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Abstract: We present a new wavelet compression and mul
tiresolution modeling approach for sets o f contours (level sets). 
In contrast to previous wavelet schemes, our algorithm creates a 
parametrization of a scalar field induced by its contours and com
pactly stores this parametrization rather than function values sam
pled on a regular grid. Our representation is based on hierarchical 
polygon meshes with subdivision connectivity whose vertices are 
transformed into wavelet coefficients. From this sparse set of co
efficients, every set of contours can be efficiently reconstructed at 
multiple levels of resolution. When applying lossy compression, 
introducing high quantization errors, our method preserves contour 
topology, in contrast to compression methods applied to the cor
responding field function. We provide numerical results for scalar 
fields defined on planar domains. Our approach generalizes to vol
umetric domains, time-varying contours, and level sets of vector 
fields.

CR Categories and Subject Descriptors: E.4 [Coding and In
formation Theory]: Data Compaction and Compression; G.1.2 [Nu
merical Analysis]: Approximation -  Approximation of Surfaces 
and Contours.

Additional Keywords: Contours, Geometry Compression, Iso
surfaces, Level Sets, Multiresolution Methods, Wavelets.

1 I n t r o d u c t io n

Scientific visualization methods help us to explore and understand 
the nature of vast amounts of digital data produced by numerical 
simulations on supercomputers or by imaging technology like com
puter tomography. Visualizing scalar fields via exploration of their 
isosurface behavior is one o f the most powerful ways to gain in
sight into a physical phenomenon. Our approach is driven by the 
need to explore very large scalar fields interactively by browsing 
through their continuous space of contours. In the past, multires
olution methods were developed for the modeling, rendering, and 
exploration of complicated two-manifold data, e.g., large-scale iso
surfaces [1]. In order to explore the entire contour space of a scalar 
field more powerful methods are required, as entire families o f con
tours have to be extracted, represented, and rendered. The approach 
we are presenting here is driven by such considerations. We intro
duce a new framework for the multiresolution approximation of a 
multitude of contours defined by a single scalar field. This frame
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work promises to have significant impact on state-of-the-art visual
ization and exploration o f truly massive, tera-scale scalar field data.

Visualization methods often rely on continuous geometric mod
els representing the relevant topological and geometric features of 
a data set. Multiresolution modeling techniques, like wavelet trans
forms [3, 16], provide efficient progressive access to local geome
try. Wavelet transforms coupled with progressive coders for quan
tized coefficients are among the most efficient schemes for com
pression, error-driven querying, and progressive transmission of 
data defined on regularly gridded domains [15, 18]. W hen visu
alizing derived quantities or features, such as contours, these need 
to be extracted from a locally reconstructed geometric model. This 
extraction process can be very expensive, especially in the case of 
volume data, since an unknown surface topology needs to be recov
ered.

Standard wavelet compression algorithms [18] transform a func
tion into wavelet coefficients of expectedly small absolute values. 
These coefficients are quantized (rounded to integers) or thresh- 
olded (selected by magnitude o f absolute values) and compressed 
by a progressive coding scheme like zero trees [15]. W hen ex
tracting contours from compressed data altered by quantization er
rors, there exists no guarantee of obtaining topologically correct 
contours. When reconstructing data from thresholded or quantized 
wavelet coefficients, for example, the resulting contours may even 
have additional components enclosing local extrema of the recon
struction error, see Figures 1 (a) and (d).

The wavelet approach presented here overcomes this problem 
by compressing a parametrization of a field function that is induced 
by its contours, rather than compressing a field function directly. 
Our approach also simplifies the topology of represented contours. 
However, this simplification is performed in an initial step of our 
algorithm, where a finite set o f selected contours, called base con
tours, is extracted. All other contours represented by our method 
have the topology of a corresponding base contour o f the closest 
isovalue. Since the set of base contours can be chosen arbitrarily, 
our method introduces a predictable topological error reducing the 
quantity o f topological changes that need to be stored. Compared 
to conventional compression methods for scalar fields, our method 
requires some additional space for storing contour topology. How
ever, our method preserves the prescribed contour topology at every 
level of resolution and provides efficient access to the geometry, see 
Figures 1 (b+c) and (e+f).

Starting with the set o f base contours, we construct a coarse mesh 
structure, the base mesh, covering the domain o f the underlying 
field function. This base mesh is recursively subdivided, and its ver
tices are projected onto intermediate contours. The resulting adap
tive mesh structure is equivalent to a subdivision surface/volume 
with displacement of vertices correcting the geometry at finer levels 
of detail. Our algorithm represents these displacements compactly 
in the form of sparse wavelet coefficients. The contours produced 
by our subdivision process are either linear or cubic polynomials.

We represent a scalar field by a continuous parametrization of 
its domain that is defined by a subdivision surface/volume. This 
parametrization is a function mapping a manifold into Euclidean 
space. In the case of planar contours, our manifold domain has one 
global parameter specifying the isovalue and one local parameter 
traversing the corresponding contour. (In the case of isosurfaces of
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Figure 1: Contours of a slice taken from a volume data set (Rayleigh-Taylor instability simulation). (a) Contours extracted from full resolution 
slice (64 x  64 samples); (b+c) contours represented by our method at different levels o f resolution using a bilinear wavelet transform, based 
on 2631 and 656 coefficients, respectively; (d) contours extracted from a wavelet compression of the slice using a bicubic wavelet and 612 
coefficients; (e+f) same as (b+c) using a bicubic wavelet.

trivariate functions, our manifold has one parameter for the isovalue 
and two local parameters traversing an isosurface.) The coarsest 
level o f resolution is defined by a base mesh providing both, the 
manifold topology and a coarse parametrization obtained by recur
sive subdivision. During the subdivision process, geometric detail 
can be expanded from wavelet coefficients resulting in representa
tions at higher level o f resolution.

Our representation of contour sets is equivalent to a representa
tion of the underlying field function, but it provides rapid access 
to every contour at multiple levels o f resolution. This is a highly 
desirable property for real-time visualization of contours, allowing 
for interactively changing isovalues and rendering multiple trans
parent isosurfaces at once. Our representation provides additional 
flexibility for algorithms processing contours with the goal o f im
proving the underlying field function. For example, constrained 
fairing  o f all contours of a field function is a non-trivial operation 
that becomes fairly simple when using our approach.

2  R e la te d  W o rk

Multiresolution contouring schemes extract isosurfaces from hier
archical scalar field representations providing multiple levels o f de
tail. Weber et al. [19] present an efficient construction method for 
crack-free isosurfaces from adaptively refined hexahedral domains. 
A similar approach using a hierarchical octree structure for interac

tive view-dependent contouring is presented by Westermann et al.
[20]. A real-time rendering approach for multiple transparent iso
surfaces reconstructed from a tetrahedral grid hierarchy is described 
by Gerstner [4].

Wood et al. [21] use a surface wavefront propagation method for 
constructing a coarse base mesh approximating an isosurface with 
correct topology. Their approach provides a semi-regular triangu
lar subdivision hierarchy of an isosurface that is useful for wavelet 
compression. In previous work, we have constructed quadrilateral 
base meshes with subdivision hierarchy that were used for wavelet 
compression of isosurfaces [1]. Our wavelet construction for sub
division surfaces [2] generalizes to higher dimensions, e.g., vol
umes of manifold topology, like level sets and time-varying sur
faces. Wavelet constructions for subdivision surfaces were initially 
described by Lounsbery et al. [8,16].

W hen using wavelet approaches for geometry compression [6], 
it becomes important to construct smooth surface parametrizations 
by improving the regularity of control meshes. For triangle meshes, 
such regular parametrizations are constructed by the M APS algo
rithm  described by Lee et al. [7]. Similar algorithms need to be 
developed for pseudo-regular meshing of three-dimensional level 
sets. A multiresolution approach for matching contours defined 
on different cutting planes is presented by Meyers [10]. Efficient 
meshing algorithms for level sets are described by Sethian [14].

To our knowledge, previous methods have not attempted to re- 
parametrize sets o f contours for the purpose of wavelet compres
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sion. Hence, our general approach is innovative, combining indi
vidual techniques from different fields, such as contour extraction, 
mesh generation, and subdivision surface wavelets.

3  A d a p t iv e ly  R e p r e s e n t i n g  C o n t o u r  S e t s

This section describes our novel multiresolution approach for sets 
of contours. We describe our algorithm in the context o f bivariate 
scalar fields and provide extensions to volumetric domains, time- 
varying contours, and level sets.

3.1 Overview of the Algorithm
Our algorithm first constructs a coarse base mesh induced by certain 
base contours. This mesh is then regularly subdivided, and the new 
vertices are projected onto intermediate contours. Finally, we use a 
wavelet transform for compression and multiresolution modeling of 
this mesh structure, defining smooth sets of contours by recursive 
subdivision. Our algorithm consists of the following steps that are 
illustrated in Color Plates (a-f):

1. Extraction o f a prescribed set of base contours, using, for ex
ample, uniformly distributed isolevels. This set o f contours 
defines the topology of all intermediate contours represented 
by our scheme.

2. Sampling base vertices distributed uniformly with respect to 
arc lengths from the extracted base contours. These vertices 
will represent the coarsest level of detail for our parametriza- 
tion. Hence, the set of base contours selected in step 1 should 
not be too dense.

3. Constructing links between base vertices on adjacent base 
contours and relaxing these links by moving the base points 
on their corresponding contours.

4. Filling the space between adjacent base contours and their 
links with convex polygons that have low numbers of edges. 
The resulting base mesh serves as coarsest level o f detail, 
defining a smooth parametrization of contours when recur
sively subdivided (using, for example, Catmull-Clark subdi
vision [9]).

5. Regular subdivision o f the base mesh by inserting new ver
tices at the centroid of every polygon and in the middle of ev
ery edge. The vertices obtained by subdivision are connected 
to define a quadrilateral, recursively refined mesh structure. 
Every vertex is associated with a certain isovalue, such that 
certain edges of the mesh approximate contours of the scalar 
field. After every subdivision step, the vertices are projected 
onto associated contours. This subdivision process terminates 
at a resolution slightly finer than the grid resolution of the un
derlying field function.

6. Subdivision-surface wavelets [1, 2] are used to generate a hi
erarchy of continuous parametrizations. The differences be
tween individual levels of detail are compactly represented by 
wavelet coefficients. Data compression can be achieved by 
thresholding or by encoding quantized coefficients [11, 15].

3.2 Constructing Base Meshes
As a first step we extract a finite set o f base contours using a stan
dard approach. The corresponding isovalues can be uniformly dis
tributed or they can be more densely sampled in certain regions of

o - o - o  

n-cvo
Figure 2: Dyadic refinement of a closed and an open contour com
ponent

interest. Then we define base vertices by re-sampling the base con
tours at approximately equidistant intervals of arc length . The 
value of depends on the number of dyadic refinement levels, 
see Figure 2, that we will compute and on the finest sampling dis
tance , which should be slightly smaller than the edge length of 
the regular grid defining the field function. Hence, we use

A 2 n‘S. (3.1)

All boundary points of contours need to be base vertices, such that 
the base contours can be completely generated by dyadic refine
ment. Additionally, we require every contour component to have at 
least three base vertices, to avoid degenerate base polygons.

Figure 3: Constructing links between contours and by fol
lowing the gradient starting at base vertices. Some vertices cannot 
be linked due to field regions o f zero gradient.

The next task is to fill the space between every adjacent pair of 
base contours, say and , with convex polygons. Therefore, 
it is desired to connect matching pairs of base vertices from both 
contours, which will improve the fairness of our final parametriza- 
tion. We use Newton-iteration to propagate the base vertices o f C a 
onto the contour C t. In each step of this iteration, the movement 
of a vertex is restricted to a maximal distance of , to avoid diver
gence due to shallow gradients. Some vertices will not converge to 
the contour , since they may get stuck at local extrema or zero- 
gradient areas, and the iteration must terminate after a prescribed 
number of steps. Those vertices that converge to contour are 
linked to the closest base point on and their initial position on 
contour is restored. To find all possible links, this step of the 
algorithm is repeated with the vertices of , iterating towards con
tour C a , see Figure 3. Base vertices located on the boundary o f the 
data set are simply connected by traversing this boundary.

The length of the individual links between every pair of base 
vertices is minimized by an iterative procedure, allowing the base 
vertices to move a certain distance along their corresponding con
tours, see Figure 4. Here, we restrict the maximal displacement 
of a vertex to the value ^ , to avoid coincidence of adjacent base 
vertices. This step is necessary to improve smoothness of the final 
parametrization and to avoid intersections of polygon strips defined 
by the base vertices of every contour component. Isolated compo-
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Figure 4: Relaxing a link between base vertices on contours C, 
and Cb by displacing these vertices along their contours.

Figure 5: Splitting a non-convex polygon. Left: invalid split; right: 
correct split.

nents, “islands”, are connected by one additional link to the closest 
base vertex on its surrounding contour component.

The mesh structure resulting from this procedure already defines 
a set of closed polygons covering the scalar field domain. However, 
some polygons may still be very large and non-convex and need 
to be subdivided further. Additionally, we need to represent these 
polygons explicitly. For this purpose, we traverse every polygon 
in counter-clockwise orientation o f edges and record the participat
ing base vertices. We use every base vertex as a starting point for 
constructing a potential polygon. Every edge in the mesh has two 
associated flags for traversal in each direction, which are set when a 
polygon is constructed. These flags are tested for every traversal to 
avoid multiple constructions of the same polygon. The constructed 
polygons are then recursively split until they are convex and con
sist o f no more than five edges. Splitting a polygon is performed 
by connecting a pair o f close, non-adjacent vertices, avoiding self
intersections and augmentation of the enclosed region in case o f a 
non-convex polygon, see Figure 5. The resulting set of polygons is 
a convex tessellation of the domain, the base mesh.

3.3 Regular Mesh Refinement
Once we have generated our base mesh, we apply recursive sub
division using the refinement connectivity of Catmull-Clark subdi
vision inserting vertices at the centroids o f polygons and on their 
edges. The first subdivision step generates quadrilaterals that are 
regularly refined in the subsequent steps, as illustrated in Figure 6. 
Instead of applying stationary subdivision rules to compute the co
ordinates for vertices on finer levels, we place them on interme
diate contours. The subdivision process terminates at a resolution 
slightly finer than the resolution of the initial rectilinear grid defin
ing the field function. This mesh hierarchy is then compressed us
ing wavelets.

Before we can project the new vertices onto intermediate con
tours, we have to define an isovalue for every vertex. After the first 
subdivision step, the resulting vertices are either located on a base 
contour or placed in the space between two base contours. In the 
latter case, these vertices will be associated with the average of both 
corresponding isovalues. For the subsequent levels o f regular, recti
linear refinement, we use the templates illustrated in Figure 7: ver
tices located on edges are assigned the average isovalue of both in
cident vertices. Vertices located inside a quadrilateral are assigned

Figure 6: Regular mesh refinement near a saddle point located in 
the center of the five-sided patch.

□

Figure 7: Mapping intermediate isovalues to vertices defined 
by subdivision. The first refinement step generates quadrilateral 
patches that have either one, two, or three vertices located on a base 
contour.

the average of the minimal and the maximal iso values o f the quadri
lateral’s four corner vertices.

Every vertex is projected onto a contour with the correct iso
value. For this purpose, we use a constrained Newton iteration cou
pled with Laplacian smoothing of the mesh (moving every vertex 
to the centroid of its neighbors). In every step o f the Newton it
eration, a vertex is propagated along the gradient of the field and 
subsequently relaxed orthogonal to the gradient by projecting the 
Laplacian displacement onto a vector/plane orthogonal to the gra
dient. Again, the maximal displacement is limited by the distance 
<5. Due to the topology simplification imposed by the choice of 
base contours, some vertices cannot be projected onto the correct 
contour, since a nearby component of this contour does not exist. 
In this case, the relaxation prevents the mesh from entangling. The 
iteration process must terminate after a finite number of steps.

Figure 8: Topology of contour C 0 changes into topology o f Cb at 
an intermediate contour. The topology of this intermediate contour 
(left) cannot be represented correctly (right).

Besides critical points (points where contour topology changes, 
e.g., saddle points and local extrema), the worst-case scenario are 
long “headlands” in the scalar field, where the mesh is either col
lapsed or stretched along a ridge, see Figure 8. However, the ge
ometric error o f every mesh vertex is bounded by one half of the 
sampling distance for base isovalues. The behavior of our meshing
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algorithm is shown in Figure 9 and Color Plates (a-f).
From the mesh structure we have constructed, every contour can 

be derived immediately by linear interpolation of its closest con
tours that are explicitly represented in the mesh. Alternatively, we 
can use a subdivision scheme, like Catmull-Clark, to refine the 
mesh smoothly. We do not need to store the isovalues associated 
with every vertex, since these can be recovered from the base mesh.

Figure 9: Algorithm applied to a simple field with two critical 
points (a saddle point and a local minimum). (a) Base contours 
extracted from the field; (b) base mesh; (c) final mesh with base 
polygons shown in different colors; (d) final mesh with contours 
shown. Small regions of the mesh collapse near the critical points, 
due to topological error.

followed by , is compactly stored in form of wavelet co
efficients that replace the vertices removed by .

The modeling paradigm of such a multiresolution representation 
is illustrated in Figure 10. These four operations define a wavelet 
transform for subdivision surfaces. We have constructed wavelets 
for bilinear and bicubic subdivision generalized to arbitrary meshes 
with regular refinement [2] and used the bicubic wavelet transform 
for multiresolution modeling of large-scale isosurfaces [1]. We 
summarize the details necessary to implement these transforms in 
the remainder of this section.

f in e  resolution  

S F
coarse  

S F S F

*  E *  E  *

t O  c°  ■

E'
C

detail

Figure 10: Modeling paradigm of a wavelet transform.

e f-i v f e ,■ 
- • — • -

Figure 11: Vertex manipulation defined by an s-lift operation.

Our wavelet transforms are computed by a few local vertex 
manipulations, called lifting operations [17], since they can be 
used to manipulate the shape of basis functions. Considering a 
polygon strip composed of vertices and its dyadic refinement 
with vertices located on the edges , we define two lifting
operations:

3.4 Subdivision-surface Wavelets
Starting with our regularly refined mesh hierarchy composed o f ver
tices located on certain contours, we can efficiently derive any set of 
contours using subdivision and linear interpolation. For compres
sion purposes and level-of-detail rendering, we need a multireso
lution representation of this mesh structure providing these opera
tions:

Subdivision. This operation defines stationary subdivision 
rules providing a continuous limit surface when applied re
cursively. The mesh vertices correspond to control points of 
smooth basis functions.

E  Expanding detail. At every level o f refinement, geometric de
tail can be added to a subdivision surface. This detail is com
pactly stored in the form of wavelet coefficients and can be 
expanded from these.

Fitting. This operation reverses a subdivision step. Based on 
all vertices on a fine level, the vertices on the next coarser level 
are predicted such that they provide a good approximation to 
the fine level when applying subdivision, again.

C  Compacting detail. The difference between two levels of res
olution, i.e., the displacement of mesh vertices when applying

s-lift(a,&):

Vi «— a e , - !  +  bvi +  a e ,. (3.2)

w-lift(a,&):
(3.3)

An s-lift operation is illustrated in Figure 11. This operation ma
nipulates coefficients associated with scaling functions representing 
the individual levels of resolution, and a w-lift operation manipu
lates coefficients associated with wavelets representing geometric 
detail, i.e., displacements between two levels.

The operations S and E  define the reconstruction or synthesis, 
which is one step of an inverse wavelet transform. The vertices 

represent initially a coarse level of resolution and the vertices
e , contain wavelet coefficients. After a reconstruction step, all 
vertices represent the next finer level of resolution. An inverse 
wavelet transform is computed by repeated reconstruction starting 
with a coarse base polygon. The reconstruction procedures for 
wavelet transforms based on dyadic refinement of linear and cubic 
B-splines are defined as follows:

Linear B-spline wavelet reconstruction:

s — lift (—5 , 1); 

w — lift (| , 1).
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Cubic B-spline wavelet reconstruction: e
f «  » <  « f f *  e «■ | • f■

s — lift (—| , 1); 

w — lift (§ , 1);
V

e »  > * <  « e \
s — lif t( | , | ) , ef« » <  «f •— a •— I f

The basis functions of the transform corresponding to a wavelet 
coefficient are depicted in Figure 12.

Figure 12: Linear and cubic B-spline wavelets.

Figure 14: A two-dimensional s-lift is computed by applying its 
one-dimensional equivalent to the rows and columns of a regularly 
refined grid.

V*

e

Figure 15: Two-dimensional s-lift operation performed in different 
order o f vertex updates.

v 7e

Tf

Figure 13: Regularly refined mesh, composed of vertices o f types 
(coarse resolution mesh), , and (wavelet coefficients).

The operations F  and C  represent wavelet decomposition or 
analysis, which is the inverse o f a reconstruction step. The decom
position formulae for our one-dimensional wavelet constructions 
are defined by the inverse o f every individual lifting operation 
applied in reverse order. Decomposition is defined as follows:

Linear B-spline wavelet decomposition:

w — lif t(— 1); 

s — lift ( J , 1)-

Cubic B-spline wavelet decomposition:

s — lift (— 2); 

w — lift (— 1); 

s — lift ( | , 1).

A wavelet transform is computed by repeated decomposition, start
ing with a fine resolution and terminating at the coarse resolution 
of a base polygon.

We now describe the generalization of these lifting operations 
to polygon meshes with regular subdivision hierarchy. The refine
ment of a regular, rectilinear mesh is illustrated in Figure 13. The 
vertices corresponding to wavelet coefficients are located on edges 
and polygons (faces) o f the coarse mesh and are denoted by , and
f , respectively. On a completely regular mesh, a lifting operation 
is performed by applying the corresponding one-dimensional oper
ation to the rows and columns, see Figure 14. Instead of updating 
the vertices v  twice in an s-lift operation, we can change the or
der o f computation such that every vertex is modified only once, as 
illustrated in Figure 15.

The corresponding two-dimensional lifting operations can be 
defined in a notation without indices, where x v denotes the average 
of the vertices of type *  that are adjacent to vertex y (or that belong 
to the closest stencil around y). For example, v e is the midpoint of 
an edge and v r  is the centroid o f a polygon. Using this notation, 
the two-dimensional lifting operations are defined like this:

2D s-lift(a,&):

2D w-lift :

e  be +  2 a fe ;

v  «— b2v  — 4 a 2f v +  4a e v .

e  «— be +  2av e ;

f  b2{ — 4 a 2Vf +  4aef .

(3.4)

(3.5)

Using these index-free definitions, our lifting operations are well 
defined for extraordinary vertices (vertices that do not have four in
cident edges) and for arbitrary polygons in a base mesh. These 
two-dimensional lifting operations are used to transform the inner 
vertices of a mesh, according to the decomposition and reconstruc
tion rules defined above. A two-dimensional scaling function and 
a wavelet are depicted in Figure 16. For a correct transformation 
of mesh boundaries, all boundary vertices are transformed by the 
one-dimensional lifting operations, equations (3.2) and (3.3).

Figure 16: Generalized bicubic scaling function and wavelet.

Starting with the finest-level mesh structure constructed in the 
previous section, we compute our wavelet decomposition repeat
edly until we reach the base mesh. The base vertices then represent
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a coarse approximation that is obtained by subdivision without ex
pansion of detail. All vertices that are not base vertices contain 
wavelet coefficients that can be used to reconstruct the subdivision 
level where these vertices were introduced. For compression pur
poses, we can quantize the wavelet coefficients and compress them 
using, for example, arithmetic coding. We note that all coefficients 
have two coordinates, since they represent points and vectors in the 
plane.

4  E x t e n s i o n s  o f  o u r  A lg o r i th m

We outline some modifications to our algorithm that are neces
sary to represent time-varying contours and to represent three
dimensional manifolds.

4.1 Time-varying Contours and Level Sets
Time-varying contours and level sets, i.e., surfaces evolving over 
time like shock waves and material interfaces in fluid simulations, 
can be represented and compressed in the same way as contour 
sets. A major difference o f time-varying curves/surfaces is that they 
can become self-intersecting overtim e, whereas contours propagate 
locally in only one direction when their isovalues are monotoni- 
cally changed. Our algorithm for constructing base meshes can
not be used for curves/surfaces of this type, since it assumes that 
the set o f base polygons provides a planar tessellation without self
intersections.

In general, it is possible to construct meshes with manifold topol
ogy approximating time-varying objects. For this purpose, we need 
to construct a mapping between objects from consecutive base time 
steps. For the case o f one-dimensional contours, a multiresolu
tion tiling algorithm is presented by Meyers [10]. This algorithm 
constructs polygons connecting contours on different planes corre
sponding to different times steps. We could use this method for 
generating base meshes o f manifold topology that could then be 
subdivided recursively and iteratively displaced onto contours at in 
termediate time steps. Level set and efficient marching methods for 
meshing time-dependent surfaces are described by Sethian [14].

4.2 Wavelet Representation of Three-manifolds
In the case o f time-varying surfaces or sets of static isosurfaces, 
lattices composed of polyhedral cells need to be constructed, con
necting two surface components o f consecutive base time steps or 
filling the space between two adjacent base isosurfaces. These lat
tices are recursively refined by placing new vertices inside each cell, 
on every face, and on every edge, see Figure 17. A generalization 
of Catmull-Clark surfaces to this type of volumetric subdivision is 
provided by MacCracken and Joy [9].

Figure 17: Regular subdivision of polyhedra. Subdividing a pyra
mid results in four hexahedra and one type-4 cell.

Many types of polyhedra, like prisms and tetrahedra, produce 
hexahedra after the first subdivision step, allowing for regular re
finement. Unfortunately, some polyhedra, like pyramids, produce 
so-called type-n  cells composed of 2n  +  2 vertices and 2n faces.

These reproduce two type- cells when subdivided. To keep the 
mesh structure simple, it is desired to avoid type- cells, except for 
the case (hexahedra).

Our wavelet transform generalizes nicely to volumetric (and 
higher-dimensional) subdivision, since the individual lifting op
erations can be computed by a sequence of vertex-manipulations 
for every type of vertex, analogously to the two-dimensional case. 
W hen applied to a regularly gridded domain, these lifting opera
tions define tensor-product basis functions.

5  R e s u l t s

We have implemented and tested our algorithm for scalar fields de
fined on planar domains. As an example data set, we have used 
a slice o f rich geometric detail taken from a three-dimensional 
numerical simulation o f a Rayleigh-Taylor instability, courtesy of 
Lawrence Livermore National Laboratory. The initial slice is de
fined by byte samples given on a regularly gridded 
domain. We extracted nine base contours at uniformly distributed 
isovalues, re-sampled at a resolution of half the length of a grid 
edge. We used n s = 3 levels of subdivision for mesh generation.

Our algorithm generated a base mesh composed of 656 vertices 
and 661 polygons, resulting in 40947 vertices (corresponding to 
wavelet coefficients) after three levels of subdivision, which cor
responds to an over-sampling factor of about ten. For our wavelet 
representation, we need to store the coordinates o f the 656 base ver
tices (their isovalues can be recorded by grouping vertices of same 
contours together into a list), the connectivity of the base mesh, and 
the wavelet coefficients, which can be quantized and encoded at 
high compression rates. Hence, our over-sampled representation of 
contours may use less storage space than the original data set. This 
becomes crucial when converting large-scale data sets into our rep
resentation. The computationally expensive part of our algorithm 
is the projection of vertices onto contours, which required less than 
ten seconds on an SGI O 2 workstation using a 180 MHz R5000 
processor.

Transform Level No. of coeff. L '-e rro r L 1 -error
none 3 40947 0.37 0.06
bicubic 2 10331 0.65 0.29
bicubic 1 2631 1.18 0.72
bicubic 0 656 2.61 1.89
bilinear 2 10331 0.63 0.29
bilinear 1 2631 1.00 0.61
bilinear 0 656 1.82 1.29

Table 1: Geometric error of represented contours relative to incre
ment of isovalue at finest subdivision level (index three).

We used our generalized bilinear and bicubic wavelet trans
forms to compute different levels of resolution, obtained by remov
ing wavelet coefficients on the highest-resolution levels and recon
structing the mesh at the finest level of refinement, obtained after 
three subdivisions. The reconstructed meshes are depicted in Color 
Plates (g-l). The finest-resolution mesh is shown in Color Plate 
(f). We rendered these meshes by assigning the same color to all 
quadrilaterals located between each pair of adjacent contours at the 
finest level. The contours corresponding to levels 0 and 1 are also 
depicted in Figures 1.

The geometric errors of all contours that are explicitly repre
sented in the mesh at finest level are shown in Table 1. These er
rors represent the difference between the isovalue associated with 
a mesh vertex and the real function value of the underlying scalar 
field at the vertex location. All errors are relative to the difference 
of two adjacent contours represented in the finest mesh. An error

r 4 -  
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larger than one means that adjacent contours may be intersecting 
and the mesh no longer defines a unique parametrization of the do
main. In the case of lossy compression, this can be avoided by 
appropriately choosing a threshold for quantization of wavelet co
efficients. We note that this problem does not occur in the case of 
time-varying contours, where self-intersections over time are natu
ral.

The geometric error at the finest-resolution mesh is caused by 
regions of incorrect topology where vertices could not be projected 
onto their corresponding contour. For the majority of vertices, the 
geometric error is zero, which explains why the -error (the av
erage of individual errors) is much smaller than the -error (the 
square-root of the averaged squared errors).

6  C o n c l u s i o n s

Our approach supports the exploration of scalar fields via their 
contours. A key issue of our approach is the construction of a 
base mesh of manifold topology that is induced by a set of orig
inally extracted contours. This base mesh defines a subdivision 
surface/volume from which all intermediate contours can be re
constructed efficiently. During this subdivision process, geometric 
detail is expanded from wavelet coefficients increasing the level of 
detail. For efficiently representing very large data sets it will be cru
cial to select and construct a locally optimal set of base contours and 
to blend the resulting local base meshes to a global representation. 
A solution to this challenging problem might be the consideration 
of topological characteristics of a field function, like critical points 
and separatrices, which can be constructed explicitly for scalar and 
vector fields [12,13].
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Color Plate. (a) Slice of trivariate scalar field; (b) base contours; (c) linking base vertices; (d) base polygons; (e) patches 
defined by fitted mesh; (f) mesh with colored contours; (g-i) bicubic wavelet reconstructions using 10331, 2631, and 656 

coefficients, respectively; (j-l) corresponding bilinear wavelet reconstructions.
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