1,043 research outputs found

    Graded quantization for multiple description coding of compressive measurements

    Get PDF
    Compressed sensing (CS) is an emerging paradigm for acquisition of compressed representations of a sparse signal. Its low complexity is appealing for resource-constrained scenarios like sensor networks. However, such scenarios are often coupled with unreliable communication channels and providing robust transmission of the acquired data to a receiver is an issue. Multiple description coding (MDC) effectively combats channel losses for systems without feedback, thus raising the interest in developing MDC methods explicitly designed for the CS framework, and exploiting its properties. We propose a method called Graded Quantization (CS-GQ) that leverages the democratic property of compressive measurements to effectively implement MDC, and we provide methods to optimize its performance. A novel decoding algorithm based on the alternating directions method of multipliers is derived to reconstruct signals from a limited number of received descriptions. Simulations are performed to assess the performance of CS-GQ against other methods in presence of packet losses. The proposed method is successful at providing robust coding of CS measurements and outperforms other schemes for the considered test metrics

    Distributed Representation of Geometrically Correlated Images with Compressed Linear Measurements

    Get PDF
    This paper addresses the problem of distributed coding of images whose correlation is driven by the motion of objects or positioning of the vision sensors. It concentrates on the problem where images are encoded with compressed linear measurements. We propose a geometry-based correlation model in order to describe the common information in pairs of images. We assume that the constitutive components of natural images can be captured by visual features that undergo local transformations (e.g., translation) in different images. We first identify prominent visual features by computing a sparse approximation of a reference image with a dictionary of geometric basis functions. We then pose a regularized optimization problem to estimate the corresponding features in correlated images given by quantized linear measurements. The estimated features have to comply with the compressed information and to represent consistent transformation between images. The correlation model is given by the relative geometric transformations between corresponding features. We then propose an efficient joint decoding algorithm that estimates the compressed images such that they stay consistent with both the quantized measurements and the correlation model. Experimental results show that the proposed algorithm effectively estimates the correlation between images in multi-view datasets. In addition, the proposed algorithm provides effective decoding performance that compares advantageously to independent coding solutions as well as state-of-the-art distributed coding schemes based on disparity learning

    Power-Constrained Sparse Gaussian Linear Dimensionality Reduction over Noisy Channels

    Get PDF
    In this paper, we investigate power-constrained sensing matrix design in a sparse Gaussian linear dimensionality reduction framework. Our study is carried out in a single--terminal setup as well as in a multi--terminal setup consisting of orthogonal or coherent multiple access channels (MAC). We adopt the mean square error (MSE) performance criterion for sparse source reconstruction in a system where source-to-sensor channel(s) and sensor-to-decoder communication channel(s) are noisy. Our proposed sensing matrix design procedure relies upon minimizing a lower-bound on the MSE in single-- and multiple--terminal setups. We propose a three-stage sensing matrix optimization scheme that combines semi-definite relaxation (SDR) programming, a low-rank approximation problem and power-rescaling. Under certain conditions, we derive closed-form solutions to the proposed optimization procedure. Through numerical experiments, by applying practical sparse reconstruction algorithms, we show the superiority of the proposed scheme by comparing it with other relevant methods. This performance improvement is achieved at the price of higher computational complexity. Hence, in order to address the complexity burden, we present an equivalent stochastic optimization method to the problem of interest that can be solved approximately, while still providing a superior performance over the popular methods.Comment: Accepted for publication in IEEE Transactions on Signal Processing (16 pages

    Operational Rate-Distortion Performance of Single-source and Distributed Compressed Sensing

    Get PDF
    We consider correlated and distributed sources without cooperation at the encoder. For these sources, we derive the best achievable performance in the rate-distortion sense of any distributed compressed sensing scheme, under the constraint of high--rate quantization. Moreover, under this model we derive a closed--form expression of the rate gain achieved by taking into account the correlation of the sources at the receiver and a closed--form expression of the average performance of the oracle receiver for independent and joint reconstruction. Finally, we show experimentally that the exploitation of the correlation between the sources performs close to optimal and that the only penalty is due to the missing knowledge of the sparsity support as in (non distributed) compressed sensing. Even if the derivation is performed in the large system regime, where signal and system parameters tend to infinity, numerical results show that the equations match simulations for parameter values of practical interest.Comment: To appear in IEEE Transactions on Communication
    • …
    corecore