279 research outputs found

    Interactive rendering of massive geometric models

    Get PDF
    Booklet2005-02Conference held in Pisa, ItalyTutorial notes, Eurographics Italy. Conference held in Pisa, Italy, February 17--18, CDROM Proceedings, February 200

    ITEM: Inter-Texture Error Measurement for 3D Meshes

    Get PDF
    We introduce a simple and innovative method to compare any two texture maps, regardless of their sizes, aspect ratios, or even masks, as long as they are both meant to be mapped onto the same 3D mesh. Our system is based on a zero-distortion 3D mesh unwrapping technique which compares two new adapted texture atlases with the same mask but different texel colors, and whose every texel covers the same area in 3D. Once these adapted atlases are created, we measure their difference with ITEM-RMSE, a slightly modified version of the standard RMSE defined for images. ITEM-RMSE is more meaningful and reliable than RMSE because it only takes into account the texels inside the mask, since they are the only ones that will actually be used during rendering. Our method is not only very useful to compare the space efficiency of different texture atlas generation algorithms, but also to quantify texture loss in compression schemes for multi-resolution textured 3D meshes

    Optimized geometry compression for real-time rendering

    Get PDF
    Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1997.Includes bibliographical references (leaves 51-52).by Mike M. Chow.M.Eng

    Time-critical multiresolution rendering of large complex models

    Get PDF
    Very large and geometrically complex scenes, exceeding millions of polygons and hundreds of objects, arise naturally in many areas of interactive computer graphics. Time-critical rendering of such scenes requires the ability to trade visual quality with speed. Previous work has shown that this can be done by representing individual scene components as multiresolution triangle meshes, and performing at each frame a convex constrained optimization to choose the mesh resolutions that maximize image quality while meeting timing constraints. In this paper we demonstrate that the nonlinear optimization problem with linear constraints associated to a large class of quality estimation heuristics is efficiently solved using an active-set strategy. By exploiting the problem structure, Lagrange multipliers estimates and equality constrained problem solutions are computed in linear time. Results show that our algorithms and data structures provide low memory overhead, smooth level-of-detail control, and guarantee, within acceptable limits, a uniform, bounded frame rate even for widely changing viewing conditions. Implementation details are presented along with the results of tests for memory needs, algorithm timing, and efficacy.785-803Pubblicat

    On sparse voxel DAGs and memory efficient compression of surface attributes for real-time scenarios

    Get PDF
    The general shape of a 3D object can expeditiously be represented as, e.g., triangles or voxels, while smaller-scale features usually are parameterized over the surface of the object. Such features include, but are not limited to, color details, small-scale surface-normal variations, or even view-dependent properties required for the light-surface interactions. This thesis is a collection of four papers that focus on new ways to compress and efficiently utilize surface data in 3D for real-time usage.In Paper IA and IB, we extend upon the concept of sparse voxel DAGs, a real-time compression format of a voxel-grid, to allow an attribute mapping with a negligible impact on the size. The main contribution, however, is a novel real-time compression format of the mapped colors over such sparse voxel surfaces.Paper II aims to utilize the results of the previous papers to achieve uv-free texturing of surfaces, such as triangle meshes, with optimized run-time minification as well as magnification filtering.Paper III extends upon previous compact representations of view dependent radiance using spherical gaussians (SG). By using a convolutional neural network, we are able to compress the light-field by finding SGs with free directions, amplitudes and sharpnesses, whereas previous methods were limited to only free amplitudes in similar scenarios

    Wavelet representation of contour sets

    Get PDF
    Journal ArticleWe present a new wavelet compression and multiresolution modeling approach for sets of contours (level sets). In contrast to previous wavelet schemes, our algorithm creates a parametrization of a scalar field induced by its contours and compactly stores this parametrization rather than function values sampled on a regular grid. Our representation is based on hierarchical polygon meshes with subdivision connectivity whose vertices are transformed into wavelet coefficients. From this sparse set of coefficients, every set of contours can be efficiently reconstructed at multiple levels of resolution. When applying lossy compression, introducing high quantization errors, our method preserves contour topology, in contrast to compression methods applied to the corresponding field function. We provide numerical results for scalar fields defined on planar domains. Our approach generalizes to volumetric domains, time-varying contours, and level sets of vector fields
    • …
    corecore