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COMPRESSIVE SIGNAL PROCESSING WITH CIRCULANT SENSING MATRICES

Diego Valsesia Enrico Magli

Politecnico di Torino (Italy) – Dipartimento di Elettronica e Telecomunicazioni

ABSTRACT

Compressive sensing achieves effective dimensionality reduc-
tion of signals, under a sparsity constraint, by means of a
small number of random measurements acquired through a
sensing matrix. In a signal processing system, the problem
arises of processing the random projections directly, without
first reconstructing the signal. In this paper, we show that cir-
culant sensing matrices allow to perform a variety of classical
signal processing tasks such as filtering, interpolation, regis-
tration, transforms, and so forth, directly in the compressed
domain and in an exact fashion, i.e., without relying on es-
timators as proposed in the existing literature. The advan-
tage of the techniques presented in this paper is to enable di-
rect measurement-to-measurement transformations, without
the need of costly recovery procedures.

Index Terms— Compressed sensing, circulant matrix,
compressive filtering

1. INTRODUCTION

Compressive sensing (CS) [1] has successfully shown that
a small number of measurements, obtained through a suit-
able sensing matrix, is able to acquire a sparse signal and en-
able its exact recovery from its measurements. Remarkably,
knowledge of the sparsity basis is not explicitly needed at the
moment of acquisition, but only for recovery. Since the be-
ginnings of CS, it was clear that working in the compressed
domain presented advantages in terms of complexity because
many tasks do not really require recovery but rather to solve
inference problems. The seminal paper by Davenport et al.
[2] on signal processing with compressive measurements pro-
vided techniques to perform detection, classification, estima-
tion and interference cancellation tasks. In this paper, we fo-
cus on a different, although similar, problem. The goal is to
perform classical signal processing operations such as filter-
ing, interpolation and others directly on the compressive mea-
surements, thereby avoiding to first apply the computation-
ally expensive reconstruction algorithms in order to later ap-
ply the operator on the reconstructed samples. The resulting
operation is a measurement-to-measurement transformation,
which takes as input the acquired measurements and outputs
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the measurements of the processed signal, without ever per-
forming reconstruction. This is achieved by using a circulant
sensing matrix, or a distributed circulation property in single
node and multi-node scenarios respectively. Conversely, [2] is
concerned with parameter estimation from the measurements.
This can also be applied to the estimation of transform or fil-
tered coefficients, but the estimate is always affected by some
error, whereas our proposed method yields an exact solution.

2. BACKGROUND AND NOTATION
We use the subscript A[a,b] to denote a submatrix of A com-
posed by the rows indexed by interval [a, b]. The subscript
x→a denotes a circular shift to the right (downwards for col-
umn vectors) by a positions.

In the standard CS framework, introduced in [3], a signal
x ∈ Rn×1 which has a sparse representation in some basis
Ψ ∈ Rn×n, i.e., x = Ψθ, ‖θ‖0 = k, k � n, can be
recovered by a smaller vector y ∈ Rm×1, k < m < n,
of linear measurements y = Φx, where Φ ∈ Rm×n is the
sensing matrix. The optimum solution, seeking the spars-
est vector compliant with y, is an NP-hard problem, but one
can resort to a convex optimization reconstruction problem
by minimizing the l1 norm, provided enough measurements
(m ∼ k log(n/k)) are available. This algorithm is robust
when it is used to reconstruct signals which are not exactly
sparse, but rather compressible, meaning that the magnitude
of their sorted coefficients (in some basis Ψ) decays exponen-
tially.

The most used sensing matrices in the literature are ran-
dom matrices whose elements are i.i.d. Gaussian random
variables. However, circulant matrices have been recently
proposed [4][5] because they can be implemented easily or
arise naturally in various problems. Circulant matrices have
been shown to be as effective as Gaussian sensing matrices,
when the signal is acquired in its sparsity domain and have a
slightly reduced performance otherwise [6]. The form of such
matrices is

Φ =


φ1 φ2 φ3 · · · φn
φn φ1 φ2 · · · φn−1

...
φn−m+2 φn−m+3 φn−m+4 · · · φn−m+1


where the first row, called seed in the following, is drawn at
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Fig. 1. Partial commutation condition

random (e.g., i.i.d. Gaussian). Other constructions (e.g., ran-
domly selecting m rows from the full matrix) are reported in
[6], but we will not consider them in this paper. The n-point
circular convolution of two sequences x ∈ Rn and h ∈ RNf

is xf = h~ x = Hx, where H is an n× n circulant matrix.
The commutator of two linear operators A ∈ Rn×n and

B ∈ Rn×n is zero if and only if the two operators commute
and is defined as

[A,B] = AB −BA. (1)

3. SINGLE-NODE COMPRESSIVE FILTERING
The main goal of this paper is to show that it is possible to
compute a measurement-to-measurement transformation that
allows us to find the measurements of a filtered version of the
acquired signal, directly from its linear measurements. The
classic filtering operation consists in convolving the filter im-
pulse response with the signal, and circular convolution can
be used if periodic boundary conditions are considered. This
amounts to taking the product between a square circulant ma-
trixH and the signal of interest. It can be observed that square
circulant matrices form a commutative group with respect to
matrix product, hence if we used a square circulant sensing
matrix Φ we would have yf = ΦHx = HΦx = Hy. CS
uses rectangular sensing matrices in order to achieve com-
pression, hence Φ is a “partial” circulant matrix. Neverthe-
less, we can still exploit a partial commutation property. Let
us define an extension of the commutator introduced in (1)
to handle rectangular matrices. The m-partial commutator is
defined as:

[Φ, H]m = ΦH − H̃Φ (2)

where H̃ is the submatrix of H restricted to the first m rows
and m columns. The following theorem shows that obtain-
ing the measurements of a filtered version of the signal is as
straightforward as filtering the measurements. The price to
pay for this operation is the “corruption” of Nf − 1 measure-
ments in the positions corresponding to the non-zero rows of
[Φ, H]m, thus the impulse response should not be too long to
avoid corruption of too many measurements, and acquisition
should take an extraNf−1 measurements to account for this.
A graphical depiction of Theorem 1 is shown in Fig. 1.

Theorem 1. LetH be an n×n circulant matrix obtained from
an impulse response of length Nf , Φ be an m × n partial
circulant sensing matrix, measurements y = Φx, and mea-
surements of the filtered signal yf = ΦHx. Then,

(
H̃y
)
i

=

(yf )i if and only if i ∈ [1,m−Nf + 1].
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Fig. 2. Second derivative computation in multi-node scenario

Proof. First, we notice that it is enough to prove that only
that the first m − Nf + 1 = m′ rows of the m-partial com-
mutator are zero. Let us call C ∈ Rn×n the square circu-
lant matrix having the same seed as Φ, HT = H[1,m′] and
call H̃T = H̃[1,m′]. Then, ([C,H])[1,m′] = (CH)[1,m′] −

(HC)[1,m′] = ([Φ, H]m)
[1,m′]

+
(
H̃Φ

)
[1,m′]

−(HC)[1,m′] =

([Φ, H]m)
[1,m′]

+ H̃T Φ−HTC = 0. Since, by assumption,
the first row of matrix H has at most Nf non-zero entries (all
in the first Nf positions), we have

(
HT

T

)
[m,n]

= 0 and H̃T =((
HT

T

)
[1,m]

)T
, so that HTC =

((
HT

T

)
[1,m]

)T
Φ = H̃T Φ.

We thus find ([Φ, H]m)
[1,m′]

= 0. The last Nf − 1 rows of
[Φ, H]m are surely non-zero because

(
HT

T

)
[m,n]

6= 0.

4. MULTI-NODE COMPRESSIVE FILTERING
In this section we deal with an extension of the previous
framework, which can encompass two scenarios. The first
one considers a multi-node distributed system in which agents
cooperate by sharing some measurements in order to perform
the filtering operation. The second one is a single-node sys-
tem having as many measurements as those from all the nodes
in the previous interpretation, but with a structured sensing
matrix. Let us describe the principles of operation referring
to the former scenario for ease of explanation, but always
keeping in mind the latter.

In the multi-node scenario, each node is equipped with a
random sensing matrix (e.g., Gaussian), not circulant. How-
ever, nodes are assigned matrices that have a circulant prop-
erty over the network. Numbering the nodes from 1 to J , this
means that Φ(1) is drawn at random, then row i in matrix Φ(j)

is a circularly right-shifted version of the same row in Φ(j−1).
If all the nodes observe the same signal x, then they can col-
laborate to perform the filtering operation in the compressed
domain. Given an impulse response h, node j can obtain the
measurements of the filtered signal y(j)

f = Φ(j)xf as:

y
(j)
f =

Nf−1∑
i=0

hiy
(j−i) for j ∈ [Nf , J ] (3)

We can derive a commutation theorem similar to Thm. 1,
by defining the (J,m)-distributed partial commutator:[

Φ̃, H
]
J,m

= Φ̃H − (HJ ⊗ Im) Φ̃ (4)



where Φ̃ =
[
Φ(1)T Φ(2)T · · ·Φ(J)T

]T
, HJ is a submatrix of

H restricted to the first J rows and columns, Im is the m×m
identity matrix, and ⊗ denotes Kronecker product.

Theorem 2. Given J nodes, the l-th measurement of the fil-
tered signal at node j is

(
y
(j)
f

)
l

=
∑Nf−1

i=0 hi
(
y(j−i))

l
if

and only if j > Nf − 1.

We skip the proof for brevity and because it follows that of
Thm. 1, now using the (J,m)-distributed partial commutator.

The main advantage of this multi-node framework is that
each node has a fully random matrix on its own. There-
fore, if its number of measurements is sufficiently high, it
can perform reconstruction without suffering the slight per-
formance degradation shown by circulant matrices when the
sparsity domain is not the identity. Moreover, no measure-
ment is corrupted in this process, except for Nf − 1 nodes,
which cannot compute the filtered measurements with respect
to their own sensing matrix. Moreover, multiple nodes can
stack their measurements, corresponding to the second sce-
nario discussed at the beginning of the section. In this case,
the resulting sensing matrix would be obtained by stacking
the individual sensing matrices, thus having a block-circulant
structure (a total of m independent rows, used as seed of J
circulant blocks).

5. MAIN APPLICATIONS OF THE PROPOSED
FRAMEWORK

The following sections describe some applications of the pre-
sented framework. For reasons of brevity, we shall focus on
the single-node case, but all the results can be readily ex-
tended to the multi-node scenario. The general case of filter-
ing using circular convolution with a sequence h has already
been treated in the previous section. The following examples
consider problems that can be cast in a similar manner.

5.1. Finite differences
It is of interest to apply a discretized differential operator to
the signal and compute the measurements of the resulting se-
quence directly from the original measurements. Let us con-
sider a discretization of the second derivative, so that the n-th
sample in the output is computed, in vector form, as:

xf = x→1 − 2x + x←1

where the subscript → k denotes a circular right-shift by k
positions. It is easy to check that the measurements yf =
Φxf can be obtained directly in the compressed domain as:

yf = y→1 − 2y + y←1

with the corruption of the first measurement. In the multi-
node setting it is immediate to derive that node j can request

the measurements of nodes j−1 and j+1 in order to compute
Φ(j)xf directly in the compressed domain:

y
(j)
f = y(j−1) − 2y(j) + y(j+1)

This example is shown in Fig. 2.

5.2. Compressive interpolation
The objective is to compute the measurements of an interpo-
lated version of the signal of interest from its compressive
measurements. Interpolation is modelled as the cascade of
an upsampler and a low-pass filter. Therefore it is possible
to perform the operation in the compressed domain if we as-
sume that the original signal was acquired by a circulant ma-
trix with a few zeroed columns, whose number depends on
the upsampling factor. The low-pass filter is implemented by
the standard compressive filtering technique explained in the
previous sections, bearing in mind that Nf − 1 measurements
will be corrupted. As an example, let us consider a piecewise
linear interpolator with an interpolation factor of 2. It is easy
to verify that the interpolated sequence and the corresponding
measurement-domain transformation are:

xINT =
1

2
x→1 +

1

2
x←1 + x

yINT =
1

2
y→1 +

1

2
y←1 + y

In this example the original measurements have been acquired
as y = Φ̂x, where the i-th column of Φ̂ is Φ̂i = Φ2i−1 for a
given circulant matrix Φ. The measurements of the interpo-
lated signal with respect to matrix Φ are now available.

5.3. Shift retrieval and registration
The problem of integer shift retrieval in the compressed do-
main was considered in [7]. The authors showed that the test
maxs R {〈z,ΦDsΦ?v〉} exactly recovers the integer shift s
from as low as one measurement (z and v are the measure-
ments of the signal and of its shifted version using cyclic
shift operator Ds), given some conditions on Φ. The partial
Fourier matrix was considered as an example of sensing ma-
trix satisfying the prescribed properties. We notice that circu-
lant matrices do not satisfy the conditions listed in Theorem
1 in [7]; in particular, αΦ?Φ 6= I for any scaling factor α.
However, we can exploit Theorem 1 to perform shift retrieval
in a different way. One of the implications of Theorem 1 is
that a shift in the signal corresponds to a shift in the measure-
ments by the same amount, being the cyclic shift operator Ds

a circulant matrix, with the corruption of s measurements.

Theorem 3. Let Φ ∈ Rm×n be a partial circulant matrix.
Let z = Φx and v = Φx→s? . If |s?| < m, then (5) retrieves
the correct shift ŝ = s?.

ŝ = arg min
s
‖z̃− ṽ‖2 (5)

with z̃ = z[1,m−s] and ṽ = v[s+1,m] for s ≥ 0, or z̃ =
z[|s|+1,m] and ṽ = v[1,m−|s|] for s < 0.



Proof. Let us call C ∈ Rn×n the square circulant matrix hav-
ing the same seed as Φ. Suppose that 0 < s? < m. If
s = s?, we have ṽ = C[s?+1,m]x→s? = C[1,m−s?]x, and
z̃ = C[1,m−s?]x, hence ṽ = z̃, so ‖z̃ − ṽ‖2 = 0. If s > s?

or s < s? we have ṽ = C[s+1,m]x→s? = C[s−s?+1,m]x

and ṽ =
[
CT

[m−s?,m]C
T
[1,m−s?−s]

]T
x, respectively and z̃ =

C[1,m−s]x in both cases. Hence, by construction of C, we
have ṽ 6= z̃. The same reasoning applies for −m < s? < 0.
Thus, we proved retrieval of the correct shift. When |s?| ≥ m,
ṽ and z̃ cannot be constructed because ṽ and z̃ contain mea-
surements coming from two disjoint submatrices of C.

Notice that thanks to compressive interpolation (section
5.2), it is also possible to retrieve sub-integer shifts; we leave
this as future work.

A different problem is registration. If we know the shift
s, we can register a signal, meaning that we can compute the
measurements of the shifted version simply by shifting the
measurement vector. If want to compute the measurements
with respect to the original matrix Φ, then s measurements
will be corrupted by the registration. Otherwise, we can sup-
pose that the registered measurements are measurements ac-
quired with a different sensing matrix Φ′, which is circulant,
having as seed the (m − s + 1)-th row of the full circulant
matrix, that the partial Φ was extracted from.

5.4. Compressive wavelet transform
We show that it is possible to obtain the measurements of
the wavelet coefficients from the measurements of the sig-
nal directly in the compressed domain. Changing the sig-
nal domain after the sensing process can be useful in sev-
eral ways. In [8], the authors propose a technique to im-
prove the quality of the reconstruction of signals compress-
ible in the wavelet domain by exploiting the tree-based struc-
ture within the wavelet coefficients. The method requires CS
measurements of the wavelet coefficients in order to be ap-
plied. However, in many scenarios it is not practical to sense
the wavelet coefficients, either because the sensing is imple-
mented in a low-complexity, low-power hardware so that cal-
culating the transform would be computationally and ener-
getically costly or because specialized hardware directly ac-
quires random projections of the data (e.g., [9]). Moreover,
being able to compute the measurements of the wavelet coef-
ficients, which typically hold a sparse or compressible repre-
sentation of the signal, allows to recover them directly, thus
avoiding any issues regarding the coherence [10] of sensing
matrix and spasifying wavelet dictionary.

In order to implement the wavelet transform in the com-
pressed domain we exploit the lifting scheme [11]. The lift-
ing method to compute the wavelet transform consists in a
sequence of lifting steps, each composed by two filters oper-
ating on two subsequences. Initially, the two subsequences
are the even and odd samples of the signal; the predict filter is
used to predict the odd sequence from the even one, and the
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Fig. 3. Compressive wavelet transform

difference is then passed through the update filter and the re-
sult summed back to the even sequence. It can be noticed that
this framework can be mapped in the compressed domain be-
cause the filtering steps can be implemented as explained in
the previous sections under the choice of periodic boundary
conditions. We thus only need to impose a structured sensing
that acquires measurements of the even and odd subsequences
separately. Let us call Φ(e) and Φ(o) the sensing matrices used
to acquire the even and odd subsequences, respectively. Both
have size m × n, but the even (odd) columns are zeroed in
Φ(o) (Φ(e)). Moreover, the sum Φ(e) + Φ(o) is a circulant ma-
trix. The measurements of the even and odd sequences form
the two input sequences in the compressive scheme, depicted
in Fig. 3. The prediction step applies the prediction filter to
the even sequence and the output is left-shifted by 1. The up-
date step applies the update filter and right-shifts the output
by 1. This is the structure of a single lifting step, which may
be repeated depending on the particular transform to be im-
plemented. Finally, gains are applied and the two sequences
are summed. It can be shown that the final output is Φθ being
θ the vector of wavelet coefficients. We remark that, as ex-
plained in section 3, 2(Nf − 1) + 2(Nf − 1) measurements
per lifting step are corrupted. In more detail, let us consider
a practical example taken from [12]. The spline 5/3 biorthog-
onal transform has the following prediction and update filters
λ1(z) = − 1

2 (1+z) and λ2(z) = 1
4 (1+z−1) and gain factors

K0 = 1, K1 = 1
2 . Applying the compressive transform pro-

cedure we can obtain the measurements of the wavelet coeffi-
cients with a corruption of the first 2 and last 2 measurements,
which will be discarded.

6. CONCLUSIONS

In this paper we have shown how endowing the sensing matrix
with circulant properties (e.g., fully circulant as in the single-
node case or block-circulant as in the multi-node case) allows
to translate a variety of classical signal processing tasks to the
reduced dimensionality domain in an exact form or corrupting
few measurements. We have discussed some applications of
the presented paradigm, including various forms of filtering,
shift retrieval and registration and a technique to transform
the measurements of a signal into the measurements of its
wavelet coefficients. Future directions for the work presented
in this paper include extending the theory to 2D signals.
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