7 research outputs found

    Compressive Signal Processing with Circulant Sensing Matrices

    Get PDF
    Compressive sensing achieves effective dimensionality reduction of signals, under a sparsity constraint, by means of a small number of random measurements acquired through a sensing matrix. In a signal processing system, the problem arises of processing the random projections directly, without first reconstructing the signal. In this paper, we show that circulant sensing matrices allow to perform a variety of classical signal processing tasks such as filtering, interpolation, registration, transforms, and so forth, directly in the compressed domain and in an exact fashion, \emph{i.e.}, without relying on estimators as proposed in the existing literature. The advantage of the techniques presented in this paper is to enable direct measurement-to-measurement transformations, without the need of costly recovery procedures

    On Accuracy Order of Fourier Coefficients Computation for Periodic Signal Processing Models

    Get PDF
    The article is devoted to construction piecewise constant functions for modelling periodic signal. The aim of the paper is to suggest a way to avoid discontinuity at points where waveform values are obtained. One solution is to introduce shifted step function whose middle points within its partial intervals coincide with points of observation. This means that large oscillations of Fourier partial sums move to new jump discontinuities where waveform values are not obtained. Furthermore, any step function chosen to model periodic continuous waveform determines a way to calculate Fourier coefficients. In this case, the technique is certainly a weighted rectangular quadrature rule. Here, the weight is either unit or trigonometric. Another effect of the solution consists in following. The shifted function leads to application midpoint quadrature rules for computing Fourier coefficients. As a result the formula for zero coefficient transforms into trapezoid rule. In the same time, the formulas for other coefficients remain of rectangular type

    A compressed sensing approach to block-iterative equalization: connections and applications to radar imaging reconstruction

    Get PDF
    The widespread of underdetermined systems has brought forth a variety of new algorithmic solutions, which capitalize on the Compressed Sensing (CS) of sparse data. While well known greedy or iterative threshold type of CS recursions take the form of an adaptive filter followed by a proximal operator, this is no different in spirit from the role of block iterative decision-feedback equalizers (BI-DFE), where structure is roughly exploited by the signal constellation slicer. By taking advantage of the intrinsic sparsity of signal modulations in a communications scenario, the concept of interblock interference (IBI) can be approached more cunningly in light of CS concepts, whereby the optimal feedback of detected symbols is devised adaptively. The new DFE takes the form of a more efficient re-estimation scheme, proposed under recursive-least-squares based adaptations. Whenever suitable, these recursions are derived under a reduced-complexity, widely-linear formulation, which further reduces the minimum-mean-square-error (MMSE) in comparison with traditional strictly-linear approaches. Besides maximizing system throughput, the new algorithms exhibit significantly higher performance when compared to existing methods. Our reasoning will also show that a properly formulated BI-DFE turns out to be a powerful CS algorithm itself. A new algorithm, referred to as CS-Block DFE (CS-BDFE) exhibits improved convergence and detection when compared to first order methods, thus outperforming the state-of-the-art Complex Approximate Message Passing (CAMP) recursions. The merits of the new recursions are illustrated under a novel 3D MIMO Radar formulation, where the CAMP algorithm is shown to fail with respect to important performance measures.A proliferação de sistemas sub-determinados trouxe a tona uma gama de novas soluções algorítmicas, baseadas no sensoriamento compressivo (CS) de dados esparsos. As recursões do tipo greedy e de limitação iterativa para CS se apresentam comumente como um filtro adaptativo seguido de um operador proximal, não muito diferente dos equalizadores de realimentação de decisão iterativos em blocos (BI-DFE), em que um decisor explora a estrutura do sinal de constelação. A partir da esparsidade intrínseca presente na modulação de sinais no contexto de comunicações, a interferência entre blocos (IBI) pode ser abordada utilizando-se o conceito de CS, onde a realimentação ótima de símbolos detectados é realizada de forma adaptativa. O novo DFE se apresenta como um esquema mais eficiente de reestimação, baseado na atualização por mínimos quadrados recursivos (RLS). Sempre que possível estas recursões são propostas via formulação linear no sentido amplo, o que reduz ainda mais o erro médio quadrático mínimo (MMSE) em comparação com abordagens tradicionais. Além de maximizar a taxa de transferência de informação, o novo algoritmo exibe um desempenho significativamente superior quando comparado aos métodos existentes. Também mostraremos que um equalizador BI-DFE formulado adequadamente se torna um poderoso algoritmo de CS. O novo algoritmo CS-BDFE apresenta convergência e detecção aprimoradas, quando comparado a métodos de primeira ordem, superando as recursões de Passagem de Mensagem Aproximada para Complexos (CAMP). Os méritos das novas recursões são ilustrados através de um modelo tridimensional para radares MIMO recentemente proposto, onde o algoritmo CAMP falha em aspectos importantes de medidas de desempenho

    COMPRESSIVE SHIFT RETRIEVAL

    No full text
    The classical shift retrieval problem considers two signals in vector form that are related by a cyclic shift. In this paper, we develop a compressive variant where the measurement of the signals is undersampled. While the standard procedure to shift retrieval is to maximize the real part of their dot product, we show that the shift can be exactly recovered from the corresponding compressed measurements if the sensing matrix satisfies certain conditions. A special case is the partial Fourier matrix. In this setting we show that the true shift can be found by as low as two measurements. We further show that the shift can often be recovered when the measurements are perturbed by noise. Index Terms — Compressed sensing, shift retrieval, signal reconstruction, signal registration. 1

    Robust compressive shift retrieval in linear time

    No full text
    Suppose two finite signals are related by an unknown cyclic shift. Fast algorithms for finding such a shift or variants thereof are of great importance in a number of applications, e.g., localization and target tracking using acoustic sensors. The standard solution, solving shift finding by maximizing the cross-correlation between the two signals, may be rather efficiently computed using fast Fourier transforms (FFTs). Inspired by compressive sensing, faster algorithms have been recently proposed based on sparse FFTs. In this paper, we transform the shift finding problem into the spectral domain as well. As a first contribution, by combining the Fourier Shift Theorem with the Bézout Identity from elementary number theory, we obtain explicit formulas for the unknown shift parameter. This leads to linear time algorithms for shift finding in the noise-free setting. As a second contribution, we extend this result to the fast recovery of weighted sums of two shifts. Furthermore, we introduce a novel iterative algorithm for estimation of the unknown shift parameter for the case of noisy signals and provide a sufficient criterion for exact shift recovery. A slightly relaxed criterion leads to a linear time median algorithm in the noisy setting with high recovery rates even for low SNRs
    corecore