4 research outputs found

    Learning without the Phase: Regularized PhaseMax Achieves Optimal Sample Complexity

    Get PDF
    The problem of estimating an unknown signal, x_0 ϵ R^n, from a vector y ϵ R^m consisting of m magnitude-only measurements of the form y_i = |a_ix_o|, where a_i’s are the rows of a known measurement matrix A is a classical problem known as phase retrieval. This problem arises when measuring the phase is costly or altogether infeasible. In many applications in machine learning, signal processing, statistics, etc., the underlying signal has certain structure (sparse, low-rank, finite alphabet, etc.), opening of up the possibility of recovering x_0 from a number of measurements smaller than the ambient dimension, i.e., m < n. Ideally, one would like to recover the signal from a number of phaseless measurements that is on the order of the "degrees of freedom" of the structured x_0. To this end, inspired by the PhaseMax algorithm, we formulate a convex optimization problem, where the objective function relies on an initial estimate of the true signal and also includes an additive regularization term to encourage structure. The new formulation is referred to as regularized PhaseMax. We analyze the performance of regularized PhaseMax to find the minimum number of phaseless measurements required for perfect signal recovery. The results are asymptotic and are in terms of the geometrical properties (such as the Gaussian width) of certain convex cones. When the measurement matrix has i.i.d. Gaussian entries, we show that our proposed method is indeed order-wise optimal, allowing perfect recovery from a number of phaseless measurements that is only a constant factor away from the degrees of freedom. We explicitly compute this constant factor, in terms of the quality of the initial estimate, by deriving the exact phase transition. The theory well matches empirical results from numerical simulations

    Sharp Concentration Results for Heavy-Tailed Distributions

    Full text link
    We obtain concentration and large deviation for the sums of independent and identically distributed random variables with heavy-tailed distributions. Our concentration results are concerned with random variables whose distributions satisfy P(X>t)≤e−I(t)P(X>t) \leq {\rm e}^{- I(t)}, where I:R→RI: \mathbb{R} \rightarrow \mathbb{R} is an increasing function and I(t)/t→α∈[0,∞)I(t)/t \rightarrow \alpha \in [0, \infty) as t→∞t \rightarrow \infty. Our main theorem can not only recover some of the existing results, such as the concentration of the sum of subWeibull random variables, but it can also produce new results for the sum of random variables with heavier tails. We show that the concentration inequalities we obtain are sharp enough to offer large deviation results for the sums of independent random variables as well. Our analyses which are based on standard truncation arguments simplify, unify and generalize the existing results on the concentration and large deviation of heavy-tailed random variables.Comment: 16 page

    Learning without the Phase: Regularized PhaseMax Achieves Optimal Sample Complexity

    Get PDF
    The problem of estimating an unknown signal, x_0 ϵ R^n, from a vector y ϵ R^m consisting of m magnitude-only measurements of the form y_i = |a_ix_o|, where a_i’s are the rows of a known measurement matrix A is a classical problem known as phase retrieval. This problem arises when measuring the phase is costly or altogether infeasible. In many applications in machine learning, signal processing, statistics, etc., the underlying signal has certain structure (sparse, low-rank, finite alphabet, etc.), opening of up the possibility of recovering x_0 from a number of measurements smaller than the ambient dimension, i.e., m < n. Ideally, one would like to recover the signal from a number of phaseless measurements that is on the order of the "degrees of freedom" of the structured x_0. To this end, inspired by the PhaseMax algorithm, we formulate a convex optimization problem, where the objective function relies on an initial estimate of the true signal and also includes an additive regularization term to encourage structure. The new formulation is referred to as regularized PhaseMax. We analyze the performance of regularized PhaseMax to find the minimum number of phaseless measurements required for perfect signal recovery. The results are asymptotic and are in terms of the geometrical properties (such as the Gaussian width) of certain convex cones. When the measurement matrix has i.i.d. Gaussian entries, we show that our proposed method is indeed order-wise optimal, allowing perfect recovery from a number of phaseless measurements that is only a constant factor away from the degrees of freedom. We explicitly compute this constant factor, in terms of the quality of the initial estimate, by deriving the exact phase transition. The theory well matches empirical results from numerical simulations
    corecore