562 research outputs found

    Compressed sensing based seizure detection for an ultra low power multi-core architecture

    Get PDF
    Extracting information from brain signals in advanced Brain Machine Interfaces (BMI) often requires computationally demanding processing. The complexity of the algorithms traditionally employed to process multi-channel neural data, such as Principal Component Analysis (PCA), dramatically increases while scaling-up the number of channels and requires more power-hungry computational platforms. This could hinder the development of low-cost and low-power interfaces which can be used in wearable or implantable real-Time systems. This work proposes a new algorithm for the detection of epileptic seizure based on compressively sensed EEG information, and its optimization on a low-power multi-core SoC for near-sensor data analytics: Mr. Wolf. With respect to traditional algorithms based on PCA, the proposed approach reduces the computational complexity by 4.4x in ARM Cortex M4-based MCU. Implementing this algorithm on Mr.Wolf platform allows to detect a seizure with 1 ms of latency after acquiring the EEG data for 1 s, within an energy budget of 18.4 ÎĽJ. A comparison with the same algorithm on a commercial MCU shows an improvement of 6.9x in performance and up to 18.4x in terms of energy efficiency

    Optimized Biosignals Processing Algorithms for New Designs of Human Machine Interfaces on Parallel Ultra-Low Power Architectures

    Get PDF
    The aim of this dissertation is to explore Human Machine Interfaces (HMIs) in a variety of biomedical scenarios. The research addresses typical challenges in wearable and implantable devices for diagnostic, monitoring, and prosthetic purposes, suggesting a methodology for tailoring such applications to cutting edge embedded architectures. The main challenge is the enhancement of high-level applications, also introducing Machine Learning (ML) algorithms, using parallel programming and specialized hardware to improve the performance. The majority of these algorithms are computationally intensive, posing significant challenges for the deployment on embedded devices, which have several limitations in term of memory size, maximum operative frequency, and battery duration. The proposed solutions take advantage of a Parallel Ultra-Low Power (PULP) architecture, enhancing the elaboration on specific target architectures, heavily optimizing the execution, exploiting software and hardware resources. The thesis starts by describing a methodology that can be considered a guideline to efficiently implement algorithms on embedded architectures. This is followed by several case studies in the biomedical field, starting with the analysis of a Hand Gesture Recognition, based on the Hyperdimensional Computing algorithm, which allows performing a fast on-chip re-training, and a comparison with the state-of-the-art Support Vector Machine (SVM); then a Brain Machine Interface (BCI) to detect the respond of the brain to a visual stimulus follows in the manuscript. Furthermore, a seizure detection application is also presented, exploring different solutions for the dimensionality reduction of the input signals. The last part is dedicated to an exploration of typical modules for the development of optimized ECG-based applications

    Real-Time Diagnostic Integrity Meets Efficiency: A Novel Platform-Agnostic Architecture for Physiological Signal Compression

    Full text link
    Head-based signals such as EEG, EMG, EOG, and ECG collected by wearable systems will play a pivotal role in clinical diagnosis, monitoring, and treatment of important brain disorder diseases. However, the real-time transmission of the significant corpus physiological signals over extended periods consumes substantial power and time, limiting the viability of battery-dependent physiological monitoring wearables. This paper presents a novel deep-learning framework employing a variational autoencoder (VAE) for physiological signal compression to reduce wearables' computational complexity and energy consumption. Our approach achieves an impressive compression ratio of 1:293 specifically for spectrogram data, surpassing state-of-the-art compression techniques such as JPEG2000, H.264, Direct Cosine Transform (DCT), and Huffman Encoding, which do not excel in handling physiological signals. We validate the efficacy of the compressed algorithms using collected physiological signals from real patients in the Hospital and deploy the solution on commonly used embedded AI chips (i.e., ARM Cortex V8 and Jetson Nano). The proposed framework achieves a 91% seizure detection accuracy using XGBoost, confirming the approach's reliability, practicality, and scalability

    Integrated Circuits and Systems for Smart Sensory Applications

    Get PDF
    Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware

    Enabling human physiological sensing by leveraging intelligent head-worn wearable systems

    Get PDF
    This thesis explores the challenges of enabling human physiological sensing by leveraging head-worn wearable computer systems. In particular, we want to answer a fundamental question, i.e., could we leverage head-worn wearables to enable accurate and socially-acceptable solutions to improve human healthcare and prevent life-threatening conditions in our daily lives? To that end, we will study the techniques that utilise the unique advantages of wearable computers to (1) facilitate new sensing capabilities to capture various biosignals from the brain, the eyes, facial muscles, sweat glands, and blood vessels, (2) address motion artefacts and environmental noise in real-time with signal processing algorithms and hardware design techniques, and (3) enable long-term, high-fidelity biosignal monitoring with efficient on-chip intelligence and pattern-driven compressive sensing algorithms. We first demonstrate the ability to capture the activities of the user's brain, eyes, facial muscles, and sweat glands by proposing WAKE, a novel behind-the-ear biosignal sensing wearable. By studying the human anatomy in the ear area, we propose a wearable design to capture brain waves (EEG), eye movements (EOG), facial muscle contractions (EMG), and sweat gland activities (EDA) with a minimal number of sensors. Furthermore, we introduce a Three-fold Cascaded Amplifying (3CA) technique and signal processing algorithms to tame the motion artefacts and environmental noises for capturing high-fidelity signals in real time. We devise a machine-learning model based on the captured signals to detect microsleep with a high temporal resolution. Second, we will discuss our work on developing an efficient Pattern-dRiven Compressive Sensing framework (PROS) to enable long-term biosignal monitoring on low-power wearables. The system introduces tiny on-chip pattern recognition primitives (TinyPR) and a novel pattern-driven compressive sensing technique (PDCS) that exploits the sparsity of biosignals. They provide the ability to capture high-fidelity biosignals with an ultra-low power footprint. This development will unlock long-term healthcare applications on wearable computers, such as epileptic seizure monitoring, microsleep detection, etc. These applications were previously impractical on energy and resource-constrained wearable computers due to the limited battery lifetime, slow response rate, and inadequate biosignal quality. Finally, we will further explore the possibility of capturing the activities of a blood vessel (i.e., superficial temporal artery) lying deep inside the user's ear using an ear-worn wearable computer. The captured optical pulse signals (PPG) are used to develop a frequent and comfortable blood pressure monitoring system called eBP. In contrast to existing devices, eBP introduces a novel in-ear wearable system design and algorithms to eliminate the need to block the blood flow inside the ear, alleviating the user's discomfort

    A 16-Channel Neural Recording System-on-Chip With CHT Feature Extraction Processor in 65-nm CMOS

    Get PDF
    Next-generation invasive neural interfaces require fully implantable wireless systems that can record from a large number of channels simultaneously. However, transferring the recorded data from the implant to an external receiver emerges as a significant challenge due to the high throughput. To address this challenge, this article presents a neural recording system-on-chip that achieves high resource and wireless bandwidth efficiency by employing on-chip feature extraction. Energy-area-efficient 10-bit 20-kS/s front end amplifies and digitizes the neural signals within the local field potential (LFP) and action potential (AP) bands. The raw data from each channel are decomposed into spectral features using a compressed Hadamard transform (CHT) processor. The selection of the features to be computed is tailored through a machine learning algorithm such that the overall data rate is reduced by 80% without compromising classification performance. Moreover, the CHT feature extractor allows waveform reconstruction on the receiver side for monitoring or additional post-processing. The proposed approach was validated through in vivo and off-line experiments. The prototype fabricated in 65-nm CMOS also includes wireless power and data receiver blocks to demonstrate the energy and area efficiency of the complete system. The overall signal chain consumes 2.6 μW and occupies 0.021 mm² per channel, pointing toward its feasibility for 1000-channel single-die neural recording systems

    Adaptive Learning-Based Compressive Sampling for Low-power Wireless Implants

    Get PDF
    Implantable systems are nowadays being used to interface the human brain with external devices, in order to understand and potentially treat neurological disorders. The most predominant design constraints are the system’s area and power. In this paper, we implement and combine advanced compressive sampling algorithms to reduce the power requirements of wireless telemetry. Moreover, we apply variable compression, to dynamically modify the device performance, based on the actual signal need. This paper presents an area-efficient adaptive system for wireless implantable devices, which dynamically reduces the power requirements yielding compression rates from 8× to 64×, with a high reconstruction performance, as qualitatively demonstrated on a human data set. Two different versions of the encoder have been designed and tested, one with and the second without the adaptive compression, requiring an area of 230×235 μm and 200 × 190 μm, respectively, while consuming only 0.47 μW at 0.8 V. The system is powered by a 4-coil inductive link with measured power transmission efficiency of 36%, while the distance between the external and internal coils is 10 mm. Wireless data communication is established by an OOK modulated narrowband and an IR-UWB transmitter, while consuming 124.2 pJ/bit and 45.2 pJ/pulse, respectively

    Mr.Wolf: An Energy-Precision Scalable Parallel Ultra Low Power SoC for IoT Edge Processing

    Get PDF
    This paper presents Mr. Wolf, a parallel ultra-low power (PULP) system on chip (SoC) featuring a hierarchical architecture with a small (12 kgates) microcontroller (MCU) class RISC-V core augmented with an autonomous IO subsystem for efficient data transfer from a wide set of peripherals. The small core can offload compute-intensive kernels to an eight-core floating-point capable of processing engine available on demand. The proposed SoC, implemented in a 40-nm LP CMOS technology, features a 108-mu W fully retentive memory (512 kB). The IO subsystem is capable of transferring up to 1.6 Gbit/s from external devices to the memory in less than 2.5 mW. The eight-core compute cluster achieves a peak performance of 850 million of 32-bit integer multiply and accumulate per second (MMAC/s) and 500 million of 32-bit floating-point multiply and accumulate per second (MFMAC/s) -1 GFlop/s-with an energy efficiency up to 15 MMAC/s/mW and 9 MFMAC/s/mW. These building blocks are supported by aggressive on-chip power conversion and management, enabling energy-proportional heterogeneous computing for always-on IoT end nodes improving performance by several orders of magnitude with respect to traditional single-core MCUs within a power envelope of 153 mW. We demonstrated the capabilities of the proposed SoC on a wide set of near-sensor processing kernels showing that Mr. Wolf can deliver performance up to 16.4 GOp/s with energy efficiency up to 274 MOp/s/mW on real-life applications, paving the way for always-on data analytics on high-bandwidth sensors at the edge of the Internet of Things

    Embedded machine learning using microcontrollers in wearable and ambulatory systems for health and care applications: a review

    Get PDF
    The use of machine learning in medical and assistive applications is receiving significant attention thanks to the unique potential it offers to solve complex healthcare problems for which no other solutions had been found. Particularly promising in this field is the combination of machine learning with novel wearable devices. Machine learning models, however, suffer from being computationally demanding, which typically has resulted on the acquired data having to be transmitted to remote cloud servers for inference. This is not ideal from the system’s requirements point of view. Recently, efforts to replace the cloud servers with an alternative inference device closer to the sensing platform, has given rise to a new area of research Tiny Machine Learning (TinyML). In this work, we investigate the different challenges and specifications trade-offs associated to existing hardware options, as well as recently developed software tools, when trying to use microcontroller units (MCUs) as inference devices for health and care applications. The paper also reviews existing wearable systems incorporating MCUs for monitoring, and management, in the context of different health and care intended uses. Overall, this work addresses the gap in literature targeting the use of MCUs as edge inference devices for healthcare wearables. Thus, can be used as a kick-start for embedding machine learning models on MCUs, focusing on healthcare wearables

    XBioSiP: A Methodology for Approximate Bio-Signal Processing at the Edge

    Full text link
    Bio-signals exhibit high redundancy, and the algorithms for their processing are inherently error resilient. This property can be leveraged to improve the energy-efficiency of IoT-Edge (wearables) through the emerging trend of approximate computing. This paper presents XBioSiP, a novel methodology for approximate bio-signal processing that employs two quality evaluation stages, during the pre-processing and bio-signal processing stages, to determine the approximation parameters. It thereby achieves high energy savings while satisfying the user-determined quality constraint. Our methodology achieves, up to 19x and 22x reduction in the energy consumption of a QRS peak detection algorithm for 0% and <1% loss in peak detection accuracy, respectively.Comment: Accepted for publication at the Design Automation Conference 2019 (DAC'19), Las Vegas, Nevada, US
    • …
    corecore