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Abstract

In Markov Decision Processes (MDPs), the reward obtained in
a state is Markovian, i.e., depends on the last state and action.
This dependency makes it difficult to reward more interesting
long-term behaviors, such as always closing a door after it
has been opened, or providing coffee only following a request.
Extending MDPs to handle non-Markovian reward functions
was the subject of two previous lines of work. Both use LTL
variants to specify the reward function and then compile the
new model back into a Markovian model. Building on recent
progress in temporal logics over finite traces, we adopt LDLf
for specifying non-Markovian rewards and provide an elegant
automata construction for building a Markovian model, which
extends that of previous work and offers strong minimality
and compositionality guarantees.

Introduction
Markov Decision Processes (MDPs) are a central model for
sequential decision making under uncertainty. They are used
to model and solve many real-world problems, and to ad-
dress the problem of learning to behave well in unknown
environments. The Markov assumption is a key element of
this model. It states that the effects of an action depend only
on the state it was executed in, and that a reward given at a
state depends only on the previous action and state. It has
long been observed (Bacchus, Boutilier, and Grove 1996;
Thiébaux et al. 2006) that many performance criteria call
for more sophisticated reward functions that do not depend
on the last state only. For example, we may want to reward
a robot that eventually delivers coffee each time it gets a
request; or, to ensure it will access restricted areas only af-
ter having acquired the right permission. Such rewards are
non-Markovian. Interestingly, Littman has advocated at IJ-
CAI 2015 that it may actually be more convenient, from a
design perspective, to assign rewards to the satisfaction of
(non-Markovian) declarative temporal properties, rather than
to states (Littman et al. 2017).

To extend MDPs with non-Markovian rewards we need
a language for specifying such rewards. Markovian rewards
are specified as a function R from the previous state and ac-
tion to the reals. R can be specified using an explicit reward
matrix, or implicitly, by associating a reward with properties
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of the last state and action. With non-Markovian rewards, an
explicit representation is no longer possible, as the number of
possible histories or futures of a state is infinite. Hence, we
must use an implicit specification that can express properties
of past (or future) states. To date, two specification languages
have been proposed. (Bacchus, Boutilier, and Grove 1996)
suggest using a temporal logic of the past. Whether a state
satisfies such a past temporal formula depends on the en-
tire sequence of states leading to the state. Thus, we can
reward appropriate response to a “bring-coffee” command
by associating a reward with the property: the “bring-coffee”
command was issued in the past, and now I have coffee. A
second proposal, by (Thiébaux et al. 2006), uses a temporal
logic of the future with a special symbol to denote awarding
a reward. At each step, one checks whether this symbol must
be true in the current state, for the reward formula to be satis-
fied in the initial state. If that is the case, the current state is
rewarded. This language is not often used in other areas, and
its semantics is more involved.

Existing MDP solution methods, possibly with the ex-
ception of Monte-Carlo tree search algorithms (Kocsis and
Szepesvári 2006), rely heavily on the Markov assumption,
and cannot be applied directly with non-Markovian rewards.
To address this, both proposals above transform the non-
Markovian model to an equivalent Markovian one that can be
solved using existing algorithms, by enriching the state with
information about the past. For example, if we extend our
state to record whether a “bring-coffee” command was issued
earlier, a reward for bringing coffee in states indicating that
“bring-coffee” was issued in the past, is now Markovian. It
rewards the same behaviors as the non-Markovian reward on
the original state. We call a model obtained by extending the
state space of the original non-Markovian MDP, an extended
MDP.

Using extended MDPs is a well-known idea. Since state
space size affects the practical and theoretical complexity of
most MDP solution algorithms, the main question is how to
minimally enrich the state so as to make rewards Markovian.
(Bacchus, Boutilier, and Grove 1996) provide algorithms
for constructing an extended MDP that attempt to minimize
size by reducing the amount of information about the past
that is maintained. While their construction does not gener-
ate a minimal extended MDP, they allude to using automata
minimization techniques to accomplish this. (Thiébaux et
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al. 2006), instead, use a construction that works well with
forward search based algorithms, such as LAO* (Hansen and
Zilberstein 2001) and LRTDP (Bonet and Geffner 2003). Un-
like classical dynamic programming methods that require the
entire state space a-priori, these algorithms generate reach-
able states only. With a good heuristic function, they often
generate only a fraction of the state space. So, while the
augmented search space they obtain is not minimal, because
states are constructed on the fly during forward search, their
approach does not require a-priori enumeration of the state
space, and never generates an unreachable state.

The aim of this paper is to bring to bear developments in
the theory of temporal logic over finite traces to the prob-
lem of specifying and solving MDPs with non-Markovian
rewards. With these tools, which were unavailable to ear-
lier work, we are able to provide a cleaner, more elegant
approach that builds on well understood semantics, much
more expressive languages, and enjoys good algorithmic
properties. We adopt LDLf , a temporal logic of the future
interpreted over finite traces, which extends LTLf , the clas-
sical linear-time temporal logic over finite traces (De Gia-
como and Vardi 2013). LDLf has the same computational fea-
tures of LTLf but is more expressive, as it captures monadic
second-order logic (MSO) on finite traces (i.e., inductively
defined properties), instead of first-order logic (FO), as LTLf .
A number of techniques based on automata manipulation
have been developed for LDLf , to address tasks such as sat-
isfiability, model checking, reactive synthesis, and planning
under full/partial observability (De Giacomo and Vardi 2013;
2015; De Giacomo and Vardi 2016; Torres and Baier 2015;
Camacho et al. 2017c). We exploit such techniques to gener-
ate an extended MDP with good properties.1

Our formalism has three important advantages: 1. En-
hanced expressive power. We move from linear-time tempo-
ral logics used by past authors to LDLf , paying no additional
(worst-case) complexity costs. LDLf can encode in polyno-
mial time LTLf , regular expressions (RE), the past LTL (PLTL)
of (Bacchus, Boutilier, and Grove 1996), and all examples
of (Thiébaux et al. 2006). Moreover, LDLf can naturally
represent “procedural constraints” (Baier et al. 2008), i.e.,
sequencing constraints expressed as programs, using “if” and
“while”. In fact, future logics are more commonly used in
the model checking community, as they are considered more
natural for expressing desirable properties. This is especially
true with complex properties that require the power of LDLf .
2. Minimality and Compositionality. We generate a mini-
mal equivalent extended MDP, exploiting existing techniques
for constructing automata that track the satisfiability of an
LDLf formula. This construction is relatively simple and
compositional: if a new reward formula is added, we only
need to optimize its automaton and add it to the current (ex-
tended) MDP. If the current MDP was minimal, the resulting
(extended) MDP is minimal too. 3. Forward Construction
via Progression. The automaton used to identify when a re-
ward should be given can be constructed in a forward manner
using progression. This ensures the generation of reachable

1We share this objective with work independently carried out in
(Camacho et al. 2017b; 2017a).

states only, as in (Thiébaux et al. 2006). Moreover, we can
combine progression in the space of MDPs with precomputed
automata minimization to obtain the best of both worlds.

Background
MDPs. A Markov Decision Process (MDP) M =
⟨S,A,Tr,R⟩ contains a set S of states, a set A of actions,
and a transition function Tr ∶ S ×A→ Prob(S) that returns
for every state s and action a a distribution over the next state.
We can further restrict actions to be defined on a subset of S
only, and use A(s) to denote the actions applicable in s. The
reward function, R ∶ S × A → R, specifies the real-valued
reward received by the agent when applying action a in state
s. In this paper, states in S are truth assignments to a set P of
primitive propositions. Hence, if φ is a propositional formula
and s a state, we can check whether s ⊧ φ.

A solution to an MDP, called a policy, assigns an action
to each state, possibly conditioned on past states and actions.
The value of policy ρ at s, vρ(s), is the expected sum of (pos-
sibly discounted) rewards when starting at s and selecting
actions based on ρ. Every MDP has an optimal policy, ρ∗, i.e.,
one that maximizes the expected sum of rewards for every
starting state s ∈ S. When the horizon is infinite, there exists
an optimal policy ρ∗ ∶ S → A that is stationary and determin-
istic (i.e., ρ∗ depends only on the current state) (Puterman
2005). There are diverse methods for computing an optimal
policy. With the exception of online simulation-based meth-
ods, they rely on the Markov assumption, and their theoretical
and practical complexity is strongly impacted by ∣S∣.
LTLf and LDLf . LTLf is essentially the standard Linear-
time Temporal Logic LTL (Pnueli 1977) interpreted over fi-
nite, instead of infinite, traces (De Giacomo and Vardi 2013).
LTLf is as expressive as FO over finite traces and star-free
regular expressions (RE), thus strictly less expressive than
RE, which in turn are as expressive as MSO over finite traces.
RE themselves are not convenient for expressing temporal
specifications, since, e.g., they miss direct constructs for nega-
tion and conjunction. For this reason, (De Giacomo and Vardi
2013) introduced LDLf (linear dynamic logic on finite traces),
which merges LTLf with RE, through the syntax of the well-
known logic of programs PDL, propositional dynamic logic
(Fischer and Ladner 1979; Harel, Kozen, and Tiuryn 2000;
Vardi 2011), but interpreted over finite traces.

We consider a variant of LDLf that works also on empty
traces. Formally, LDLf formulas ϕ are built as follows:

ϕ ∶∶= tt ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ ⟨%⟩ϕ
% ∶∶= φ ∣ ϕ? ∣ %1 + %2 ∣ %1;%2 ∣ %∗

where tt stands for logical true; φ is a propositional formula
overP (including true , not to be confused with tt); % denotes
path expressions, which are RE over propositional formulas
φ with the addition of the test construct ϕ? typical of PDL.
We use abbreviations [%]ϕ ≐ ¬⟨%⟩¬ϕ as in PDL, ff ≐ ¬tt
for false, and φ ≐ ⟨φ⟩tt to denote occurence of propositional
formula φ.

Intuitively, ⟨%⟩ϕ states that, from the current step in the
trace, there exists an execution satisfying the RE % such that
its last step satisfies ϕ, while [%]ϕ states that, from the current



step, all executions satisfying the RE % are such that their last
step satisfies ϕ. Tests are used to insert into the execution
path checks for satisfaction of additional LDLf formulas.

The semantics of LDLf is given in terms of finite traces,
i.e., finite sequences π = π0, . . . , πn of elements from the
alphabet 2P . We define π(i) ≐ πi, length(π) ≐ n + 1, and
π(i, j) ≐ πi, πi+1, . . . , πj−1. When j > length(π), π(i, j) ≐
π(i, length(π)).

In decision processes, traces are usually sequences
of states and actions, i.e., they have the form:
⟨s0, a1, s1, . . . , sn−1, an⟩. These can still be represented
as traces of the form π = π0, . . . , πn, by extending the set
P to include one proposition pa per action a, and setting
πi ≐ si ∪ {pa ∣ a = ai+1}. In this way, πi denotes the pair
(si, ai+1). We will always assume this form, even if referring
to sequences of states and actions. Given a finite trace π, an
LDLf formula ϕ, and a position i, we define when ϕ is true
at step i, written π, i ⊧ ϕ, by (mutual) induction, as follows:
• π, i ⊧ tt ;
• π, i ⊧ ¬ϕ iff π, i /⊧ ϕ;
• π, i ⊧ ϕ1 ∧ ϕ2 iff π, i ⊧ ϕ1 and π, i ⊧ ϕ2;
• π, i ⊧ ⟨%⟩ϕ iff there exists i ≤ j such that π(i, j) ∈
L(%) and π, j ⊧ ϕ, where the relation π(i, j) ∈ L(%) is as
follows:
– π(i, j) ∈ L(φ) if j=i+1, i < length(π), and π(i) ⊧ φ

(φ propositional);
– π(i, j) ∈ L(ϕ?) if j = i and π, i ⊧ ϕ;
– π(i, j) ∈ L(%1+%2) if π(i, j) ∈ L(%1) or π(i, j) ∈
L(%2);

– π(i, j) ∈ L(%1;%2) if there exists k ∈ [i, j] such that
π(i, k) ∈ L(%1) and π(k, j) ∈ L(%2);

– π(i, j) ∈ L(%∗) if j = i or there exists k such that
π(i, k) ∈ L(%) and π(k, j) ∈ L(%∗).

Note that if i ≥ length(π), the above definitions still apply;
though, ⟨φ⟩ϕ (φ prop.) and ⟨%⟩ϕ become trivially false.

We say that a trace π satisfies an LDLf formula ϕ, written
π ⊧ ϕ, if π,0 ⊧ ϕ. Also, sometimes we denote by L(ϕ) the
set of traces that satisfy ϕ: L(ϕ) = {π ∣ π ⊧ ϕ}.

LDLf is as expressive as MSO over finite words. It cap-
tures LTLf , by seeing next and until as the abbreviations
○ϕ ≐ ⟨true⟩(ϕ∧¬end) and ϕ1 U ϕ2 ≐ ⟨(ϕ1?; true)∗⟩(ϕ2∧
¬end), and any RE r, with the formula ⟨r⟩end , where
end ≐ [true]ff expresses that the trace has ended. Note that
in addition to end we can also denote the last element of the
trace as last ≐ ⟨true⟩end . Section Non-Markovian Rewards
illustrates several examples of LDLf formulas in our context.

Computing DFA for LDLf formulas
As standard, an NFA is a tuple A = ⟨Σ,Q, q0, δ, F ⟩, where:
(i) Σ is the input alphabet; (ii) Q is the finite set of states;
(iii) q0 ∈ Q is the initial state; (iv) δ ⊆ Q × Σ × Q is the
transition relation; (v) F ⊆ Q is the set of final states. A DFA
is an NFA where δ is a function δ ∶ Q ×Σ→ Q. By L(A) we
mean the set of all traces over Σ accepted by A.

We can associate each LDLf formula ϕ with an (exponen-
tially large) NFA Aϕ = ⟨2P ,Q, q0, δ, F ⟩ that accepts exactly
the traces satisfying ϕ. A direct algorithm (LDLf 2NFA) for

computing the NFA given the LDLf formula, which is a vari-
ant of that in (De Giacomo and Vardi 2015), is reported below.
Its correctness relies on the fact that (i) every LDLf formula
ϕ can be associated with a polynomial alternating automaton
on words (AFW) accepting exactly the traces that satisfy ϕ
(De Giacomo and Vardi 2013), and (ii) every AFW can be
transformed into an NFA, see, e.g., (De Giacomo and Vardi
2013).

The algorithm assumes the LDLf formula is in negation
normal form (NNF), i.e., with negation symbols occurring
only in front of propositions (any LDLf formula can be rewrit-
ten in NNF in linear time). Let ∂ be the following auxiliary
function, which takes as input an (implicitly quoted) LDLf
formula ϕ (in NNF), extended with auxiliary constructs Fψ
and Tψ, and a propositional interpretation Θ for P , and re-
turns a positive boolean formula whose atoms are (implicitly
quoted) ϕ subformulas (not including Fψ or Tψ):

∂(tt,Θ) = true

∂(ff ,Θ) = false

∂(φ,Θ) = ∂(⟨φ⟩tt,Θ) (φ prop.)
∂(ϕ1 ∧ϕ2,Θ) = ∂(ϕ1,Θ) ∧ ∂(ϕ2,Θ)

∂(ϕ1 ∨ϕ2,Θ) = ∂(ϕ1,Θ) ∨ ∂(ϕ2,Θ)

∂(⟨φ⟩ϕ,Θ) =

⎧⎪⎪
⎨
⎪⎪⎩

E(ϕ) if Θ ⊧ φ (φ prop.)
false if Θ /⊧ φ

∂(⟨%?⟩ϕ,Θ) = ∂(%,Θ) ∧ ∂(ϕ,Θ)

∂(⟨%1 + %2⟩ϕ,Θ) = ∂(⟨%1⟩ϕ,Θ) ∨ ∂(⟨%2⟩ϕ,Θ)

∂(⟨%1;%2⟩ϕ,Θ) = ∂(⟨%1⟩⟨%2⟩ϕ,Θ)

∂(⟨%∗⟩ϕ,Θ) = ∂(ϕ,Θ) ∨ ∂(⟨%⟩F⟨%∗⟩ϕ, Θ)

∂([φ]ϕ,Θ) =

⎧⎪⎪
⎨
⎪⎪⎩

E(ϕ) if Θ ⊧ φ (φ prop.)
true if Θ /⊧ φ

∂([%?]ϕ,Θ) = ∂(nnf (¬%),Θ) ∨ ∂(ϕ,Θ)

∂([%1 + %2]ϕ,Θ) = ∂([%1]ϕ,Θ) ∧ ∂([%2]ϕ,Θ)

∂([%1;%2]ϕ,Θ) = ∂([%1][%2]ϕ,Θ)

∂([%∗]ϕ,Θ) = ∂(ϕ,Θ) ∧ ∂([%]T[%∗]ϕ, Θ)

∂(Fψ,Θ) = false

∂(Tψ,Θ) = true

where E(ϕ) recursively replaces in ϕ all occurrences of
atoms of the form Tψ and Fψ by E(ψ); and ∂(ϕ, ε) is de-
fined inductively exactly as above, except for the following
base cases:

∂(⟨φ⟩ϕ, ε) = false ∂([φ]ϕ, ε) = true (φ prop.)

Note that ∂(ϕ, ε) is always either true or false .
The NFA Aϕ for an LDLf formula ϕ is then built in a forward
fashion as shown in Figure 1, where: states of Aϕ are sets of
atoms (each atom is a quoted ϕ subformula) to be interpreted
as conjunctions; the empty conjunction ∅ stands for true;
q′ is a set of quoted subformulas of ϕ denoting a minimal
interpretation such that q′ ⊧ ⋀(ψ∈q) ∂(ψ,Θ) (notice that we
trivially have (∅, a,∅) ∈ δ for every a ∈ 2P ).

Theorem 1. (De Giacomo and Vardi 2015) Algorithm
LDLf 2NFA is correct, i.e., for every finite trace π: π ⊧
ϕ iff π ∈ L(Aϕ). Moreover, it terminates in at most an ex-
ponential number of steps, and generates a set of states S
whose size is at most exponential in the size of the formula ϕ.

The NFA Aϕ can be transformed into a DFA, in exponential
time, following the standard procedure, and then possibly put
in (the unique) minimal form, in polynomial time (Rabin



1: algorithm LDLf 2NFA
2: input LDLf formula ϕ
3: output NFA Aϕ = (2P ,Q, q0, δ, F )
4: q0 ← {ϕ}
5: F ← {∅}
6: if (∂(ϕ, ε) = true) then
7: F ← F ∪ {q0}
8: Q← {q0,∅}, δ ← ∅
9: while (Q or δ change) do

10: for (q ∈ Q) do
11: if (q′ ⊧ ⋀(ψ∈q) ∂(ψ,Θ) then
12: Q← Q ∪ {q′}
13: δ ← δ ∪ {(q,Θ, q′)}
14: if (⋀(ψ∈q′) ∂(ψ, ε) = true) then
15: F ← F ∪ {q′}

Figure 1: LDLf 2NFA algorithm

and Scott 1959). Thus, we can transform any LDLf formula
into a DFA of double exponential size. While this is a worst-
case complexity, in most cases the size of the DFA is actually
manageable (Tabakov and Vardi 2005).
Computing the DFA on-the-fly. All operations above can be
performed on-the-fly, without the need for constructing Aϕ.
To do so, we progress all possible states that the NFA can be in,
after consuming the next trace symbol, and accept the trace
iff, once it has been completely read, the set of possible states
contains a final state. More formally, call a set of possible
states for the NFA a macro state, let Q = {q1, . . . , qn} be the
current macro state (initially Q = Q0 = {q0} = {{ϕ}}), and
let Θ be the next trace symbol. Then, the successor macro
state is the set Q′ = {q′ ∣ ∃q ∈ Q s.t. q′ ⊧ ⋀(ψ∈q) ∂(ψ,Θ)}.
Given an input trace π, we decide whether π ⊧ ϕ by iterating
the above procedure, starting from the initial state Q = Q0,
and accepting π iff the last state obtained includes {true}.

The following observations are in order. Firstly, to com-
pute Q′, only function ∂ is needed. Neither the set of states
Q nor the transition relation δ of the NFA are required. In
other words, the on-the-fly progression does not require the
construction of Aϕ. Secondly, the progression step produces
only one successor macro state Q′, thus transitions are de-
terministic. Indeed, it is immediate to see that the on-the-fly
progression includes the determinization of Aϕ. As it turns
out, the on-the-fly approach performs, in fact, the execution
and the determinization at once and in a lazy way, i.e., avoid-
ing the construction of the entire resulting DFA.

Non-Markovian Rewards
In this section we extend MDPs with LDLf -based reward
functions resulting in a non-Markovian-reward decision pro-
cess (NMRDP). Specifically, a NMRDP is a tuple M =
⟨S,A,Tr,R⟩, where S,A and Tr are as in an MDP, and R
is redefined as R ∶ (S ×A)∗ → R. The reward is now a real-
valued function over finite state-action sequences. Given a
(possibly infinite) trace π, the value of π is:

v(π) =
∣π∣

∑
i=1

γi−1R(⟨π(1), π(2), . . . , π(i)⟩),

where 0 < γ ≤ 1 is the discount factor and π(i) denotes the
pair (si−1, ai). Since every policy ρ ∶ S∗ → A induces a
distribution over the set of possible infinite traces, we can
now define the value of a policy ρ given an initial state s0 as:

vρ(s) = Eπ∼M,ρ,s0v(π).
That is, vρ(s) is the expected value of infinite traces, where
the distribution over traces is defined by the initial state s0,
the transition function Tr, and the policy ρ.

Specifying a non-Markovian reward function explicitly is
cumbersome and unintuitive, even if we only want to reward
a finite number of traces. But, typically, we want to reward
behaviors that correspond to various patterns. LDLf provides
an intuitive and convenient language for specifying R im-
plicitly, using a set of pairs {(ϕi, ri)mi=1}. Intuitively, if the
current (partial) trace is π = ⟨s0, a1, . . . , sn−1, an⟩, the agent
receives at sn a reward ri for every formula ϕi satisfied by π.
Formally:

R(π) = ∑
1≤i≤m∶π⊧ϕi

ri

From now on, we assume R is thus specified. Note that we
use LDLf to reward partial traces. Sometimes, we may want
to reward complete traces only, this is studied later.
Examples. To illustrate the power of LDLf as a mechanism
to specify non-Markovian rewards, we show some examples.

The properties mentioned in the introduction are
LDLf -expressible: [true∗](requestp→ ⟨true∗⟩coffeep) (all
coffee requests from person p will eventually be served);
⟨((¬restra)∗; perma; (¬restra)∗; restra)∗; (¬restra)∗⟩end
(before entering restricted area a the robot must have permis-
sion for a). Note that the first formula can be easily rewritten
in LTLf , as ◻(requestp→◇coffeep), but not the second one.

Also the formulas from (Bacchus, Boutilier, and Grove
1996) and (Thiébaux et al. 2006) are LDLf -expressible:
1. ⟨¬g∗; g⟩end, reward offered only at the first state where g
holds; 2. ⟨true∗; g; true∗⟩end, reward offered at every state
that follows g (included); 3. ⟨¬g∗; g; (¬gk;¬g∗; g)∗)⟩end,
achievement of g is rewarded periodically, at most once every
k steps; 4. ⟨true∗;¬g; g+((¬g1+. . .+¬gk); g)⟩end, achieve-
ment of g is rewarded whenever it occurs within k steps
(k ≥ 1) of a state where ¬g holds; 5. ⟨true∗; g1; g2; g3⟩end,
reward issued whenever g1 is achieved and followed im-
mediately by g2 and then by g3; 6. ⟨true∗; c; true∗; g⟩end
achievement of g is rewarded whenever it follows c;
7. ⟨true∗; c;¬g;¬g∗; g⟩end, only the first achievement of
g that follows c is rewarded; 8. ⟨true∗; c; g⟩end, g is re-
warded whenever it follows c immediately; 9. ⟨true∗; c; g +
((true1 + . . . + truek); g)⟩end, achievement of g is re-
warded whenever occurring within k steps (k ≥ 1) of c;
10. ⟨true∗; c; g + ((¬g1 + . . . + ¬gk); g)⟩end, only the first
achievement of g occurring within k steps (k ≥ 1) of c is
rewarded; 11. ⟨g∗⟩end, reward issued if g has always been
true; 12. ⟨c∗; g⟩end, the holding of c until g is rewarded.

To appreciate the power of LDLf , consider the follow-
ing example. Suppose one prefers policies for a physician
with the following structure (on top of whatever other re-
quirements/rewards exist): the physician should work in clear
phases: check patient (a) then update patient record (b) re-
peatedly. Occasionally, and always in the end, after treating



a patient and updating her record, upload updated records
to server (c). This can be concisely captured in LDLf by
⟨((a; b)∗; c)∗⟩end . The equivalent LTLf formula would be:

(¬bW a) ∧
◻(b→○(¬bW a)) ∧
◻((c ∧○true)→◇c) ∧
◻(a→○b) ∧
◻(b→○(c ∨ a))

If a,b and c are non exclusive formulas (they can be true
simultaneously), the equivalent LTLf formula can be much
more complex (depending on the actual formulas a, b, c),
and in some cases it may not exist at all (as in the limit case
where a = b = c = true).

LDLf , differently from LTLf , can also easily express pro-
cedural constraints (De Giacomo and Vardi 2015; Fritz and
McIlraith 2007; Baier et al. 2008), so one can reward the
traces satisfying such constraints. To see this, consider a sort
of propositional variant of GOLOG (Levesque et al. 1997):

% ∶∶= A ∣ φ? ∣ %1 + %2 ∣ %1;%2 ∣ %∗ ∣ (A prop.)
if φ then %1 else %2 ∣ while φ do %,

These programs correspond to LDLf path expressions, with
if and while abbreviations (Fischer and Ladner 1979):

if φ then %1else %2 ≐ (φ?;%1) + (¬φ?;%2)
while φ do % ≐ (φ?;%)∗;¬φ?

We can reward the traces that follow such (nondetermin-
istic) programs. E.g.: At every point, if it is hot then, if the
air-conditioning is off, turn it on, else do not turn it off :

[true∗]⟨if (hot) then
if (¬airOn) then turnOnAir
else ¬turnOffAir⟩true

As another example: Alternate the following two instruc-
tions: while it is hot, if the air-conditioning is off then turn it
on, else do not turn it off; do something for one step:

⟨(while (hot) do
if (¬airOn) then turnOnAir
else ¬turnOffAir; true)∗⟩end

Building an Equivalent Markovian Model
When the rewards are Markovian, one can compute vρ

(for stationary ρ) and an optimal policy ρ∗ using Bell-
man’s dynamic programming equations (Puterman 2005).
However, this is not the case when the reward is non-
Markovian, and thus the optimal policy may not be sta-
tionary. The standard solution is to formulate an extended
MDP (with Markvian rewards) that is equivalent to the
original NMRDP (Bacchus, Boutilier, and Grove 1996;
Thiébaux et al. 2006).

Definition 1 ((Bacchus, Boutilier, and Grove 1996)). An
NMRDP M = ⟨S,A,Tr,R⟩ is equivalent to an extended
MDPM′ = ⟨S′,A, Tr′,R′⟩ if there exist two functions τ ∶
S′ → S and σ ∶ S → S′ such that

1. ∀s ∈ S ∶ τ(σ(s)) = s;

2. ∀s1, s2 ∈ S and s′1 ∈ S′: if Tr(s1, a, s2) > 0 and τ(s′1) =
s1, there exists a unique s′2 ∈ S′ such that τ(s′2) = s2 and
Tr(s′1, a, s′2) = Tr(s1, a, s2);

3. For any feasible trajectory ⟨s0, a1, . . . , sn−1, an⟩ of M
and ⟨s′0, a1, . . . , s

′
n−1, an⟩ of M′, such that τ(s′i) = si

and σ(s0) = s′0, we have R(⟨s0, a1, . . . , sn−1, an⟩) =
R′(⟨s′0, a1, . . . , s

′
n−1, an⟩).

As in previous work, we restrict our attention to extended
MDPs such that S′ = Q × S, for some set Q.

Given an NMRDP M = ⟨S,A,Tr,R⟩, we now show
how to construct an equivalent extended MDP. First, us-
ing the methods described earlier, construct for each re-
ward formula ϕi its corresponding (minimal) DFA, Aϕi =
⟨2P ,Qi, qi0, δi, Fi⟩ (notice that S ⊆ 2P and δi is total).

Then, define the equivalent extended MDP M′ =
⟨S′,A′, T r′,R′⟩ where:
• S′ = Q1 ×⋯ ×Qm × S is the set of states;
• A′ = A;
• Tr ′ ∶ S′ ×A′ × S′ → [0,1] is defined as follows:

Tr ′(q1, . . . , qm, s, a, q
′
1, . . . , q

′
m, s

′) =
{ Tr(s, a, s′) if ∀i ∶ δi(qi, s) = q′i

0 otherwise;

• R′ ∶ S′ ×A→ R is defined as:

R(q1, . . . , qm, s, a) = ∑
i∶δi(qi,s)∈Fi

ri

That is, the state space is a product of the states of the original
MDP and the various automata. The action set is the same.
Given action a, the S-component of the state progresses
according to the original MDP dynamics, and the other com-
ponents progress according to the transition function of the
corresponding automaton. Finally, in every state, and for ev-
ery 1 ≤ i ≤m, the agent receives the reward associated with
ϕi if the DFA Aϕi reached a final state.
Theorem 2. The NMRDPM = ⟨S,A,Tr,R⟩ is equivalent
to the extended MDPM′ = ⟨S′,A′, T r′,R′⟩.
Proof. Recall that every s′ ∈ S′ has the form (q1, . . . , qm, s).
Define δ(q1, . . . , qm, s) = s. Define σ(s) = (q10, . . . , qm0, s).
We have δ(σ(s)) = s. Condition 2 of Def. 1 is easily verifi-
able by inspection. For condition 3, consider a possible trace
π = ⟨s0, a1, . . . , sn−1, an⟩. We use σ to obtain s′0 = σ(s0)
and given si, we define s′i (for 1 ≤ i < n) to be the unique
state (q1i, . . . , qmi, si) such that qji = δ(qji−1, ai) for all
1 ≤ j ≤ m. We now have a corresponding possible trace of
M′, i.e., π′ = ⟨s′0, a1, s

′
1 . . . , s

′
n−1, an⟩. This is the only feasi-

ble trajectory ofM′ that satisfies Condition 3. The reward at
π = ⟨s0, a1, s1 . . . , sn−1, an⟩ depends only on whether or not
each formula ϕi is satisfied by π. However, by construction
of the automatonAϕi and the transition function Tr′, π ⊧ ϕi
iff s′n−1 = (q1, . . . , qm, s

′
n) and qi ∈ Fi.

Let ρ′ be a policy for the MarkovianM′. It is easy to define
an equivalent policy onM: Let π = ⟨s0, a1, s1 . . . , sn−1, an⟩
be the current history of the process leading to state sn. Let
qin denote the current state of automaton Aϕi given input π.
Define ρ(π) ∶= ρ′(q1n, . . . , qmn, sn).



Theorem 3 ((Bacchus, Boutilier, and Grove 1996)). Given
an NMRDPM, let ρ′ be an optimal policy for an equivalent
MDPM′. Then, policy ρ forM that is equivalent to ρ′ is
optimal forM.

Minimality and Compositionality
One of the main aims of previous work on NMRDP specifi-
cation methods was to help minimize the size of the resulting
MDP. We now explain the attractive minimality properties
supported by our construction. Note that the minimization
discussed below is w.r.t. the extended MDP. It is quite possi-
ble that the original NMRDP can be minimized by removing
duplicate states. Its minimization is orthogonal to the issue
of minimizing the extended MDP, and hence, we assume that
the NMRDP itself is already minimal.

Constructing a Minimal MDP. The Markovian model is
obtained by taking the synchronous product of the original
MDP and a DFA that is itself the synchronous product of
smaller DFA’s, one for each formula. We can apply the sim-
ple, standard automaton minimization algorithm to obtain
a minimal automaton, thus obtaining a minimal MDP. But
even better, as we show below, it is enough to ensure that
each DFA Aϕi in the above construction is minimal to ensure
the overall minimality of the extended MDP.

Theorem 4. If every automaton Aϕi (1 ≤ i ≤m) is minimal
then the extended MDP defined above is minimal.

Proof. Let As be the synchronous product of Aϕi (1 ≤ i ≤
m). We show that no two distinct states of the synchronous
product As are equivalent, and therefore, all of them are
needed, hence the thesis.

Suppose two distinct states of the synchronous productAs
are equivalent. Then, being As a DFA, such two states are
bisimilar. Two states of As are bisimilar (denoted by ∼) iff:
(q1, . . . , qn) ∼ (t1, . . . , tm) implies

• for all i. qi ∈ Fi iff ti ∈ Fi;
• for all a. δs(q1, . . . , qm) = (q′1, . . . , q′m) implies
δs(t1, . . . , tm, a) = (t′1, . . . , t′m) and (q′1, . . . , q′m) ∼
(t′1, . . . , t′m);

• for all a. δs(t1, . . . , tm) = (t′1, . . . , t′m) implies
δs(q1, . . . , qm, a) = (q′1, . . . , q′m) and (q′1, . . . , q′m) ∼
(t′1, . . . , t′m).

Now we show that (q1, . . . , qm) ∼ (t1, . . . , tm) implies
qi = ti, for all i. To check this we show that the relation
“project on i”, Πi((q1, . . . , qm) ∼ (t1, . . . , tm)) extracting
the i-th component on the left and on the right of ∼ is a
bisimulation for states in Ai. Indeed it is immediate to verify
that Πi((q1, . . . , qm) ∼ (t1, . . . , tm)) implies

• qi ∈ Fi iff ti ∈ Fi;
• for all a, δi(qi, a) = q′i implies δi(ti, a) = t′i and

Πi((q′1, . . . , q′m) ∼ (t′1, . . . , t′m));
• for all a, δi(ti, a) = t′i implies δi(qi, a) = qi and

Πi((q′1, . . . , q′m) ∼ (t′1, . . . , t′m)).

Hence if there are two distinct states (q1, . . . , qm) ∼
(t1, . . . , tm) then at least for one i it must be the case that qi
and ti are distinct and bisimilar and hence equivalent. But
this is impossible since each DFA Aϕi is minimal.

In general, the synchronous product of minimal DFA’s can
be minimized further. The theorem shows that no further
minimization is possible if the final states of the automata are
kept distinct, to assign proper rewards. This is not required
if one does not need to distinguish between multiple reward
formulas (in which case, final states can be conjoined).

This theorem also implies that the construction is compo-
sitional and, hence, incremental: If a new formula is added,
we need not change the MDP, but simply extend it with one
additional component. If the original MDP was minimal and
the new component is minimal, so is the resulting MDP.
Generating Reachable States Only. Minimizing the state
space of the extended MDP is important if one wants to apply
classical dynamic programming algorithms such as value
iteration (Bellman 1957) and policy iteration (Howard 1960).
However, these methods typically do not scale up as the size
of S increases. Instead, search-based algorithms, such as
LAO∗ (Hansen and Zilberstein 2001), LRTDP (Bonet and
Geffner 2003), or MCTS (Kocsis and Szepesvári 2006) are
preferred. Their main advantage is that they explore only a
subset of the reachable states. These states are generated by
progressing the initial state with a sequence of actions. For
this reason, (Thiébaux et al. 2006) developed an approach
in which progression can be applied to generate the states
of the extended MDP, as well. That is, one does not need to
enumerate the entire set S of the original NMRDP and the
entire set S′ of the extended MDP a priori.

We, too, support progression, and in a manner that is sim-
pler to understand and analyze. Recall that the automaton that
tracks the satisfaction of a reward formula can be constructed
by progression, and that the states of the extended MDP are
simply vectors that represent the state of the NMRDP and
the state of the automaton for each reward formula. Hence,
we can trivially support progression by simply progressing
each component of this vector in the standard manner.

As observed by (Thiébaux et al. 2006), when progression
is used, the constructed states may not be minimal. That is,
one may generate two extended states that have an identical
underlying MDP state but a different extended part, yet both
states are equivalent in the sense that we get the same reward
behavior from both. This issue is easy to understand with our
automata-based construction: It is simply a result of the fact
that the automaton constructed by progression is not minimal.
Our construction provides the user with a clear set of options:

1. Apply simple progression, possibly generating a non-
minimal automaton for some of the formulas. This is es-
sentially the approach of (Thiébaux et al. 2006). (But see
the discussion in Section .)

2. Build the automata for the reward formulas and mini-
mize them off-line before starting search. Then, apply
progression using the minimal automata. This approach is
attractive because the reward formulas are typically much
smaller than the MDP and so is the size of their automata.



Hence the effort of constructing and minimizing them will
not be significant. Yet, by minimizing them a-priori, we
can reduce the size of the combined state space (which is
a product of the two) significantly.

3. Apply a more complex progression algorithm that gen-
erates a minimal automaton on-the-fly in time quadratic
in the size of the minimal automata for the reward formu-
las (Lee and Yannakakis 1992).

Getting rewards for complete traces only. We may want
to reward an agent for its entire behavior rather than for
each prefix of it. This means that the value of a sequence
π = ⟨s0, a1, s1 . . . , sn−1, an⟩ is defined as follows:

v(π) = ∑
i∶π⊧ϕi

ri

Behaviors optimal w.r.t. this definition may differ from
those optimal w.r.t. the original definition in which rewards
are collected following each action. Now, an agent must
attempt to make as many formulas true at once, as it does not
get any “credit” for having achieved them in the past.

Given an NMRDPM with the above reward semantics,
we can easily generate an equivalent MDP using the above
construction, preceded by the following steps:

1. Add a special action stop to A.
2. Add a new proposition done to S.
3. No action is applicable in a state in which done is true.
4. The only effect of the stop action is to make done be true.
5. Convert every reward formula ϕi to done ∧ ϕi.

Interestingly, when focussing on complete traces, our
framework becomes an extension of Goal MDP planning
that handles temporally extended goals, see, e.g., Chapter 6
and Chapter 4 of (Geffner and Bonet 2013).

Comparison with previous proposals
Capturing PLTL rewards. Our proposal can be seen as ex-
tending (Bacchus, Boutilier, and Grove 1996). There, rewards
are assigned to partial traces whenever the last state of the
trace satisfies past-LTL (PLTL) formulas. Without introducing
explicitly PLTL, but given a partial trace π0, . . . , πn we re-
verse it into πn, . . . , π0 and evaluate it over the LTLf formula
ϕ obtained from the PLTL formula by simply replacing the
past operators with the corresponding future operators (e.g.,
replace since with eventually). Then, the setting remains anal-
ogous to the one shown above. In particular, we can construct
the NFA Aϕ associated with ϕ and, instead of reversing the
partial traces, reverse Aϕ, thus getting an NFA A−

ϕ, by simply
reversing the edge directions and switching initial and final
states. This can be done in linear time. If we now determinize
(and minimize) A−

ϕ, getting the (minimal) DFA A−
ϕ, we can

proceed exactly as above.
Given this essential equivalence of PLTL and LTLf , and

the fact that LDLf is strictly more expressive than LTLf , we
conclude that our setting is strictly more expressive than the
one in (Bacchus, Boutilier, and Grove 1996). In addition,
unlike (Bacchus, Boutilier, and Grove 1996), our automata
construction algorithm is based on progression, allowing

us to use information about the initial state to prevent the
generation of unreachable states.

Comparing with $FLTL rewards. In (Thiébaux, Kabanza,
and Slaney 2002; Gretton, Price, and Thiébaux 2003;
Thiébaux et al. 2006) a sophisticated temporal logic, called
$FLTL is introduced, which is able to specify explicitly when
a partial (finite) trace gets a reward. In fact, many formulas
in this logic cannot naturally be interpreted as specifying rea-
sonable rewards. Thus, the results of (Thiébaux et al. 2006)
focus on a class of formulas called reward-normal. This class
has been further studied in (Slaney 2005) and in (Gretton
2014). In this work it is first shown that a notable fragment
of reward-perfect formulas is equivalent in expressive power
to star-free RE, and hence equivalent to LTLf . Then, reward-
normal formulas are shown to be expressible as RE, and
hence expressible in LDLf . Moreover, in (Gretton 2014), a
variant of reward-normal formulas is introduced with exactly
the same expressive power as REf , and hence equivalent to
LDLf . Interestingly, the reduction to RE is based on an actual
translation into finite state automata.

Besides the useful ability to build the extended MDP by
progression, (Thiébaux et al. 2006) discuss a minimality
notion called blind minimality where no two states in the
extended MDP lead to the same reward behavior under all
conceivable futures (where a “conceivable future” is any
future sequence of states and actions, including ones that are
not reachable). Observe that if one considers an NMRDP
with a single state, this amounts to being able to generate the
minimal automata for the reward formulas by progression.
We are unaware of any general method for providing such
a construction in linear time, which further hints that the
set of formulas for which this result holds is rather limited.
Given the above, we cannot claim to provide blind minimality.
We can only speculate that given the similarity between their
progression algorithm and the standard progression algorithm
in cases where they are both defined, we should be able to
offer similar guarantees. Thus, the formalism developed here
is simpler syntactically and semantically, most likely more
expressive, can support minimization without requiring the
construction of the NMRDP, but supports progression as well,
and is compositional.

Conclusion
We presented a new language for specifying non-Markovian
rewards in MDPs. Our language is based on LTLf /LDLf and
is more expressive than previous proposals and being based
on a standard temporal logic of the future, is likely to be
more intuitive to use. We showed how to construct a minimal
equivalent MDP, and since we rely on general methods for
tracking temporal formulas, the construction is cleaner. Being
based on progression, it can use information about the initial
state to prune unreachable states.

In future work we intend to examine the use of monitoring
notions developed for LTLf and LDLf (Bauer, Leucker, and
Schallhart 2010; De Giacomo et al. 2014; Maggi et al. 2011).
Using such monitors one could extract early rewards that
guide the process to get full rewards later. Another impor-
tant direction for future work is exploiting non-Markovian



rewards in reinforcement learning (RL) to provide better guid-
ance to the learning agent, as well as extending inverse RL
methods to learn to assign non-Markovian rewards in a state.

Finally, we observe that LDLf can capture all co-safe LTL
formulas, i.e., LTL formulas whose automaton is a DFA (in-
stead of a Büchi automaton). Co-safe LTL formulas were
used in Robotics to select traces of an MDP that represent
behaviors of interest (Lacerda, Parker, and Hawes 2014;
2015). Thus, instead of co-safe LTL, we can use LDLf to
gain expressivity in trace specification at essentially no cost.
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Thiébaux, S.; Gretton, C.; Slaney, J. K.; Price, D.; and Ka-
banza, F. 2006. Decision-theoretic planning with non-
markovian rewards. J. Artif. Intell. Res. (JAIR) 25:17–74.
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