 

demonstrated that CS current mapping using this optical setup can be a very practical solution 

for a simple spatial characterisation instrument. Some further considerations regarding 

sensing matrices and signal to noise ratio (SNR) are discussed in the following section. 
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5.5 Sensing matrix sparsity 

In this section the impact of sensing matrix sparsity on the measurement process and 

reconstruction performance is investigated. 100x100 pixel sensing matrices were used, with 

different levels of sparsity, having a proportion of pixels in the “on” state from 1% to 50%. 50% 

means that half of the elements of the sensing matrix are one (1) and the rest are zero (0). As 

a result, the projected patterns on the sample have half of their pixels bright (“on”) and the 

other half dark (“off”). 1% simply means that only 1% of the pixels are in the “on” state, which 

means 100 illuminated pixels for a 10000 pixel projection. This means that the current 

response measured when a series of patterns (sensing matrix) are projected on the sample 

will depend on the sparsity of the sensing matrix. As a result, this influences signal levels and 

so has an impact on the measurement SNR. It should be noted that “measurement SNR” is 

the SNR at the sampling level; the final SNR of the reconstructed current maps will not be that 

high and will also depend on the noise inserted by the reconstruction procedure. In reality, 

initial sampling SNR is only one of the factors that influence the final SNR of the reconstructed 

image, but it is still a very significant factor for compressive sampling, as will be shown below. 

 

 

Figure 5.22. Visualisation of the sparsity of individual patterns of sensing matrices. Sparser 

patterns will have many more zeroes than matrices with lower sparsity and this is equivalent 

to a larger proportion of micromirrors being in the “off” state. 

It has already been demonstrated in CS microscopy that sparser sensing matrices have 

better performance [203]. When using very sparse sensing matrices the probability of having 

two adjacent pixels at the “on” state at the same time is small. If in a projected pattern there 

are two adjacent pixels at the “on” state simultaneously, the result may be an overlapping 

excited area in the sample; In CS application cases as in the optical system of this work, due 

to light scattering and diffusion of charge carriers, it may be uncertain at which of the two 

adjacent pixels the additional measured signal that contributes to the global current reading 
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of the specific pattern is generated. Consequently, there is eventually increased 

measurement noise in the final reconstructed current map because of this uncertainty.  

These assumptions are confirmed when using sensing matrices with different levels of 

sparsity for CS current mapping. In Figure 5.23 the 60% reconstruction current maps are 

presented for the CIGS cell, using the ℓ1 minimisation algorithm for reconstruction. It is 

visually evident that the reconstructed current maps are becoming sharper when sparser 

sensing matrices are used. In addition, pixelation effects are significantly reduced with sparser 

matrices. The same investigation was also realised using the OMP algorithm for 

reconstruction. The reconstructed current maps are presented in Figure 5.24. The results are 

very similar to those when using the ℓ1 minimisation algorithm; sparser sensing matrices 

result in sharper images with less pixelation.  

 

 

Figure 5.23. Reconstructed current maps using 60% of measurements and the ℓ1 minimisation 

reconstruction algorithm, acquired with sensing matrices of different sparsity levels. 

 

In order to realise a more meaningful quantitative comparison, the correlation 

coefficient between the point by point map and the CS current maps was calculated, using 

obviously the same optical and display resolution for the two methods. The correlation 

coefficient curves for all sensing matrices and for both algorithms are presented in Figure 5.25. 

It is evident from the graph that sparser sensing matrices provide better results and 
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reconstructed current maps converge faster to the real current map. This general trend is the 

same regardless of the algorithm used. 

 

 

Figure 5.24. Reconstructed current maps using 60% of measurements and the OMP 

reconstruction algorithm, acquired with sensing matrices of different sparsity levels. 

The small local decrease observed in the curves at 50% of measurements is present for 

all sensing matrices when using the ℓ1 minimisation algorithm. This shows that this behaviour 

is mainly due to the specific features of the sample that influence the reconstruction process 

with the specific algorithm, as discussed previously. For this algorithm, the improvement due 

to sparser matrices becomes clear when acquiring more than 60% of measurements. There is 

a great improvement from 50% to 10% of pixels at the “on” state, but using even sparser 

matrices has a very small effect on reconstruction performance. When using matrices of 3% 

pixels “on” and above the performance improvement saturates. Similar to the results of the 

previous section, the OMP algorithm converges faster, although when acquiring more than 

60% of measurements the reconstruction time becomes very large which makes its 

application impractical. The improvement is significant when comparing the 50% with the 10% 

pixels “on” sensing matrices, but for sparser matrices there is almost no difference in 

performance, similar to the ℓ1 reconstruction case. This behaviour can be crucial in CS 

applications, since using sparser sensing matrices means that the signal levels are decreasing. 
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In this series of experiments where 10000 pixel sensing matrices are used, 10% means that 

1000 pixels are still at the “on” state, which results in a signal amplification of 1000 times, 

compared to the point by point scan. Nevertheless, even this amplification may not be enough 

in cases of high background noise levels and this is demonstrated when compressive sampling 

with different sparsity sensing matrices is applied to the mc-Si sample. Another interesting 

result when using sparse sensing matrices is that the reconstruction for 100% measurement 

acquisition does not fail for the OMP algorithm. 

 

 

Figure 5.25. The correlation coefficient between the CS current maps and the LBIC map, as a 

function of number of measurements acquired, for sensing matrices of different levels of 

sparsity. Results of both the ℓ1 minimisation and the OMP reconstruction algorithms are 

included.  

 

In the case of the mc-Si sample, sensing matrices of 50% pixels “on” work better than 

sparser matrices as the measured signal is significantly increased, providing more accurate 

current readings far above the noise threshold for this sample. Matrices of 1% pixels “on” do 

not provide any results at all, as the current signal levels are comparable with the point by 

point scan. Reducing sensing matrix sparsity gives better and better reconstruction results, as 

can be seen in Figure 5.26, for 70% of acquired samples for reconstruction and using both 

reconstruction algorithms. It is clear from these results that the most suitable sensing matrix 
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sparsity depends on the sample and the measurement noise levels of the particular 

application. Although this means there may be a compromise between accuracy and signal 

amplification when using CS current mapping, it shows that this technique can be very 

versatile; current maps of a sample can be acquired even with high background measurement 

noise.  

 

 

Figure 5.26. CS reconstructed current maps for the mc-Si sample, using 70% measurement 

acquisition, for different levels of sensing matrix sparsity. Results using both reconstruction 

algorithms are presented. 

 

In order to show the influence of measurement SNR on the method’s performance, SNR 

was calculated for all cases of samples and sensing matrix sparsity. The results are presented 

in Figure 5.27. For the sake of completeness, it is noted that SNR is calculated with the formula:  

 

 𝑆𝑁𝑅 (𝑆𝑖𝑔𝑛𝑎𝑙 𝑡𝑜 𝑁𝑜𝑖𝑠𝑒 𝑅𝑎𝑡𝑖𝑜)  =  
𝑀𝑒𝑎𝑛 𝑉𝑎𝑙𝑢𝑒

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 (9) 

 

As mentioned, each current measurement is the mean of 30 readings, for which the 

standard deviation (SD) is also calculated. For the point by point scans, the average SD of 

measurements gives approximately SNR = 626 for the CIGS sample and SNR = 2 for the large 

mc-Si sample. As can be seen from the graph of Figure 5.27, when applying compressive 

sampling the measurement SNR increases significantly in all cases. When increasing sensing 

matrix sparsity (reducing pixels in the “on” state) though, the SNR for the CIGS sample stays 
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constant, while for the mc-Si sample it decreases, which has an impact on reconstruction 

quality. This is reflected in the current maps of Figure 5.26. These results show that high SNR 

is important for CS measurements as when it decreases below 4000 it is evident that the 

reconstructed current maps are very noisy. 

 

 

Figure 5.27. Measurement SNR when compressive sampling is applied, as a function of sensing 

matrix sparsity. 

 

The above results show that the choice of sensing matrix sparsity is a compromise 

between accuracy and measurement SNR levels. When background noise is low, a 10% 

sparsity is optimum, as there is no practical advantage of using even sparser matrices. With 

increasing background noise, sparsity should be reduced, so that the absolute signal levels 

are increased. It can be concluded from the graph that CS current mapping requires a 

measurement SNR of at least 4000 for reliable reconstruction results.  In reality, it would not 

be practical to measure such large samples as the mc-Si with this optical setup; it is designed 

for small area PV devices as its measurement area is limited to 1 cm by 1 cm. Consequently, 

such high noise levels are unlikely. Nevertheless, research PV samples can have very low 

efficiency so such high relative noise levels can still occur. 
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5.6 Practical Considerations and Discussion 

Some aspects of using such a simple experimental setup for current mapping have to 

be considered. Regarding the optical setup, it is mentioned already that the beam uniformity 

after the DMD is not absolutely perfect. This minor non-uniformity can be remedied by 

inserting additional optical elements after beam collimation; an engineered diffuser and an 

additional spatial filter, to properly re-collimate the beam after the diffuser. Another option 

would be initial calibration of beam non-uniformities using a CCD camera, although this will 

not be sufficient for measurements of non-linear PV samples. Since the beam is expanded 

and only a small portion of the initial laser output is used on the sample, the light losses are 

significant and high power laser sources are needed. For the 1 cm by 1 cm area in our case a 

100 mW laser source is sufficient. The calculated losses are around 70%, which is a significant 

but inevitable loss. Bias light could be added to overcome this challenge, as well as series 

resistance effects. 

Expanding the measurement area is realistic and will require only a small number of 

additional optical elements after the generation of the patterns. Additional laser power will 

be necessary, depending on the size of the measurement area increase.  On the other hand, 

research PV samples are usually smaller than 1 cm by 1 cm, which means the experimental 

setup built in this work, which is straightforward to realise, can provide a reliable current 

mapping instrument for these uses.  

A reference measurement of temporal laser intensity is necessary to avoid any 

instability influencing measurements. This reference measurement is achieved by adding a 

beamsplitter and a photodiode in the light path. However, the use of a DMD chip for realizing 

measurements adds a more cost effective and simple way, just by sacrificing half of the 

measurement speed, when time is not a significant issue. A specific area of the PV cell under 

measurement, multiple areas simultaneously or even the whole sample can be used between 

measurements to obtain a reference reading. The same area has to be used throughout 

measurements so that the reference current reading depends on only laser output. This keeps 

the measurement setup still extremely simple without additional parts, while the reference 

measurement is just a matter of software programming. Unfortunately, this concept will only 

be able to detect long term laser instability and will miss any spikes. Thus, when it is possible 

a simultaneous reference measurement with another detector is optimum. 

The results with the small CIGS PV cell indicate that very high resolution current 

mapping can be achieved by using the DMD to apply a point by point scan. CS current mapping 

also provides reliable results, when around 50% of measurements and above are acquired. As 
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was shown in the previous chapter, CS current mapping based on the ℓ1 norm minimization 

algorithm for reconstruction exhibits reduced performance for very uniform samples. In this 

case other reconstruction algorithms can perform better, such as the Orthogonal Matching 

Pursuit approach [180]. On the other hand, even if more samples are needed in some cases 

for reconstructing the current map, compressive sampling always requires fewer 

measurements than a point by point scan. After acquiring the measurements, the 

reconstruction process requires approximately a minute for around 50% undersampling. This 

is an offline process, which means another scan can start while the previous set is 

reconstructing. 

The sampling rate achieved for the CS current mapping system of this work is 10 S/s. 

Such a sampling rate is comparable with conventional LBIC systems in the literature but still 

slightly low, when compared to state of the art LBIC systems, such as on-the-fly LBIC [92]. 

Such a system would be able to acquire a current map of 10000 pixels in 5 minutes, while a 

50% CS current map is acquired in approximately 8 minutes. Such a speed is also much slower 

than EL imaging, which can be implemented in seconds. Nevertheless, measurement speed 

could be boosted by using the internal memory of the DMD module. Latest DMD models have 

an even larger internal memory, which could make it possible to load the complete sensing 

matrix (series of patterns) into the DMD before measurements. This will save significant 

communication time between software, DMD and the measurement instrument, as in this 

case only a trigger will be used to synchronise measurement acquisition with pattern 

projection. Only the switching rate of the micromirrors and the response of the sample will 

then limit measurement time. Thus, potentially a sampling rate of 100 S/s can be achieved. In 

such a case, a current map of 10000 pixels can be acquired in a minute. 

The flexibility in the choice of resolution for the implementation of the measurements 

is an important feature when using a DMD. By grouping different numbers of micromirrors 

together it was shown that optical resolution can be altered from 96 μm to 27 μm, without 

any mechanical movement. In a conventional LBIC system this would be achieved by 

mechanical movement of optical elements, such as changing the position of a microscope 

objective lens. On the other hand, the level of optical resolution achieved by LBIC systems 

reported in the literature can be as high as 1μm, by using microscopy configurations [99][84]. 

The optical system of this work has not achieved such a high resolution, although it would be 

possible by inserting a microscope objective lens before the sample, in order to demagnify 

the projected patterns. 
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An important advantage of CS current mapping is that it can be applied in cases when a 

point by point scan fails to provide any results. In our case, a large mc-Si sample was used 

which inserted high noise levels compared to the current signal. CS current mapping gave 

reliable results where the signal of the point by point scan was lost within the noise. This 

shows that a simple current mapping setup can work in a cost-effective way, without lock-in 

equipment but by adjusting the suitable sampling method depending on the sample and the 

noise levels. In addition, sensing matrix sparsity levels can be adjusted in a way that optimised 

accuracy is achieved. When the noise levels are low, sparser matrices have better 

performance. However, when noise levels are high and it is difficult to implement a point by 

point scan, less sparse sensing matrices are preferable and provide better results by 

significantly increasing signal levels. 

The experimental results show that the choice of reconstruction algorithm can have a 

significant impact on the performance of the method. In the previous chapter, the PVONA 

simulations showed that the ℓ1 minimisation algorithm has slightly better performance than 

the OMP algorithm. Nevertheless, the experimental results showed that the algorithms 

perform similarly and in cases where sparse sensing matrices are used the OMP can give 

better results. Especially for measurement acquisition below 60%, the OMP algorithm always 

performs better. When using CS current mapping the goal for undersampling is at least 50% 

and the useful range is within 40% to 60% of measurements. Thus, within this range the OMP 

algorithm seems to be the optimum solution. Nonetheless, there are a large number of 

reconstruction algorithms in the literature and it is possible that better reconstruction 

algorithms exist for this application.  

 

 

 

5.7  Conclusions  

An experimental layout for current mapping of small area PV devices has been built, 

based on a DMD chip with the aim of applying and investigating compressive sampling. This 

current mapping system is realised in a very simple and straightforward way, involving no 

moving parts, complicated optical elements or lock-in methods to achieve high optical 

resolution and sampling rate. It also offers the unique opportunity for an experimental pixel 

by pixel quantitative comparison between point by point and CS current mapping. Two 

different algorithms and sensing matrices with different levels of sparsity have been 



124 
 

compared. Both mc-Si silicon and thin film samples were investigated, as in the case of the 

simulations in the previous chapter. The optical layout presented here is the first reliable 

compressed sensing current mapping setup for PV characterisation reported in the literature. 

The experimental results confirm that CS current mapping yields reliable results with 

fewer acquired measurements than a point by point scan. It is shown that undersampling of 

at least 50% can be achieved with compressive sampling, which can lead to a significant 

reduction of measurement time. The method has similar overall performance for all types of 

samples. By using compressive sampling with this specific experimental setup, the 

measurement SNR is enhanced compared to point by point sampling. This makes CS current 

mapping necessary in cases of very high noise levels, where the signal to noise ratio (SNR) of 

the measurement must be enhanced for meaningful sampling above the noise threshold. 

Sparser sensing matrices exhibit better performance, although less sparse matrices may be 

required in the presence of noise, to increase the SNR. Further optimisation of this system is 

possible, as there are still some shortcomings to be resolved, as described in the previous 

section.  

A significant improvement of this experimental layout can be achieved by making the 

setup more compact. In the experimental implementations in this work, lenses with long focal 

lengths were used for making optical alignment easier. By using optical elements with less 

than half of this focal length, the setup can become much smaller. This is a further step for a 

realistic commercial application of this method, as a compact and simple instrument for CS 

current mapping can be built that will occupy a small amount of space. Using a more compact 

setup, the cost of building this instrument will also be reduced, due to lower space 

requirements for the enclosure of the system. This simple DMD current mapping system can 

be utilized for reliable spatial characterisation not only for PV devices, but also for any type 

of photodetectors and other semiconductor devices, requiring only selection of a suitable 

laser source.  

The core of this current mapping instrument is the DMD chip, which generates the 

patterns that are projected on the sample. Consequently, a scale up of this method can be 

investigated using Digital Light Processing (DLP) projection technology, where DMD modules 

are used for producing the projection images. Most modern projectors, from small room 

projectors to high power cinema projectors, now use DLP technology, due to its high contrast 

ratio and overall performance. An initial investigation of the concept of using a commercial 

DLP projector for CS current mapping of PV modules is realised in the next chapter.  
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Chapter 6 

6. Scalability of Compressed Sensing Current Mapping 

 

 

 

 

6.1 Overview 

Although current mapping is important for PV characterisation, applying LBIC 

measurements to full-size PV modules presents some practical difficulties. Bias light is 

necessary in all cases, since if all cells are in the dark and only one is illuminated, no current 

will be measured at the contacts of the module. Additional shading strategies on the cell 

under measurement then also need to be adopted in order to force its role as the current-

limiting cell and acquire current maps of PV modules of interconnected cells [78]. Finally, the 

time needed to conduct a point by point scan on a large module is prohibitive for practical 

applications at useful resolutions. It is thus difficult to measure the spatial current response 

of large PV modules and as a result other methods are preferred such as EL imaging or lock-

in thermography.  

In the previous chapters, CS current mapping was investigated through electrical 

simulations as well as with a small area optical measurement setup. In chapter 4, apart from 

the simulations for confirming this measurement method, the concept of CS current mapping 

of series interconnected PV modules was investigated. It was shown that in principle this is 

possible, as in the absence of bypass diodes the current output from a PV module will be 
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limited by the cell that produces the least current. As was demonstrated, when the patterns 

for compressive sampling are projected on an individual cell of the PV module while the rest 

of the cells are fully illuminated, the current measured at the contacts of the module will be 

dominated by the current produced by the cell under measurement. This will stand provided 

that the other cells each produce more current than the cell under test. This feature of CS 

current mapping implementation, along with the fewer measurements required, has the 

potential to make current mapping of even large, multi-cell PV modules possible. A first 

approach of this concept is investigated in this chapter.  

CS current mapping has already been successfully applied to small area devices, as it 

was described in the previous chapter. The sampling patterns were generated by a DMD 

module for the realisation of compressive sampling. Reliable current maps have been 

produced by acquiring just 40% of the measurements that a standard LBIC system would need, 

with a sampling speed of 10 samples per second achieved. In this chapter, a digital light 

processing (DLP) projector is used to replace the laser sources of the small-area setups. In DLP 

projectors, the image is created by DMD chips, where each mirror represents one pixel in the 

projected image. They are functionally the same as the DMD described in the previous 

chapters and for this reason, a DLP projector can theoretically be used for applying the 

necessary illumination patterns for CS current mapping of large PV devices. Such an approach 

may provide a cost effective way of scaling up the CS current mapping technique for spatial 

characterisation of PV modules. Point by point current mapping using a DLP projector has 

already been proposed in the literature [166]. It has also been shown that by utilising 

projection technology, one can achieve high accuracy and robustness in projecting any 

structured patterns for spatial characterisation measurements [204].  

The aim of this chapter is to demonstrate that a DLP projection based system for CS 

current mapping can be a feasible solution for PV module characterisation. Such a system 

would provide a convenient means to project the required patterns onto the sample under 

measurement, in order to apply compressive sampling. This can be achieved by projecting 

patterns on the cell under measurement while light biasing the rest of the cells at the same 

time, following the principles detailed in [78]. In the following, a standard commercial DLP 

projector is used in an experimental layout, to investigate the issues and features of this 

approach. The feasibility of CS current mapping with a DLP projector, for both single PV cells 

and PV modules is investigated and presented in this chapter.  
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6.2 Operating principles of a Digital Light Processing (DLP) projector 

Any display device that uses a DMD module for creating the projections is called a 

“Digital Light Processing (DLP)” device. DLP technology is used in the majority of modern 

projection equipment, from small business projectors to cinema projectors. The general 

principles of a commercial small scale DLP projector with a single DMD chip are described in 

Figure 6.1. The light from the source, which is usually a broad-spectrum lamp, passes through 

a colour wheel that separates the different colours. The colour wheel is synchronized with 

the DMD and filters the light into red, green and blue components. Each micromirror of the 

DMD is synchronised with these basic colours. By combining these colour components, a 

single chip DLP projection system can create approximately 16.7 million colours. 

 

 

Figure 6.1  Breakdown of a typical single DMD chip DLP projection system 

At the projection screen, each illuminated pixel is red, green or blue at any given 

moment. The DLP technology utilises the perception of a viewer’s eyes to blend the pixels 

into the desired colours of a projected image. As an example, a micro mirror that creates a 

purple pixel will only reflect the red and blue light to the projection screen. The pixel on the 

screen is actually a rapidly alternating flash of blue and red light. The balance of blue or red 
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components over time determines the final shade of purple that the eyes of the viewer will 

perceive. The projection lens magnifies the image that the DMD creates, onto the projection 

screen. A light sink is also used so that the light that the pixels reject when they are at the 

“off” state is absorbed efficiently. This ensures that there is no stray light to distort the 

projection. In the latest models of DLP projectors, colour wheels include more colours, such 

as yellow, white, magenta and cyan, for even more colour combinations and greater colour 

rendering accuracy.  

DLP cinema projection systems usually consist of three DMD chips. Each one of them 

has its own dedicated light source: red, green or blue. This can be achieved by passing the 

white light generated from a single broad source lamp through a prism that divides it into red, 

green and blue components. Other options that have been demonstrated are separate colour 

LEDs or laser sources [205][206]. High power DLP projector products have been developed 

lately utilising laser sources [207]. 

 

 

 

6.3 Evaluation of the DLP projector as a light source for current mapping 

6.3.1 Projector features and initial tests  

The projector used for this work is a typical commercial type, the Acer P7605 DLP 

projector with a 370 W metal halide lamp. It is a reasonably high intensity projector, capable 

of generating a brightness of 5000 ANSI lumens. An important advantage of DLP projection 

technology is the high contrast ratio that can be achieved. This allows the system to efficiently 

generate a black pixel equivalent to a masked shaded spot which is significant when projecting 

patterns of dark and bright pixels. The projector is set on a bench and the illuminated samples 

are mounted vertically. This setup is not on an optical table so vibrations may affect the spatial 

accuracy of measurements, although their influence will be minor since the resolution 

achieved with the projector setup is in the mm scale. All experiments have been conducted 

in a dark room, so light contamination from external sources is negligible.  

Some initial tests were undertaken in order to analyse the projector output and identify 

potential challenges. An encapsulated 8 cm by 8 cm mc-Si PV sample is used for these initial 

tests. The sample is identical with the one used in the previous chapter. A constant pattern 

of black and white pixels is projected onto the sample, similar to the patterns applied for 

compressive sampling. A photograph of this is presented on the left of Figure 6.2. A Keithley 
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2420 is used for voltage bias and the current response is measured with a NI DAQ card. The 

voltage bias is set at a constant 0V. A shunt resistor is used for measuring the current response 

of the PV device with the DAQ card. The circuit configuration is presented on the right of 

Figure 6.2.  

 

 

Figure 6.2. On the left, the sample used for initial tests of the projector system, illuminated 

with a random black and white pixel pattern. On the right, the circuit diagram for making 

measurements.  

Considering the working principles of the DLP projector, temporal, spectral and spatial 

variations of light intensity are expected. A sampling speed of 250000 samples per second 

was set for the current reading for a first evaluation of the photocurrent signal. The measured 

current for 12000 samples (48 ms) is presented on the left of Figure 6.3. It is clear that the 

light intensity is very unstable, apparently due to both spectral variations from the colour 

wheel and the uncontrollable switching of the micromirrors of the DMD. In the small area 

optical setup of chapter 5 there was direct control of the DMD. In this system where the DLP 

projector is used, the DMD is controlled by the projector’s internal system. Although the 

patterns are created and sent for projection, there is no direct control of the internal DMD of 

the projector. Even when projecting black and white light patterns, the DMD is still flickering 

uncontrollably for colour mixing reasons. These variations are periodic; with the 250 kHz 

sampling rate used, a period is approximately 4170 samples, corresponding to around 16ms. 

The signal measured during a whole period is presented on the right of Figure 6.3. Such a light 

source is highly unstable for current mapping measurements as it is and this will be 

demonstrated below.  
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Figure 6.3. Periodic short term temporal variations of the light intensity from the projector. A 

period is highlighted with the yellow square on the left graph and it is presented zoomed-in 

on the right. 

In addition to these short term variations of light intensity, long term variations have 

also been detected. In order to evaluate these variations, current measurements need to be 

stabilised for the short term variations. For this reason, integration over 1 period is realised 

(4170 readings are acquired and averaged to make one sample reading). This procedure is 

done 10 times for each current measurement so that the measurement signal is as accurate 

as possible for a specific projection. Inevitably, this makes the measurement procedure very 

slow, but is necessary due to the instability of the light intensity. The resulting sampling rate 

from this strategy is around 2 samples per second. The same pattern is projected on the 

sample for a long period of time and the current is measured 2000 times with the 

aforementioned procedure. This corresponds to a total measurement time of approximately 

20 minutes. The result is presented in Figure 6.4. It is clear that there are long term 

fluctuations of light intensity, in the range of ±3.5% of the average current value. This is not a 

large amount but it can significantly influence compressive sampled readings and insert 

background noise in the reconstruction procedure. For this reason a reference measurement 

needs to be established so that all measurements are normalised to account for these long 

term fluctuations. This is achieved by adding a photodiode next to the sample, assuring that 

the projection always has a stable part at the edge (i.e. no pattern variation applied at this 

part of the projected image, just white light) for monitoring light intensity. Readings from the 

photodiode are acquired simultaneously with the PV device current measurements. The 

current signals are then normalised according to any light intensity changes. 
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Figure 6.4. Long term variations of light intensity over a period of 20 minutes, acquired by 

projecting the same pattern on a PV device. The range of the variation is ±3.5% of the average 

current measurement value. 

Another factor that is expected to influence measurements is the non-uniformity of 

irradiance on the projection plane. Due to expansion of the beam by the projection lens and 

additional lens effects, the irradiance is expected to be slightly higher at the centre and lower 

at the edges of the projection. The homogeneity of the light field generated by the projector 

was thus investigated and quantified. After placing the projector at a fixed position, the 

irradiance intensity map of the projection was acquired, using a photodiode on an x-y table. 

This was placed at a fixed plane parallel to the sample as illustrated in Figure 6.5 (left). The 

irradiance map is presented on the right of Figure 6.5. The maximum difference in irradiance 

(maximum – minimum) is approximately 20% of the average value. However, even when 

measuring PV modules in the implementation here, the edges of the projection are not used, 

only the central part. This brings non-uniformity to a value of approximately 10%.  

Considering the above inherent issues of the DLP projector when using it as a light 

source without any modifications, initial CS current mapping was attempted in order to test 

this concept. A cell identical to the mc-Si cell of the previous chapter is used. The sequence of 

random patterns for compressive sampling is projected on the sample and the current map 

is reconstructed using the ℓ1 minimisation algorithm as in the previous chapters. 60 by 60 

pixel patterns were used by binning DMD physical pixels together, as in the case of the DMD 

optical setup. The resulting low resolution current map for 50% measurements is presented 

in Figure 6.6, along with the EL image of the same sample. Although the method seems to 
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work in theory, as a current map is acquired, it is apparent that the noise levels are extremely 

high and the busbar of the sample is the only distinguishable feature. The main source of this 

noise is the severe short term instability of illumination, as already presented in Figure 6.3. 

For this reason, some modifications were made to the DLP projector in order to reduce 

measurement noise and improve accuracy.  

 

 

Figure 6.5. On the left, the procedure for measuring the spatial uniformity of irradiance of the 

projector. On the right, the measured irradiance map. 

 

 

Figure 6.6. On the left, an initial 60 x 60 current map of a mc-Si cell, acquired with the 

unmodified DLP projector as a light source and by applying compressive sampling. On the right, 

an EL image of the same sample. 
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6.3.2 Projector unit modifications 

As discussed above, the projector utilises a colour wheel filter for splitting the white 

light source. This operation is well suited for usual projection utilities, but creates significant 

spectral and temporal variations of irradiance for PV characterisation applications. In order 

to overcome this limitation, the internal colour wheel of the projector was removed from the 

light path, by disassembling the projector. A picture of the projector main control board and 

some of its components is presented on the left of Figure 6.7, with the casing and protection 

lid of the projector detached. The position of the colour wheel within the projector before its 

removal is presented on the right of Figure 6.7. One initial obstacle found was that the 

projector would not operate with the colour wheel completely disconnected and removed, 

apparently for safety reasons, presenting an error signal.  

To overcome this, the colour wheel is physically removed from the light path, but it is 

left connected electrically to the main board of the projector with all its sensors and cables. 

The colour wheel is placed outside the projector and it is still always spinning when the 

projector is turned on, but no longer affects the projected light. There are no safety related 

risks with this approach; the projector is still hermitically sealed by its protective cover and 

plastic lid so its inner parts are inaccessible; and there is no risk of injury due to the spinning 

colour wheel, since it is extremely light-weight and can be stopped with minimum force even 

by bare fingers. After this adjustment the projections are only black and white, but this is 

precisely as required in the intended application of CS here. A picture of the modified 

projector in operation is presented in Figure 6.8. 

 

 

Figure 6.7. Pictures of the disassembly procedure of the projector.  
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Figure 6.8. The DLP projector operating after the removal of the colour wheel from the light 

path. 

 

6.3.3 Custom PV module 

A custom 6-cell monocrystalline silicon (c-Si) module produced at CREST is used for 

testing the DLP projector current mapping system. This PV module is similar to the standard 

laminate production methodology used by most c-Si module manufacturers. Thus, apart from 

the number of cells and lack of surrounding aluminium frame, the module used is of 

equivalent construction and technology to commercial modules available on the free market. 

One additional feature is that the terminals of each individual cell were extended to the 

outside of the encapsulation, allowing direct contact with each cell. This enables a flexible 

contacting scheme, where tests are either run in a way to simulate commercial modules and 

all cells are contacted in series, or direct measurements are taken on individual cells. The PV 

module and its circuit diagram are presented in Figure 6.9.  
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Figure 6.9. On the left, the circuit diagram of the c-Si PV module used in this work. On the right, 

a photograph of the custom mini-module. In both cases the external individual contacts for 

each cell are visible, for validation of experimental results. 

The standard parameters of all cells of the mini module were measured in a commercial 

solar simulator (Pasan IIIb) at standard test conditions (STC) and are shown in table 6.1. It is 

apparent that all the cells exhibit almost identical performance. This is crucial for initial testing 

of the DLP current mapping system and in order to confirm the feasibility of current mapping 

with this system and the validity of measurements. Synthetic defects are introduced in a later 

stage, for a more realistic approach. No bypass diodes were included in the mini-module at 

this stage. 

 

Table 6.1. STC parameters of the custom module used in this work and its individual cells 

 
 ISC (A) VOC (V) IMPP (A) 

 
VMPP (V) 

 

 
PMAX (W) 

 
FF (%) 

 
n (%) 

        
Cell 1 

 
9.17 0.63 8.2 0.47 3.84 0.68 15.58 

Cell 2 9.09 0.63 8.35 0.46 3.83 0.67 15.54 
        

Cell 3 9.1 0.62 8.24 0.47 3.86 0.68 15.66 
        

Cell 4 9.1 0.62 8.42 0.46 3.87 0.69 15.7 
        

Cell 5 9.06 0.62 8.33 0.46 3.82 0.68 15.5 
        

Cell 6 9.16 0.62 8.21 0.47 3.84 0.68 15.59 
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6.3.4 Signal variations and filtering 

After the removal of the colour wheel described above, the projector can produce only 

white light (or no light). In order to re-evaluate the signal, one of the cells of the mini PV 

modules was stably illuminated and the current measured with a sampling rate of 250000 

samples per second. Initially, only white light is projected on the cell, with all the pixels set to 

the “on” state. Even without the colour wheel there are still periodic variations of intensity, 

as can be seen on the left of Figure 6.10. Projecting a black and white random pattern with 

50% ratio of white and dark pixels results in the signal measured on the right of Figure 6.10. 

The shape of the periodic variation does not change at all and the intensity is much more 

stable, which is encouraging. The overall intensity (represented by the current measurement 

is proportional to shading levels (proportion of dark pixels over the cell area). The projector 

internal DMD control behaves as if the colour wheel is still in place and some intensity 

variations are inevitable. This resulting signal of Figure 6.10 is in reality the final result after 

some additional investigations and alterations made via the projector user interface settings, 

described below. 

 

 

Figure 6.10. Variations of light intensity of the projector, for one period of the signal. On the 

left a white image is projected, on the right a random pattern with 50% shading.  

The brightness, contrast and colour balance can be altered so that intensity is set as 

stably as possible. All values have a range from 0 to 100. The contrast level is set to max here 

(100) so that a dark pixel is as dark as possible. In order to test the impact of brightness, a 50% 

shading random pattern was projected onto a PV cell. At maximum brightness (100), the dark 

pixels appear more grey than black and the signal of one period is presented on the left of 

Figure 6.11. By setting the brightness to minimum value, the signal becomes much more 

stable and the dark pixels are as dark as possible. For this reason minimum brightness was 

selected, the signal is presented on the right of Figure 6.11.  
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Figure 6.11. Variations of light intensity of the projector, for one period of the signal, while 

projecting a 50% shading black and white random pattern. On the left, the brightness set at 

max value, on the right at minimum. 

 

Another setting that was changed using the projector interface is the “colour 

temperature” setting. This setting controls the intensity of each of three colours, red, green 

and blue (RGB), within a range of 0 to 100, apparently assuming that the colour wheel is in 

place to apply these settings. The signal in Figure 6.10 was acquired with this setting at RGB: 

100-100-100. Even without the colour wheel, altering this setting has an impact on the signal. 

Different combinations of the “colour temperature” settings are presented in Figure 6.12. Any 

setting other than 100-100-100 makes the light intensity very unstable, with the signal being 

at zero levels for long times within one period. In practice these variations cannot be 

perceived by the human eye, the only visible effect is that the intensity seems significantly 

lower when removing a colour. For the remainder of the experiments the RGB parameter was 

set at 100-100-100.  

 

 

Figure 6.12. The signal within a period, with different combinations of RGB settings.  
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The signal of each period is averaged and recorded, and each current measurement 

averages 10 such readings, for reducing measurement noise due to intensity variation. Using 

these settings, the SNR achieved is approximately 1000 for compressive sampling, which 

seems not to be enough according to the findings of the previous chapter. In addition, the 

sampling rate is extremely slow, around 2 samples per second, due to the signal instability 

and the long integration times required to accommodate elements of the projector DMD 

control that are not accessible to modify. In order to improve the signal, additional data 

filtering is applied. After the sampling procedure, only readings with values above 90% of the 

maximum signal value are kept and the rest are rejected. Around 70% of the readings are thus 

rejected, however the signal is significantly more stable. This brings the SNR of the 

measurements to slightly over 2000, still lower than ideal for CS measurements. Nevertheless, 

low resolution CS current mapping of PV modules can still be achieved, in order to assess the 

feasibility of the concept. 

 

 

Figure 6.13. The filtering procedure applied to the signal; only readings above 90% of the 

maximum value are kept, while the rest are rejected. 

 

6.3.5 Experimental setup and procedure for CS current mapping 

 After considering the results of the above investigations, the experimental setup for CS 

current mapping with the DLP projector is based on the configuration described in 5.3.1. The 

sample is placed vertically at a fixed position on a custom mounting base and a Keithley 2420 

sourcemeter loads the PV sample at a constant set voltage bias. The DLP projector projects 

the necessary patterns for compressive sampling onto the device under test, while its colour 

wheel has been removed. A NI DAQ card reads the current response of the sample for each 

pattern, with the utilisation of a shunt resistor, as presented in Figure 6.2. The reconstruction 

of the current map is achieved in MatLab, using the ℓ1 minimisation algorithm, as described 
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in the previous chapters. The ℓ1 minimisation algorithm is used in all cases in this chapter, as 

with these levels of noise there is no significant difference when using the OMP algorithm, 

which needs much longer reconstruction times. The projector parameter settings are 

minimum brightness, maximum contrast and maximum colour level for all three colours (RGB), 

as described above. A diagram of the experimental layout is presented in Figure 6.14. All the 

experimental procedure is controlled with a LabVIEW software written specifically for this 

application. A sensing matrix is generated beforehand and is loaded into the program before 

measurements start. 

 

 

Figure 6.14  The experimental layout. An image is projected onto the PV device. The part of it 

covering a single cell includes the specific pattern for compressive sampling while the rest of 

the cells are fully illuminated. 

The average absolute value of the irradiance on the sample plane is approximately 30 

W/m2. This is significantly lower than that used in standard test conditions for PV modules 

(1000 W/m2), but it allows a reasonable basis for the acquisition of valid measurement results 

in this study, to evaluate the potential of this system. The long term stability of the light source 

is also monitored simultaneously with the measurements, this is achieved using a photodiode 

installed next to the PV sample under test. 

With the use of the custom mini-module, the CS current mapping system based on the 

DLP projector can be tested for both single PV cells and PV modules. In the case of PV module 

measurements, the binary patterns are projected on the cell under measurement while the 

other cells in the module are fully light biased. This is necessary to ensure the cell under 

measurement is the limiting cell of the module [78]. As a result, the current measured at the 

contacts of the module is the current of the cell under measurement.  
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6.4 CS current mapping measurements  

6.4.1 Current mapping results for individual, large area cells 

As a first step, current maps of a single PV cell of the mini module were acquired to 

verify the functionality of the system. A single cell of the mini module was directly connected 

using the custom connections built into the module. The sequence of random patterns for 

compressive sampling was projected on this cell as shown in Figure 6.15. An EL image of this 

cell is also presented in the same figure. The cell was kept at 0V bias during CS measurements 

so that it is measured under ISC conditions. The sensing matrices used had 40% of the pattern 

pixels bright and each pattern had a size of 100 x 100 pixels. Similar to the previous chapter, 

this size of sensing matrices was selected for simplicity of implementation and for achieving 

a relatively fast reconstruction process. The choice of sparsity levels is a compromise between 

SNR and reconstruction performance. 

 

 

Figure 6.15. The random pattern sequence is projected on one of the cells of the mini module 

which is directly contacted. An EL image of the cell is also presented on the right. 

The current maps acquired using this setup are presented in Figure 6.16. The 

percentages are the ratio of measurements taken to the total number of pixels of the current 

map. The feasibility of the method is confirmed as current maps can be produced with this 

approach. Although the resolution is not high enough to distinguish the fingers of the cell, the 

busbars are clearly visible. Due to the low resolution and the broad spectrum of the light of 

the projector, the defects observed in the EL image of Figure 6.15 are not detectable. The 

white light does not penetrate deep enough into the bulk of the device to reveal defects 

visible in EL imaging. In addition, measurements are realised at ISC conditions which means 
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series resistance effects will not be visible (whereas they are inherent in the EL images). Thus, 

the acquisition of a very uniform current map was expected. The resolution achieved in these 

results is approximately 1.5 mm per pixel and as a result the fingers of the cell cannot be 

observed. As for the small area experimental setup, in order to reconstruct the current maps, 

fewer measurements than the number of pixels of the current map are needed. As can be 

observed, when acquiring more than 4000 measurements (40%) no significant further 

improvement is achieved for the reconstructed current map.  

 

 

Figure 6.16. CS current maps of a single c-Si cell, individually contacted. Number of 

measurements is expressed as a ratio of number of measurements acquired to the number of 

pixels of each image (10000). 

The reconstructed current maps are noisy, still affected by the temporal variations of 

intensity discussed previously. Unfortunately, the measurement SNR achieved in this system 

when using compressive sampling is approximately 2000 only and this is reflected in the 

results.  However, due to the low levels of irradiance on the sample and the relatively high 

levels of noise, it was not possible to realise even a poor quality point by point current scan 

for a direct comparison. This was expected from the findings of the previous chapter; with 

such levels of noise a meaningful point by point scan on such a full size cell is impossible. 

However, this shows in practice the usefulness of compressive sampling when a system 

contains high levels of noise, as in this case. In addition, in this first case the current maps 
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were acquired with a very simple setup and a very unstable light source, which suggests good 

potential for future improvement of the method. 

For an investigation of non-uniform performance devices, defect features were 

synthetically added to individual cells by adjusting black non-transparent covers (masks) on 

the cells’ surfaces. Different cases of shapes of covered areas were tested; a triangular area 

at the bottom of a cell, which could represent a disconnected area of the cell; a rectangular 

area on the upper side of a cell, which could simulate broken fingers; and a thin strip and a 

bent line on a third cell, which could represent cracks. The results are presented in Figure 6.17.  

 

 

Figure 6.17. CS current maps of individual c-Si cells. Number of measurements is expressed as 

a ratio of number of measurements acquired to the number of pixels of each image (10000). 
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These large features are easily detected by the CS current mapping method, even when 

acquiring 30% of the measurements a point by point scan would need. By acquiring more 

measurements the current map becomes sharper, although there is still measurement noise 

and increased pixelation. These results demonstrate that the CS current mapping method 

introduced in the previous chapter for small samples is scalable in order to measure larger 

cell samples. With the primitive system built based on the commercial projector it is difficult 

to achieve higher resolution. In addition, the broad spectrum of the white light of the lamp in 

the visible range does not reveal any detail from the bulk region of the cell, beneath the 

surface. However, this investigation suggests that a simple custom projection system with a 

single wavelength light source could offer an alternative solution for current mapping of large 

wafer based solar cells. In addition, as it is presented in the next section, such a system can 

achieve current mapping of PV modules comprising interconnected cells, which is not 

straightforward with current established LBIC systems. 

 

 

6.4.2 Voltage bias considerations for current mapping of modules 

For applying CS current mapping to a PV module, some implications of the applied 

voltage bias have to be considered. When all the cells of the module are almost identical as 

in this case presented, by setting the PV module to short circuit conditions (0 V) and 

illuminating the full module, each cell should individually be at short circuit conditions also. 

With the projector as the light source, some small differences in the voltage operating point 

of each cell should arise due to illumination non-uniformities. When CS sampling is applied to 

one cell of the module while the rest are fully illuminated and the PV module is set globally 

to 0 V, it is expected that the cell under measurement is actually reversed biased since it is 

shaded, while each of the others will be slightly forward biased, resulting in a sum of 0 V for 

the module.  

To verify this behaviour, all the cells of the custom mini-module were individually 

contacted and their voltage was measured while the PV module was biased at 0 V. A sequence 

of 100 shading patterns was projected on one of the cells, each pattern decreasing shading 

level (proportion of dark pixels randomly distributed over the area of the cell) by 1%. This 

means that the first projection fully shades one cell of the PV module while the other cells are 

fully illuminated, while the 100th projection fully illuminates all of the cells. This procedure 

will demonstrate the effect of application of the compressive sampling sensing matrices on 
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the voltage bias of individual cells of the module. This test is applied to cell 1 (indicated in 

Figure 6.18) and the results for the voltage operating points of all cells are presented on the 

right of Figure 6.18. On the left of the same figure, the voltage bias levels for all cells are given 

when all the cells are fully illuminated. This shows the effect of the non-uniformity of the 

projection, which is already described earlier. Cell 4 receives the highest amount of irradiance 

and it is slightly more forward biased than the rest, while cells 1 and 5 are slightly reversed 

biased, as the irradiance intensity at the edges of the projection is slightly lower. Nevertheless, 

as it will be demonstrated this issue does not prevent measurements to be applied. 

 

 

Figure 6.18. On the left, the voltage bias of each cell when all the cells are fully illuminated 

and the module voltage is set to 0 V. On the right, the voltage levels of each cell when cell1 is 

shaded with different shading levels. 

Regarding the voltage bias levels for each cell presented on the right of Figure 6.18, it is 

clear that while shading is increased, the shaded cell becomes reverse biased while the rest 

of the cells are forward biased as expected. This also shows that initial small non-uniformities 

of irradiance have no impact on voltage bias levels if one of the cells is shaded. In the case 

where one cell is underperforming compared to the others in the same module, it is reversed 

biased even when unshaded. To confirm this, similar defect-emulating masks to the previous 

section were used to reduce the output of some of the cells of the module. Three of the cells 

were covered with different sizes of these masks, as presented in Figure 6.19. The largest 

mask was placed on cell 3. When all the cells are illuminated, the cell with the largest mask is 

strongly reversed biased, while all the others are forward biased at very similar levels as can 

be seen in Figure 6.19 (right). Running the same procedure as before and measuring the 

voltage of each cell while shading patterns are projected onto cell 1, the graph on the right of 

Figure 6.19 is acquired.  
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Figure 6.19. On the left, the voltage bias of each cell when all the cells are fully illuminated 

and the module voltage is set to 0 V. Masks are applied on some of the cells. On the right, the 

voltage levels of each cell when cell1 is shaded to different levels. 

These results show that even if several cells of a module are underperforming, only the 

worst of them will be reversed biased. By increasing the shading levels on any of the rest of 

the cells, there is a point above which the shaded cell (and not the underperforming one) 

becomes reversed biased. This means that when applying CS current mapping, a forward 

voltage has to be applied to the module to bring the cell under test to operate close to short 

circuit conditions. To test this approach, the same measurements as above were applied but 

this time the voltage bias was set to 2.5 V across the module terminals. This was not selected 

arbitrarily, but is just below the value of 5/6ths of the VOC of the module (VOC=3.15 V) when 

all the cells are illuminated. Since the in the patterns used for compressive sampling 40% of 

the pixels are at the “on” state (60% shading), the cell that is measured will be close to 0 V 

when 2.5 V forward bias is applied to the module. This is also demonstrated in Figure 6.20. In 

this case of measuring cell1, by applying 2.5 V forward bias to the module and for 60% shading, 

cell1 is close to short-circuit conditions (slightly forward biased ≃0.07 V). When applying CS 

measurements to the other cells, the forward voltage bias of the cell under test is in the region 

of 0.02 V-0.08 V. Since in a PV module where individual cell contacts are inaccessible these 

direct measurements will not be possible, a module forward bias of (N-1) * VOC should be 

applied as a rule of thumb, when using sensing matrices of around 40% sparsity as in our case 

(where N is the number of cells in series within the module). This ensures that the cell under 

measurement is always close to short-circuit conditions, or at least only very slightly forward 

biased.  
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Figure 6.20. The voltage level of each cell of the custom module, when cell1 is shaded with 

different shading levels and the module is kept at 2.5 V forward bias. 

In addition, provided that any cell of the module does not underperform by more than 

60% of the best cell, CS current mapping measurements will be valid as the limiting cell will 

be that under measurement. When one of the cells has an even lower performance, sparser 

sensing matrices should be used for meaningful measurements. This may decrease the SNR 

ratio of measurements but this approach is necessary for applying this method successfully. 

 

 

6.4.3 Current mapping results for PV modules of interconnected cells 

Following the individual cell test cases and the voltage bias considerations, the next step 

is to test whether CS current mapping of PV modules is feasible practically. The same simple 

system based on the DLP projector is used. The mini module used is the same as presented in 

the previous section. Each cell was sampled with the necessary sensing patterns consecutively, 

while the others were fully illuminated. All the cells were connected in series and the current 

is measured by contacting only at the PV module terminals. The procedure is illustrated in 

Figure 6.21, where the patterns are projected onto one of the cells, which is the cell that is 

measured. As a result, the measured current at the contacts of the module is the current of 

the limiting cell under measurement. As 100 by 100 pixel random patterns were used, the 

reconstructed current map of the entire PV module consists of 60000 pixels. Due to the large 



148 
 

integration and sampling time for each pattern necessary because of the non-customisable 

aspects of the light source described previously, measurement time was approximately 30 

minutes for each cell. The reconstruction process is performed offline, using the ℓ1 

reconstruction algorithm. This means that as soon as measurement acquisition of one cell has 

finished, the reconstruction process starts and the patterns move to the next cell at the same 

instant. For these measurements, the module voltage bias was set at 2.5 V, using the 

approach described in the previous section.  If no voltage bias is applied, acquiring a current 

map is not possible and reconstructing the measurements results in just images of snow. 

 

 

 

Figure 6.21. The 6-cell mini module used for these experiments. Patterns are projected on each 

of the cells in turn (bottom right cell shown here) while the others are fully light biased 

The reconstructed CS current map of the 6-cell PV module is presented on the right of 

Figure 6.22. On the left of the same figure an EL image of the PV module is included for 

reference. The current map was acquired with 30000 measurements, an undersampling level 

of 50% of what a point by point scan would need. The noise levels are significantly increased 

compared to the single cell case, but this is expected when contacting the PV module and not 
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individual cells, where current from the rest of the cells affects measurements [78]. The SNR 

value in this case is reduced to approximately 1000. An additional reason for this noise 

increase is also the larger active area. Moreover, the slightly non-uniform irradiance can be 

observed; the small current signal decrease of the top right cell is clear when compared to 

the bottom left cell. In a custom designed projection system for CS current mapping, a 

uniformity calibration could be applied in order to correct for such non-uniformities in a 

future improvement.  

 

 

Figure 6.22. EL image and CS current map of the 6 cell PV module used in these experiments. 

The CS current map is produced having acquired 30000 (50%) measurements 

These initial results using the custom mini module show that the projection approach 

for current mapping is a very convenient way for acquiring current maps of modules. No 

mechanical shading is required to bring the cell under test to limiting conditions as in [78], 

where manual shading was used. The sampling patterns themselves not only realise the 

measurement but also provide the necessary shading that ensures the current limiting 

conditions.  

These features become more useful when the performance of each cell in the module 

is slightly different. This causes current mismatch, which would make current mapping with a 

conventional LBIC system impossible, even when applying partial shading on the cell under 

measurement. To emulate this case of slight cell mismatch, masks were applied over some of 

the cells as in the previous case when individual cells were measured; a triangular area at the 

bottom of cell 2, a thin strip and a bent line on cell 6 and a much larger rectangular area on 

the upper side of cell 3. The masks are visible in the photograph on the left of Figure 6.23. 

After these changes, the module has one cell seriously underperforming, while the other 

masked cells will just slightly underperform. As a result, there are serious current mismatches 
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in the module. A voltage bias of 2.5 V is once again applied to the module so that the 

measured cell is operating close to short-circuit conditions. The same procedure as in the 

previous case was followed and the resulting current map for the module is presented on the 

right of Figure 6.23, with an undersampling level of 50% (30000 measurements, compared to 

60000 pixels of the current map).  

 

 

Figure 6.23. On the left, a photograph of the PV module with the attached masks to simulate 

underperforming cells. On the right, a CS current map of the module, with 50% undersampling. 

The results show that the method works, even in the case when there are current 

mismatches between the cells of the unshaded module. In reality, mismatches may exist in 

commercial PV modules, although such high levels of underperformance are more likely to 

appear in aged or damaged PV modules and not brand new ones. Some increased noise is 

visible in this case, which increases pixelation issues in the reconstruction process. This is 

more likely due to the current mismatch influencing measurements. Such issues were also 

observed in the case of LBIC measurements for PV modules with additional partial shading, 

where defects of individual cells were masked when contacting the module [78]. In the case 

of CS current mapping where patterns are projected on the cell under measurement, 

measuring the global current, this just increases the noise levels of the reconstruction process.  
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6.4.4 Bypass diodes and I-V curve considerations 

In this experiment the same custom PV module is used as in the preceding sections, 

with 6 PV cells connected in series. However, commercial PV modules always have by-pass 

diodes installed in order to avoid damage from overheating of underperforming cells and 

minimise power losses in such cases. By-pass diodes separate the cells of the same module 

into different sub-strings. This has implications when applying CS current mapping to a PV 

module with by-pass diodes, since they provide alternate current paths for locally reverse 

biased cells or cell sub-strings. To establish what modifications to the CS method would be 

necessary in such a case, two by-pass diodes were added to the custom PV module used here. 

The PV module now consists of two sub-strings of three cells each, with a bypass across each 

sub-string. This was straightforward to implement since the contacts of each cell were already 

extended outside the module. The masks on three of the cells used in the previous section 

were also applied. The configuration of the PV module with the bypass diodes and defect-

emulating masks is presented in Figure 6.24. 

 

 

Figure 6.24. The configuration of the custom PV module of this work, after installing two 

bypass diodes, to create two sub-strings of three cells each. 

In order to gain insight into what strategy to follow for meaningful CS current mapping 

measurements, I-V curves of the PV module were acquired with and without connecting the 

bypass diodes. The projection system offers the opportunity to set very precise shading levels 

on individual cells while fully illuminating the remainder, which is something very useful for 

this investigation. As a first step, the by-pass diodes were disconnected and a sequence of 
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100 patterns with increasing levels of shading were applied to one of the cells while the rest 

are fully illuminated, acquiring the I-V curve of the module for each shading level. This means 

that for the first I-V curve the cell is completely shaded (all pixels dark for this cell) while the 

100th I-V curve is the same in all cases, as there is no shading at all. The I-V curves for the 

module when each of cells 3 (large ‘defect’), 4 (no defects) and 6 (two small ‘defects’) are 

shaded are presented in Figure 6.25. A software was written in LabVIEW in order to acquire 

the I-V curves using the Keithley 2420 sourcemeter, synchronised with the pattern projections. 

 

 

Figure 6.25. I-V curves of the PV module, acquired by shading one cell each time with different 

levels of shading. One I-V curve for each cell case with 50% shading is also included. 

The I-V curves of the module for shading of any of the cells exhibit similar behaviour, 

while for 50% shading the maximum current depends on the performance of the cell shaded. 

This is precisely what makes CS current mapping work in the case that all the cells are 
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connected in series, which was demonstrated in the previous section. However, when by-pass 

diodes are installed as shown in Figure 6.24, the I-V curves differ significantly from the case 

when all the cells are simply series connected. Following the same procedure as before to 

acquire the same series of I-V curves for shading the same three cells, the results of Figure 

6.26 are acquired. It is noteworthy that even with no shading from the projector, the bypass 

diodes are activated. This is due to the masks that have been applied on some of the cells, 

resulting in current mismatch, which activates the by-pass diodes. 

 

 

Figure 6.26. I-V curves of the PV module, acquired by shading one cell each time with different 

levels of shading, when the PV module has by-pass diodes installed. One I-V curve for each cell 

case with 50% shading is also included. 

It is clear that the I-V curves differ significantly when by-pass diodes are installed in a 

PV module. For the application of CS current mapping measurements, a forward voltage bias 
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as in the case of the previous section is necessary. Nevertheless, simultaneously with the 

voltage bias, an additional strategy is also adopted. Since there are three cells in each sub-

string with a by-pass diode, by adjusting the projection on the PV module, one string is 

completely shaded, while the sub-string that includes the cell that is measured is properly 

illuminated. The patterns are projected on the cell under test and the rest of the cells of this 

specific sub-string are fully illuminated. The procedure is illustrated in Figure 6.27. 

 

 

Figure 6.27. The process for CS current mapping measurements of a cell when by-pass diodes 

are installed in the module. The patterns are projected on the cell under test and the rest of 

the cells of this specific sub-string are fully illuminated, while the other sub-string is completely 

shaded. 

Following the same procedure for acquiring I-V curves, this time the shading patterns 

are projected on the cell under test while the rest of the cells of the same sub-string are fully 

illuminated and the other sub-string is completely shaded (i.e. not illuminated, via software 

modification of the projector output). The results are presented in Figure 6.28. The influence 

of the other sub-string is almost negligible and it is barely visible at the bottom of the graphs, 

where a very low current exists for voltage values higher than 1.1 V. If this voltage region is 

not considered, the I-V curves resemble those that would be acquired from a 3-cell mini 

module, with a small voltage drop. This is extremely convenient for the application of 

compressive sampling, since the current measured at the contacts of the PV module is only 
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influenced by the limiting cell (measured cell) of the illuminated sub-string. This is clear when 

the I-V curves for 50% shading with this procedure for the three measured cells are displayed 

in the same graph. It is apparent that the current of the I-V in this instance depends on the 

performance of the cell of interest. 

 

 

Figure 6.28. I-V curves of the PV module, acquired by shading one cell each time with different 

levels of shading, while completely shading the other string, when the PV module has by-pass 

diodes installed. One I-V curve for each cell case with 50% shading is also included. 

This above strategy where the sub-string not containing the cell under test is shaded is 

now used for CS current mapping. A forward voltage bias of 0.6 V is applied during 

measurements. This value was selected by considering the I-V curves of Figure 6.28. The 

illuminated cells of the module produce a voltage of around 1 V, hence, by choosing a forward 

bias of 0.6 V the cell under test is operating very close to short-circuit conditions. This 
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approach also shows that by acquiring the above I-V curves before measurements, one can 

reveal which cell underperforms. An initial diagnostic test can be set before CS current 

mapping measurements, where I-V curves are acquired with the same shading level for each 

cell, following the above shading strategy for disabling cell sub-strings. Such tests are 

implemented in seconds, since this is the time required to acquire an I-V curve. This procedure 

can reveal which cells underperform, the cells can be sorted depending on their performance, 

the correct forward voltage bias levels for the CS current mapping procedure can be chosen. 

More importantly, with this procedure the correct sparsity levels for the sensing matrices can 

be determined, to ensure that the patterns will shade the cells to a lower level than the output 

of the worst performing cell. 

Following the procedure of Figure 6.27 for all cells of the mini module with the by-pass 

diodes installed, the current map shown in Figure 6.29 is acquired. The reconstructed current 

map for an undersampling level of 50% (30000 measurements, 60000 pixels) is presented. In 

the same figure, a photograph of the module during measurements is also presented. The 

results are very similar to the case of the measurements for the mini module before installing 

by-pass diodes. The noise is slightly increased, since the average measurement SNR is further 

reduces, this time being approximately 700. Nevertheless, meaningful measurements are 

acquired and this demonstrates the first time that current mapping of a PV module with by-

pass diodes has been achieved, even with this low resolution. 

 

 

Figure 6.29. On the left, a photograph of the PV module with the attached mask, during 

measurement when bypass diodes are included. On the right, a CS current map of the PV 

module with by-pass diodes, with 50% undersampling. 
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6.4.5 Practical Considerations and Discussion 

The current proof of concept system is based on a commercial projector and as a result, 

there are several challenges that have already been mentioned and will be summarized in this 

section. The SNR and the resolution levels achieved are adequate for this proof of concept 

investigation, but several improvements are possible in order for a DLP projection system to 

achieve higher measurement accuracy. Considering possible solutions and improvements for 

minimizing mitigating the issues, the properties of a dedicated projection based system for 

CS current mapping can be defined. 

There is no direct control of the internal DMD kit of the commercial projector. Even 

after the removal of the colour wheel, the DMD is still switching independently, creating 

significant variations of intensity. By adjusting the correct settings (brightness, colour balance, 

contrast) through the user interface of the projector and by applying filters the signal stability 

was significantly enhanced. In a custom system where the DMD would be directly controlled, 

similar to the small area system of the previous chapter, the signal can be made very stable. 

This will reduce noise levels and increase both the speed and accuracy of measurements, 

achieving a signal to noise ratio similar to that of the small area optical system.  

As presented earlier, there are long term instabilities of illumination intensity of around 

±3.5% of the average value. This variation can affect compressive sampling and for this reason 

the monitoring of illumination intensity with the photodiode is significant, in order for each 

measurement to be normalised. A custom future projector system could rely on a high power 

laser source, which would provide more stability. An approach similar to high end cinema DLP 

projectors could be adopted, which can boost irradiance levels by at least a factor of 10 

[208][205]. 3 DMD chips can be used, with each having its own independent light source. As 

a result, no colour wheel is used, with the system being more efficient and irradiance intensity 

being far more stable. A reference measurement with a photodiode for irradiance monitoring 

can still be applied for normalising readings and increasing measurement accuracy. A single 

wavelength light source will also set a specific penetration depth of light into the PV device 

under test. The current white light of the projector lamp has a very broad spectrum for such 

an investigation. The selection of a specific single wavelength light source, in the infra-red 

region for measuring silicon samples, will allow probing of the bulk region of silicon PV devices, 

as in the case of the small area setup. 

Before starting any measurements with the current setup, there is a period of time of 

around 15 minutes that a white image is projected on the sample, with all the pixels at the 
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“on” state, without realising any measurement. This is done because it was observed that the 

temperature of the projection lens influenced its focal length. During the initial system setup, 

after a lens warm-up period, the projection was focused on the sample plane and this focus 

setting was kept throughout measurements, with frequent testing of sharpness of projection. 

Regarding the temperature of the PV device, due to the low irradiance levels any increase in 

temperature will be negligible. Nevertheless, in the case of forward voltage bias or when a 

cell is significantly shaded, the temperature increase may not be negligible anymore. 

Consequently, temperature monitoring should be considered in a future implementation, 

especially for the cell under measurement. 

Irradiance uniformity of the projection on the sample plane is also important. Not all 

the projection area is used but only a central part, nevertheless, a non-uniformity of 

approximately 10% still exists. A calibration can be considered in a future system to correct 

out this effect. However, non-linearity of samples for low irradiance may also add some error 

to measurements. On the other hand, in the case that a high power projection setup is utilised, 

similar to cinema projection systems, a configuration similar to that of solar simulators can 

be adopted, with a long projection distance. This would reduce irradiance non-uniformities 

to acceptable levels. 

It is observed that from the PV cell to the PV module case of CS current mapping, the 

measurement SNR is reduced. Even if a custom projector system is realised which will have 

increased measurement accuracy and higher SNR, this decrease from cell to module case will 

still be present. This is due to the influence from the rest of the cells of the module, which are 

fully illuminated. It was already observed in previous work regarding current mapping of PV 

modules that the features of individual cells become less sharp when point by point current 

mapping is applied at a module level [78]. In our case, due to the global nature of each 

measurement, this results in a slightly increased measurement noise. Nonetheless, increasing 

the SNR to a higher level in a future custom projection system, this issue would become less 

pronounced and even negligible, depending on the SNR achieved. 

Regardless of the limitations mentioned above, the projector based system offers some 

special features that can be utilised for PV characterisation generally and not only for current 

mapping. The ease of application of shading patterns and the accuracy of the level of shading 

settings can provide a very useful tool for investigation of shading effects on PV modules. This 

is demonstrated specifically in section 6.4.4 where I-V curves of the module with the by-pass 

diodes were acquired for several different shading conditions. Although in our case the aim 

is to apply suitable shading patterns for successful CS current mapping, a projector system 
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can be an extremely useful tool for studying the effects of shading on a commercial module’s 

overall performance. In addition, it is clear that by applying the suitable shading strategies on 

a module, the performance of individual cells can be acquired by just measuring the I-V curve 

of the PV module. There are several methods in the literature that utilise mechanical shading 

for this purpose [209][210]. A projector system would be an extremely practical tool for the 

application of shading strategies for such method, increasing measurement speed and 

shading accuracy. 

 

 

 

 

 

6.5 Conclusion 

A simple DLP projection based system has been developed that utilizes CS for current 

mapping of PV devices. The system has been used to demonstrate that a scale up of the small 

area optical CS current mapping system presented in the previous chapter is possible. The 

issues and limitations of the DLP projector as a light source are investigated and the necessary 

adjustments are made in order to make the system suitable for current mapping 

measurements. 

Experimental results demonstrate that a DLP projector based CS current mapping 

system is feasible, since CS current mapping is successfully applied to PV cells and also to PV 

modules. Current maps of individual PV cells in encapsulated modules have been acquired, 

something that is extremely difficult to achieve with conventional LBIC systems. This is the 

first time that current mapping of a PV module with by-pass diodes has been successfully 

demonstrated. Specific shading strategies were developed for this purpose in order to isolate 

the cell under test. It is also demonstrated that such shading strategies can also be applied 

and the I-V curve of the module can be acquired, in order to detect if any cell in a module is 

underperforming. This diagnosis process takes seconds using the DLP projector and can sort 

the cells of a module in order of performance. This can also be useful in order to determine 

the sensing matrix sparsity necessary for CS current mapping measurements. 

Due to the application of compressive sampling, current maps are acquired even if the 

SNR levels are so low that a point by point scan is not possible. Using CS, significantly fewer 

measurements are required to produce the current maps than a point by point scan would 



160 
 

need. On the other hand, this primitive prototype system approach cannot achieve very high 

accuracy and optical resolution by using such a commercial DLP projector. This is mainly 

because of the high noise levels and the low irradiance produced by this system. A custom 

system will provide more control on the DMD chip and will be able to reduce temporal 

variations of light intensity. This would decrease noise levels and provide higher accuracy. 

Recent developments of DLP high power multiple wavelength cinema laser projectors have 

been identified that would allow the use of high irradiance levels, close to standard test 

conditions for PV modules. The necessary properties that such a projector based system 

would need to possess are determined and discussed in this work, making such an 

implementation a realistic solution for a new approach for PV module spatial characterisation. 
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Chapter 7 

7. Conclusions 

 

 

 

 

7.1 Conclusions 

The main goal of this work was to combine current mapping measurements of PV 

devices with compressive sampling, in order to develop a novel current mapping method for 

faster, more accurate and less expensive measurements than provided by the current state-

of-the-art. This work presents the first application of the compressed sensing sampling theory 

to PV characterisation. This approach was investigated through three different phases: 

 Electrical simulations of CS current mapping were implemented using a spatially 

resolved model previously developed in CREST, simulating the whole measurement 

procedure. 

 A small area optical CS current mapping system for PV devices, built by the author at 

NPL. This setup was based on a DMD chip for applying compressive sampling and it is 

realised in a very simple and straightforward way, requiring no moving parts, 

complicated optical elements or lock-in methods. 

 A projector based CS current mapping system built at CREST. This setup was based on 

a commercial DLP projector and its aim was to demonstrate that a scale up of the small 

area system for current mapping of PV modules is possible. 
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The following sections summarise the findings and draw the main conclusions within 

these three areas. Recommendations for further research and future prospects resulting from 

this work are given in the last section. 

 

7.1.1 Spatially Resolved Electrical Simulations of Compressed Sensing Current 

Mapping 

Before realising any experimental implementations, in order to theoretically confirm 

the feasibility of the method and evaluate its performance, simulations of CS sensing current 

mapping were implemented. The spatially resolved electrical simulations were realised using 

the PVONA toolset for solving the spatially resolved model of solar cells, based on the one 

diode model. Simulated cases of both c-Si and thin film devices were investigated, showing 

that the performance of the method is the same, regardless of the features a sample may 

contain.  

Through the simulations it was demonstrated that reliable current maps with 

compressive sampling can be acquired with fewer than half of the measurements that a point 

by point scan would need. In addition to simulating individual PV devices, a simulation for the 

application of this method to PV modules was realised. Through the series of simulations the 

feasibility of the method was validated and the performance with different levels of 

undersampling was investigated.  

A significant advantage of the simulation process is the absence of noise and the 

controlled environment it provides, excluding measurement artefacts. For this reason, 

simulation was selected as an appropriate way to achieve a reliable evaluation of different CS 

reconstruction algorithms prior to experimental implementations. Several different 

reconstruction algorithms were tested, in order to find the most suitable for this application. 

The results showed that the ℓ1 minimisation algorithm had the best performance for the 

simulated case, both in terms of speed and reconstruction accuracy. For this reason, it was 

the preferred algorithm throughout this work, along with the OMP algorithm.  

Different types of sensing matrices for compressive sampling were also tested. These 

included different types of random matrices and structured Hadamard matrices. It was shown 

that all random matrices have the same performance, slightly better than the Hadamard 

matrices. Hence, in this work uniformly distributed random binary matrices are used for 

compressive sampling, since they are also easy to implement and they meet the incoherence 

criterion when the DCT transform is used for reconstruction.  
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Controlled levels of noise were added to the experimental procedure to test the noise 

tolerance of the method. Although the performance of CS current mapping can be affected 

by noise, the noise levels are usually low during compressive sampling, as the signal is 

enhanced since a large area of the sample is illuminated. This was clearer during the 

experimental procedure.  

 

7.1.2 Small Area Compressed Sensing Current Mapping system 

After the realisation of the electrical simulations which theoretically confirmed the 

feasibility of the method, a CS current mapping optical setup was implemented at NPL. This 

measurement system was built based on a DMD chip, with the aim of achieving an alternative 

approach for current mapping of PV devices. The system was designed so that it mitigates 

some drawbacks of conventional LBIC systems; low measurement speed, complicated layouts 

and expensive equipment necessary for accurate measurements. The result was the 

implementation of a very simple and compact measurement setup, with no moving parts and 

a small number of optical elements. In addition, the need for the use of lock-in techniques for 

increased measurement accuracy is diminished, reducing the system cost significantly. Apart 

from the above properties, the system developed in this work is the first reported 

implementation of a reliable current mapping system for PV devices that utilises compressive 

sampling. By using different optical elements to reduce the size of the experimental layout, it 

was demonstrated that a compact, inexpensive instrument can be built which can be 

commercialised as a PV characterisation tool. 

The experimental results with this setup showed that CS current mapping yields reliable 

results with fewer acquired measurements than a point by point scan. Reliable current maps 

with undersampling levels of at least 50% were acquired with compressive sampling, which 

can lead to a significant reduction of measurement time. Due to control software restrictions, 

the system achieved a sampling rate of only 10 measurement per second. Considering that 

fewer measurements are acquired, the overall measurement time is similar with a modern, 

state of the art LBIC system. Nevertheless, a much higher sampling rate is achievable, by 

accessing the internal memory of the DMD’s memory board to store the sensing matrix prior 

to measurements. This can increase sampling rate by even an order of magnitude compared 

to the latest LBIC systems, depending of course on the sample response. Combined with the 

fewer measurements required, the spatial characterisation method developed in this work 

shows great potential for reducing current mapping measurement time of PV devices. 
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Measurements of both thin film and crystalline silicon PV samples were implemented. 

It was shown that for small area samples with low noise levels, this setup can apply both point 

by point scans and compressive sampling. When noise levels are increased, as they are for 

the large mc-Si sample, a point by point scan failed due to increased noise. However, 

compressive sampling still provides reliable current mapping results, significantly enhancing 

measurement SNR levels. This shows that using this setup a different sampling strategy can 

be selected every time, depending on the type of the sample, the required resolution, the 

SNR levels and the time constraints. Thus, the current mapping measurement instrument 

developed is not only cost effective but also very versatile. 

Since both a raster scan and compressive sampling can be applied with the small area 

CS setup, a direct pixel by pixel comparison of current maps acquired with each method was 

possible. This allowed an experimental, quantitative evaluation of CS current mapping, using 

two different types of reconstruction algorithms and sensing matrices with different levels of 

sparsity. The results showed that the choice of reconstruction algorithm is important since 

different algorithms can have different performance, depending on the sample, the noise 

levels and the sensing matrix sparsity. It was shown that sensing matrix sparsity is a 

compromise between high SNR and reconstruction performance, which is in accordance with 

other studies in the literature. The majority, if not all, comparisons of CS with point by point 

sampling reported in the literature are realised using simulations, whereas this work has 

directly demonstrated the technique with real measurements. This optical setup allows the 

investigation of different CS components such as algorithms, sensing matrices and transforms 

in a real measurement environment. As a result, such an instrument can be useful not only 

for PV characterisation, but also for the CS metrology community. 

 

7.1.3 Scalability Compressed Sensing Current Mapping 

The final step of this work was to investigate if a scale up for this method is possible, in 

order to apply it to large samples and specifically PV modules. This was studied utilising a 

commercial DLP projector. Since DLP projectors are based on a DMD chip, such a system 

provides a perfect means to project the required patterns onto the sample under 

measurement, in order to apply compressive sampling. A DLP projection based current 

mapping system was built at CREST and measurements with wafer based c-Si cells and a 

custom PV module were implemented. The feasibility of CS current mapping with a DLP 

projector for both single PV cells and PV modules was confirmed as a result of these 
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measurements. Similar to the small area CS current mapping system, this setup included no 

moving parts, the cost was rather low and its implementation was simple. Since the 

commercial DLP projector used is not intended for use as a light source for metrology 

applications, there were several inherent challenges that had to be overcome. Temporal 

spectral variations, short and long term stability of irradiance intensity and non-uniformity of 

illuminated area were some of the problems that had to be tackled and mitigated. Several 

changes applied resulted in a system that could apply CS current mapping measurements that 

confirmed the feasibility of this upscale approach. In addition, these alterations indicated the 

properties that a custom projection system intended for CS current mapping should possess.  

The most significant achievement with this system was the acquisition of current maps 

of PV modules, using compressive sampling. Current maps of individual PV cells in 

encapsulated modules can be acquired, something that is extremely difficult to achieve with 

conventional LBIC systems. In fact, this is the first time that current mapping of a PV module 

with by-pass diodes has been successfully delivered. By application of specific sampling 

strategies depending on the PV module architecture, individual cells of any PV module can be 

assessed with a projection based current mapping system. An additional useful feature is that 

the I-V curves of the module with specific shading strategies can be acquired, in order to 

detect if any cell in a module is underperforming. This process can sort the individual cells of 

a module depending on performance and define the required sparsity of the sensing matrices 

that should be used for a specific module. The suitable sensing matrix sparsity ensures that 

the cell under test is the limiting cell of the module, or the sub-string of cells that is being 

measured. 

The compressive sampling principles for current mapping were successfully applied, 

acquiring current maps with fewer measurements than required by a point by point scan. 

Current maps can be acquired even if the SNR levels are so low that a point by point scan is 

not possible. Even if the sampling rate was rather low and not such a high resolution was 

achieved, this proof of concept study was successful and it has the potential to become a 

reference point for future applications of projection technology on PV characterisation. 
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7.2 Further research and future prospects 

This work developed and investigated thoroughly the CS current mapping method 

through simulations and two different experimental layouts, but also identified aspects that 

would benefit from further research. The main aspect with room for improvement concerns 

the mathematical part of the method. Although several algorithms and sensing matrices were 

investigated, the CS mathematical field is vast and new reconstruction algorithms and 

procedures are constantly reported in the literature. The adoption of some of the latest 

algorithms may significantly improve the performance of the method, further reducing 

measurement time. In addition, large-scale CS current mapping with megapixel resolution can 

become possible, although complex mathematical models have to be integrated into the 

experimental procedure. Such an approach can be extremely useful in the case of PV module 

characterisation. High resolution CS current mapping can finally offer a realistic solution for 

reliable current mapping of PV modules, where measurements for a large module last hours 

instead of days.  

The small area CS current mapping setup could be commercialised as a low cost PV 

current mapping instrument, with only a few changes. These are mainly the irradiance 

uniformity on the sample, the use of shorter focal length optical elements to decrease the 

size of the setup and optimisation of the DMD control software. Along with the development 

of a standard CS procedure suitable for this application, including sensing matrices, 

transforms and reconstruction algorithms integrated into the software, such an instrument 

can become a realistic low cost solution for current mapping of small area devices. This would 

be very useful for research laboratories that work on the development of new solar cell 

materials and designs, where the samples are generally smaller than 1 cm by 1 cm.  

Furthermore, an imaging microscope objective lens can be integrated in the small area 

CS setup, leading to even higher optical resolution with a very small additional cost. In 

addition, using this approach and considering CS microscopy applications [194][189], this 

setup can be transformed to a more broad spatial characterisation instrument, since a 

potential imaging microscope objective lens can also be used as a photon collection optic. The 

simultaneous application of different characterisation techniques such as current mapping, 

photoluminescence and spatial Raman spectroscopy is theoretically possible, with the 

addition of the necessary detectors and optics. The application of CS to most of these 

characterisation techniques has already been reported in the literature and the development 

of such a CS instrument for PV characterisation is just a matter of time. The design and 
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approach of any such setup will inevitably use the principles and main design of the optical 

system demonstrated in this work.  

Regarding the DLP projector system, after the proof of concept system developed and 

demonstrated in this work, the next step would be a custom CS DLP system, with a design 

dedicated for current mapping of PV modules. Such a system cannot be based on a 

commercial projector, but should be built from components, considering the findings of this 

work about the properties that such a system should possess. With the recent advances in 

cinema high power laser projectors, it is possible that 1 sun illumination on a large PV module 

can be achieved. This can even lead to the acquisition of current maps of PV modules under 

standard conditions, using a projection system and the methodology of this work. DLP 

projection based solar simulators can be developed in the future, where individual cells can 

be sensed even after encapsulation as modules.  

The huge flexibility of the DLP projector system in creating shading patterns 

demonstrated in this work can help in a more thorough evaluation of shading effects in a PV 

module, helping to validate and further develop establish models. In addition, assessing 

individual cells using known methods can become faster when projector technology is used 

instead of mechanical shading. The accuracy and variety of controlled shading patterns that 

a projector can apply to a PV module, combined with the acquired I-V curves of the module 

can lead to the evaluation of specific parameters of individual cells of a module. As a result of 

this potential capability, new models can be developed for determining parameters of 

individual cells, using shaded I-V curves of the module, even when by-pass diodes are included. 

This will greatly help the understanding of cell ageing mismatch effects on PV module 

performance and can support research into more reliable PV products. 

Overall, the contribution of this work reflects not only current mapping of PV devices, 

but also on PV characterisation as a whole, both for PV cells and modules. There is a high 

possibility that new characterisation methods are developed based on this work, some of 

them already mentioned above. In addition, through this first application of the CS theory on 

PV characterisation, it is shown that CS can be a very useful sampling technique that can have 

further applications within the metrology community.  
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Appendix 

Reconstruction algorithms for CS used in this work 

 

Reconstruction based on ℓ1 norm minimisation  

 

As described in chapter 3 [cross ref], After applying compressive sampling, the 

reconstruction algorithm must take the M measurements in the vector y, the random binary 

matrix Φ, the basis Ψ (transform) and reconstruct the N-length signal x or, equivalently, its 

sparse coefficient vector α, as 𝒙 = 𝛹𝜶  and 𝒚 = 𝛷𝒙 = 𝛷𝛹𝜶 . When the ℓ1 minimisation 

algorithm is used, the solution to the underdetermined problem is the x vector (or more 

precisely the α vector) with the minimum ℓ1 norm [174]: 

 

 �̂� = 𝑎𝑟𝑔𝑚𝑖𝑛‖𝒙‖1 subject to 𝛷�̂� = 𝒚 (10) 

Or 

 �̂� = 𝑎𝑟𝑔𝑚𝑖𝑛‖𝜶‖1 subject to 𝛷𝛹�̂� = 𝒚 (11) 

 

Where the ℓ1 norm is given by 

In the case where measurement noise is included, equation (1) can be written as [211]: 

 

 �̂� = 𝑎𝑟𝑔𝑚𝑖𝑛‖𝒙‖1 subject to ‖𝛷�̂� − 𝒚‖2 ≤  휀 (13) 

 

Where ε is a tolerance parameter. This algorithm mentioned as ℓ1 denoise, was used in 

chapter 4 [cross ref] without improving reconstruction results where noise was included. 

Equation (1) can be rewritten as 

With 

 ‖𝒙‖1 =∑|𝒙𝑖|

𝑛

𝑖=1

 (12) 

 𝑚𝑖𝑛
𝑥,𝑢

 ∑|𝒖𝑖|

𝑛

𝑖=1

 (14) 

 

𝑥𝑖 − 𝑢𝑖 ≤ 0 , 𝑖 = 1,2, … , 𝑛  

−𝑥𝑖 − 𝑢𝑖 ≤ 0 , 𝑖 = 1,2, … , 𝑛 

Ax=y 

(15) 
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This last form is a standard linear programming problem known as basis pursuit 

[212][213]. A relatively simple primal-dual algorithm for linear programming is described in 

[213]. As the ℓ1 primal dual implementation included in the ℓ1 magic package is mostly used 

in this work, the primal dual algorithm is briefly described here. The standard form linear 

program is  

 

 
𝑚𝑖𝑛
𝑧
〈𝑐0, 𝑧〉 subject to      𝐴0𝑧 =  𝑏 

                                          𝑓𝑖(𝑧) ≤ 0 
(16) 

 

Where z∈ ℝ𝑁 is the search vector, b∈ 𝑅𝐾, 𝐴0 is a K x N matrix and 𝑓𝑖  , 𝑖 = 1,2, … ,𝑚 is 

the linear functional  

 

 𝑓𝑖(z) = 〈𝑐𝑖, 𝑧〉 + 𝑑𝑖    

 

Where 𝑐𝑖 ∈ ℝ
𝑁 and 𝑑𝑖 ∈ ℝ

 are constants. At the optimal point 𝑧∗ there will exist dual 

vectors 𝜈∗ ∈ ℝ𝛫, λ∈ 𝑅𝑚, such that the Karush-Kuhn-Tucker1 conditions are satisfied. 

 

 

The primal dual algorithm solves this system of nonlinear equations and provides the 

optimal 𝑧∗. The classical Newton method is used for this procedure. The system is linearised 

and solved at an interior point (𝑧𝑘, 𝜈𝑘, 𝜆𝑘), with the interior point constraints of  𝑓𝑖(𝑧
𝑘) < 0 

and 𝜆𝑘 > 0. The step of the iterative method has to be modified so that we remain in the 

interior. In practice, a slackness parameter τ is introduced and the slackness condition 𝜆𝑖𝑓𝑖 =

0 is relaxed to  

 

                                                      
1The Karush–Kuhn–Tucker (KKT) conditions are the necessary first order conditions in order for a solution in linear programing to be optimal 

(within constraints). Allowing inequality constraints, the KKT approach to nonlinear programming generalizes the method of Lagrange 
multipliers, which allows only equality constraints. 

(KKT) 

 

 

 

𝑐0 + 𝐴0
𝑇𝜈∗ +∑𝜆𝑖

∗𝑐𝑖
𝜄

= 0 

                                            𝜆𝑖
∗𝑓𝑖(𝑧

∗) = 0, 𝑖 = 1,2, … ,𝑚 

                         𝐴0𝑧
∗ = 𝑏 

                                                𝑓𝑖(𝑧
∗) ≤ 0, 𝑖 = 1,2, … ,𝑚 

(17) 
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 𝜆𝑖
𝑘
 
𝑓𝑖(𝑧

𝑘) = -1/𝜏𝜅 (18) 

 

Tτ is increased after each newton iteration. The primal, dual and central residuals that 

quantify how close how close a point (z, λ, ν) it to satisfy (8) with the new relaxed conditions 

are given by: 

 

Where Λ is the diagonal matrix (𝛬)𝑖𝑖 = 𝜆𝑖, and 𝑓 = (𝑓1(𝑧),… , 𝑓𝑚(𝑧))
𝑇. Assuming the 

current point is (z,ν,λ), the aim is to find the step (Δz, Δν, Δλ) such that: 

 

 𝑟𝜏(𝑧 + 𝛥𝑧, 𝜈 + 𝛥𝜈, 𝜆 + 𝛥𝜆)  =  0 (20) 

 

The Taylor expansion of (11) around the point (z, ν, λ),  

 

 𝑟𝜏(𝑧 + 𝛥𝑧, 𝜈 + 𝛥𝜈, 𝜆 + 𝛥𝜆) ≈  𝑟𝜏(𝑧, 𝜈, 𝜆) + 𝐽𝑟𝜏(𝑧, 𝜈, 𝜆) (
𝛥𝑧
𝛥𝜈
𝛥𝜆
) (21) 

Where 𝐽𝑟𝜏(𝑧, 𝜈, 𝜆) is the Jacobian of 𝑟𝜏. The result is the system  

 

 (
0 𝐴0

𝑇 𝐶 
𝑇

−𝛬𝐶 0 −𝐹
𝐴0
𝑇 0 0

)(
𝛥𝑧
𝛥𝜈
𝛥𝜆
) = −

(

 
 
𝑐0 + 𝐴0

𝑇𝜈 +∑𝜆𝑖𝑐𝑖
𝑖

−𝛬𝑓 − (1/𝜏)𝟏
𝐴0𝑧 − 𝑏 )

 
 

 (22) 

 

Where C is a m x N matrix with 𝑐𝑖
𝑇as rows and F is a diagonal matrix with (𝐹)𝑖𝑖 = 𝑓𝑖(𝑧). 

Δλ can be eliminated using:  

 

 

Resulting in the system: 

 

 

𝑟𝑑𝑢𝑎𝑙 = 𝑐0 + 𝐴0
𝑇𝜈 +∑𝜆𝑖𝑐𝑖

𝑖

 

𝑟𝑐𝑒𝑛𝑡 = −𝛬𝑓 − (1/𝜏)𝟏 

𝑟𝑝𝑟𝑖 = 𝐴0𝑧 − 𝑏 

(19) 

 𝛥𝜆 = −𝛬𝐹−1𝐶𝛥𝑧 − 𝜆 − (1/𝜏)𝑓−1  (23) 
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 (
−𝐶 

𝑇𝐹−1𝛬𝐶 𝐴0
𝑇

𝐴0 0
) (
𝛥𝑧
𝛥𝜈
) =  (

−𝑐0 + (
1

𝜏
) 𝐶𝑇𝑓−1 − 𝐴0

𝑇𝜈

𝑏 − 𝐴0𝑧
) (24) 

 

With (Δz, Δν, Δλ) being the step. Assuming a step length of s, with 0 < 𝑠 < 1, the step 

has to satisfy the two criteria: 

1. 𝑧 + 𝑠𝛥𝑧 and  𝜆 + 𝛥𝜆 are in the interior, which means  𝑓𝑖(𝑧 + 𝑠𝛥𝑧) < 0, 𝜆𝑖 > 0 stand 

for all 𝑖. 

2. The norm of the residuals has decreased sufficiently: 

 

 

 Where α is a user specified tolerance constant. When 𝑟𝑑𝑢𝑎𝑙  and 𝑟𝑝𝑟𝑖𝑚𝑎𝑙  are small, 

𝑛 = −𝑓𝑇𝜆 is an approximation of how close a certain point (z,ν,λ) is to being the optimal, 

since 〈𝑐0, 𝑧〉 − 〈𝑐0, 𝑧
∗〉 ≈ 𝑛 . The primal dual algorithm repeats the Newton iterations 

described above until n has decreased below a set tolerance.  

Other options for solving the ℓ1 optimisation problem also exist, such as the Dantzig 

selector algorithm [179] which is included in ℓ1 magic toolbox in MatLab [214], or the spectral 

projected-gradient (SPG) algorithm [178][215], which are briefly used in chapter 4 [cross ref], 

but not described here.  

 

 

 

Reconstruction based on Total Variation norm minimisation  

 

Similarly with ℓ1 optimisation, the total variation norm minimisation is briefly used in 

chapter 4 [cross ref]. Since the signal we are measuring is a 2D image, the discrete gradient 

at every point can be calculated. With 𝒙𝑖𝑗 being the pixel in the i row and j column of an 𝑛 ×

𝑛 image x the operators of the discrete gradient of the image x can be defined: 

 

 

𝐷ℎ;𝑖𝑗𝑥= {
𝑥𝑖+1,𝑗 − 𝑥𝑖𝑗       𝑖 < 𝑛

0                        𝑖 = 0
    𝐷𝑣;𝑖𝑗𝑥= {

𝑥𝑖,𝑗+1 − 𝑥𝑖𝑗       𝑖 < 𝑛

0                        𝑖 = 0
 

 

𝐷𝑖𝑗𝑥= (
𝐷ℎ;𝑖𝑗𝑥

𝐷𝑣;𝑖𝑗𝑥
) 

(26) 

‖𝑟𝜏(𝑧 + 𝑠𝛥𝑧, 𝜈 + 𝑠𝛥𝜈, 𝜆 + 𝑠𝛥𝜆)‖2 ≤ (1 − 𝛼𝑠) ∙ ‖𝑟𝜏(𝑧, 𝜈, 𝜆)‖2 (25) 
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The total variation of x is the sum of magnitudes of this gradient at every point: 

 

 

As a result, instead of equation (1), when using TV minimisation the optimisation 

problem becomes: 

 

 �̂� = 𝑎𝑟𝑔𝑚𝑖𝑛‖𝒙‖𝑇𝑉 subject to 𝛷�̂� = 𝒚 (28) 

 

Primal dual algorithms for solving this problem as the one described for ℓ1 minimisation 

exist [216][217]. However, the implementation used in this work included in the ℓ1 magic 

toolbox uses the log-barrier method, more information of which can be found in [213] and it 

is not described here. 

 

 

 

Summary of matching pursuit algorithms 

 

Matching pursuit is a sparse approximation algorithm which aims at finding the “best 

matching” representation of data using a specific dictionary D (a “dictionary” could be a 

transform domain like the Fourier transform). A signal f can be represented as a sum of 

vectors {𝑔𝛾}𝛾∈𝛤, Γ being the index set and ‖𝑔𝛾‖ = 1. The vectors {𝑔𝛾}𝛾∈𝛤  are called atoms, 

taken from D. An approximation of the signal using N atoms can be written as  

 

 

Where an are weighing factors for the atoms. This decomposition can be written as  

 

 ‖𝒙‖𝑇𝑉 = 𝑇𝑉(𝑥) =∑√(𝐷ℎ:𝑖𝑗𝑥)
2
+ (𝐷𝑣:𝑖𝑗𝑥)

2

𝑖𝑗

=∑‖𝐷𝑖𝑗𝑥‖2
𝑖𝑗

 (27) 

 𝑓 = ∑𝑎𝑛𝑔𝑛

𝑁

𝑛=1

 (29) 

 𝑓=〈𝑓, 𝑔〉𝑔 + 𝑟(𝑔) (30) 
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Which includes the actual signal f as well as the approximation 〈𝑓, 𝑔〉𝑔  using the 

dictionary D. 𝑟(𝑔) is the residual after approximating f by the atoms gn. As the residual is 

orthogonal to f, the following equation stands: 

 

For achieving the “best” approximation the residual should be minimised, or |〈𝑓, 𝑔〉|2 

should be maximised, given ‖𝑓‖2  is the actual signal and always the same value. At each 

iteration a vector is chosen that is “almost best”, in the sense that  

 

Where sup is the supremum and α is a constant that satisfies 1 < 𝑎 ≤ 1 . At each 

iteration the matching pursuit algorithm will choose the almost best approximation so that 

the current residual from the dictionary is minimised, or equivalently |〈𝑓, 𝑔〉|2 is maximised. 

The nth residual is given by  

Resulting in  

 

The Orthogonal matching pursuit (OMP) algorithm is an improved implementation of 

matching pursuit. It has been shown that OMP can be successfully applied for compressed 

sensing reconstruction [180]. Once again, at every iteration an element is picked from the 

dictionary that best approximates the residual. However, the original function is fitted to all 

the already selected dictionary elements via least squares or projecting the function 

orthogonally onto all the selected dictionary atoms. This is also the reason it is called 

orthogonal matching pursuit. The OMP algorithm implementation used in this work is created 

by Stephen Becker [218] and it is available for MatLab in the Mathworks website. The 

Compressive Sampling matching pursuit (CoSaMP) algorithm is also briefly used [219], which 

is also based on OMP. The implementation used in chapter 4 [cross ref] is available also in 

[218].  

 ‖𝑓‖2= |〈𝑓, 𝑔〉|2 + ‖𝑟(𝑔)‖
2
 (31) 

 |〈𝑓, 𝑔〉|2 ≥ 𝑎sup|〈𝑓, 𝑔𝛾〉| (32) 

 𝑟(𝑛)= 〈𝑟(𝑛), 𝑔(𝑛)〉𝑔(𝑛) + 𝑟(𝑛+1) (33) 

 𝑓= ∑〈𝑟(𝑖), 𝑔(𝑖)〉𝑔(𝑖) + 𝑟(𝑛+1)
𝑛

𝑖=0

 (34) 
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