93 research outputs found

    LTLf/LDLf Non-Markovian Rewards

    Get PDF
    In Markov Decision Processes (MDPs), the reward obtained in a state is Markovian, i.e., depends on the last state and action. This dependency makes it difficult to reward more interesting long-term behaviors, such as always closing a door after it has been opened, or providing coffee only following a request. Extending MDPs to handle non-Markovian reward functions was the subject of two previous lines of work. Both use LTL variants to specify the reward function and then compile the new model back into a Markovian model. Building on recent progress in temporal logics over finite traces, we adopt LDLf for specifying non-Markovian rewards and provide an elegant automata construction for building a Markovian model, which extends that of previous work and offers strong minimality and compositionality guarantees

    Model Checking Synchronized Products of Infinite Transition Systems

    Full text link
    Formal verification using the model checking paradigm has to deal with two aspects: The system models are structured, often as products of components, and the specification logic has to be expressive enough to allow the formalization of reachability properties. The present paper is a study on what can be achieved for infinite transition systems under these premises. As models we consider products of infinite transition systems with different synchronization constraints. We introduce finitely synchronized transition systems, i.e. product systems which contain only finitely many (parameterized) synchronized transitions, and show that the decidability of FO(R), first-order logic extended by reachability predicates, of the product system can be reduced to the decidability of FO(R) of the components. This result is optimal in the following sense: (1) If we allow semifinite synchronization, i.e. just in one component infinitely many transitions are synchronized, the FO(R)-theory of the product system is in general undecidable. (2) We cannot extend the expressive power of the logic under consideration. Already a weak extension of first-order logic with transitive closure, where we restrict the transitive closure operators to arity one and nesting depth two, is undecidable for an asynchronous (and hence finitely synchronized) product, namely for the infinite grid.Comment: 18 page

    Algebraic Language Theory for Eilenberg--Moore Algebras

    Get PDF
    We develop an algebraic language theory based on the notion of an Eilenberg--Moore algebra. In comparison to previous such frameworks the main contribution is the support for algebras with infinitely many sorts and the connection to logic in form of so-called `definable algebras'

    Logics with rigidly guarded data tests

    Get PDF
    The notion of orbit finite data monoid was recently introduced by Bojanczyk as an algebraic object for defining recognizable languages of data words. Following Buchi's approach, we introduce a variant of monadic second-order logic with data equality tests that captures precisely the data languages recognizable by orbit finite data monoids. We also establish, following this time the approach of Schutzenberger, McNaughton and Papert, that the first-order fragment of this logic defines exactly the data languages recognizable by aperiodic orbit finite data monoids. Finally, we consider another variant of the logic that can be interpreted over generic structures with data. The data languages defined in this variant are also recognized by unambiguous finite memory automata

    On a Fragment of AMSO and Tiling Systems

    Get PDF
    We prove that satisfiability over infinite words is decidable for a fragment of asymptotic monadic second-order logic. In this fragment we only allow formulae of the form "exists t forall s exists r: phi(r,s,t)", where phi does not use quantifiers over number variables, and variables r and s can be only used simultaneously, in subformulae of the form s < f(x) <= r

    Maintaining CMSO? Properties on Dynamic Structures with Bounded Feedback Vertex Number

    Get PDF

    Folding interpretations

    Full text link
    We study the polyregular string-to-string functions, which are certain functions of polynomial output size that can be described using automata and logic. We describe a system of combinators that generates exactly these functions. Unlike previous systems, the present system includes an iteration mechanism, namely fold. Although unrestricted fold can define all primitive recursive functions, we identify a type system (inspired by linear logic) that restricts fold so that it defines exactly the polyregular functions. We also present related systems, for quantifier-free functions as well as for linear regular functions on both strings and trees.Comment: Author's version of a LICS 23 pape

    Origin-equivalence of two-way word transducers is in PSPACE

    Get PDF
    We consider equivalence and containment problems for word transductions. These problems are known to be undecidable when the transductions are relations between words realized by non-deterministic transducers, and become decidable when restricting to functions from words to words. Here we prove that decidability can be equally recovered the origin semantics, that was introduced by Bojanczyk in 2014. We prove that the equivalence and containment problems for two-way word transducers in the origin semantics are PSPACE-complete. We also consider a variant of the containment problem where two-way transducers are compared under the origin semantics, but in a more relaxed way, by allowing distortions of the origins. The possible distortions are described by means of a resynchronization relation. We propose MSO-definable resynchronizers and show that they preserve the decidability of the containment problem under resynchronizations. {

    Model checking synchronized products of infinite transition systems

    Get PDF
    Abstract. Formal verification using the model checking paradigm has to deal with two aspects: The system models are structured, often as products of components, and the specification logic has to be expressive enough to allow the formalization of reachability properties. The present paper is a study on what can be achieved for infinite transition systems under these premises. As models we consider products of infinite transition systems with different synchronization constraints. We introduce finitely synchronized transition systems, i.e. product systems which contain only finitely many (parameterized) synchronized transitions, and show that the decidability of FO(R), first-order logic extended by reachability predicates, of the product system can be reduced to the decidability of FO(R) of the components. This result is optimal in the following sense: (1) If we allow semifinite synchronization, i.e. just in one component infinitely many transitions are synchronized, the FO(R)-theory of the product system is in general undecidable. (2) We cannot extend the expressive power of the logic under consideration. Already a weak extension of firstorder logic with transitive closure, where we restrict the transitive closure operators to arity one and nesting depth two, is undecidable for an asynchronous (and hence finitely synchronized) product, namely for the infinite grid. 1
    • …
    corecore