950 research outputs found

    Compositional abstraction and safety synthesis using overlapping symbolic models

    Full text link
    In this paper, we develop a compositional approach to abstraction and safety synthesis for a general class of discrete time nonlinear systems. Our approach makes it possible to define a symbolic abstraction by composing a set of symbolic subsystems that are overlapping in the sense that they can share some common state variables. We develop compositional safety synthesis techniques using such overlapping symbolic subsystems. Comparisons, in terms of conservativeness and of computational complexity, between abstractions and controllers obtained from different system decompositions are provided. Numerical experiments show that the proposed approach for symbolic control synthesis enables a significant complexity reduction with respect to the centralized approach, while reducing the conservatism with respect to compositional approaches using non-overlapping subsystems

    Sparsity-Sensitive Finite Abstraction

    Full text link
    Abstraction of a continuous-space model into a finite state and input dynamical model is a key step in formal controller synthesis tools. To date, these software tools have been limited to systems of modest size (typically \leq 6 dimensions) because the abstraction procedure suffers from an exponential runtime with respect to the sum of state and input dimensions. We present a simple modification to the abstraction algorithm that dramatically reduces the computation time for systems exhibiting a sparse interconnection structure. This modified procedure recovers the same abstraction as the one computed by a brute force algorithm that disregards the sparsity. Examples highlight speed-ups from existing benchmarks in the literature, synthesis of a safety supervisory controller for a 12-dimensional and abstraction of a 51-dimensional vehicular traffic network
    corecore