984 research outputs found

    Compositional Construction of Real-Time Dataflow Networks

    Get PDF
    Increasing sizes of present-day distributed software systems call for coordination models which are both \emph{modular} and \emph{scalable}. Precise modelling of real-life applications further requires the notion of \emph{real-time}. In this paper, we present a modular formal development of a compositional model for real-time coordination in dataflow networks. While real-time dataflow networks are typically asynchronous, our approach includes coordination patterns which combine, but are not limited to, synchrony and asynchrony. We define a constraint- and SAT-based encoding, which allows us to benefit from high-end constraint solving techniques when inspecting valid interactions of the system

    TRACTABLE DATA-FLOW ANALYSIS FOR DISTRIBUTED SYSTEMS

    No full text
    Automated behavior analysis is a valuable technique in the development and maintainence of distributed systems. In this paper, we present a tractable dataflow analysis technique for the detection of unreachable states and actions in distributed systems. The technique follows an approximate approach described by Reif and Smolka, but delivers a more accurate result in assessing unreachable states and actions. The higher accuracy is achieved by the use of two concepts: action dependency and history sets. Although the technique, does not exhaustively detect all possible errors, it detects nontrivial errors with a worst-case complexity quadratic to the system size. It can be automated and applied to systems with arbitrary loops and nondeterministic structures. The technique thus provides practical and tractable behavior analysis for preliminary designs of distributed systems. This makes it an ideal candidate for an interactive checker in software development tools. The technique is illustrated with case studies of a pump control system and an erroneous distributed program. Results from a prototype implementation are presented

    Relational Semantics of Non-Deterministic Dataflow

    Get PDF
    We recast dataflow in a modern categorical light using profunctors as a generalization of relations. The well known causal anomalies associated with relational semantics of indeterminate dataflow are avoided, but still we preservemuch of the intuitions of a relational model. The development fits with the view of categories of models for concurrency and the general treatment of bisimulation they provide. In particular it fits with the recent categorical formulation of feedback using traced monoidal categories. The payoffs are: (1) explicit relations to existing models and semantics, especially theusual axioms of monotone IO automata are read off from the definition of profunctors, (2) a new definition of bisimulation for dataflow, the proof of the congruence of which benefits from the preservation properties associated with open maps and (3) a treatment of higher-order dataflow as a biproduct,essentially by following the geometry of interaction programme

    Compositional semantics of dataflow networks with query-driven communication of exact values

    Get PDF
    We develop and study the concept of dataflow process networks as used for exampleby Kahn to suit exact computation over data types related to real numbers, such as continuous functions and geometrical solids. Furthermore, we consider communicating these exact objectsamong processes using protocols of a query-answer nature as introduced in our earlier work. This enables processes to provide valid approximations with certain accuracy and focusing on certainlocality as demanded by the receiving processes through queries. We define domain-theoretical denotational semantics of our networks in two ways: (1) directly, i. e. by viewing the whole network as a composite process and applying the process semantics introduced in our earlier work; and (2) compositionally, i. e. by a fixed-point construction similarto that used by Kahn from the denotational semantics of individual processes in the network. The direct semantics closely corresponds to the operational semantics of the network (i. e. it iscorrect) but very difficult to study for concrete networks. The compositional semantics enablescompositional analysis of concrete networks, assuming it is correct. We prove that the compositional semantics is a safe approximation of the direct semantics. Wealso provide a method that can be used in many cases to establish that the two semantics fully coincide, i. e. safety is not achieved through inactivity or meaningless answers. The results are extended to cover recursively-defined infinite networks as well as nested finitenetworks. A robust prototype implementation of our model is available

    The earlier the better: a theory of timed actor interfaces

    Get PDF
    Programming embedded and cyber-physical systems requires attention not only to functional behavior and correctness, but also to non-functional aspects and specifically timing and performance. A structured, compositional, model-based approach based on stepwise refinement and abstraction techniques can support the development process, increase its quality and reduce development time through automation of synthesis, analysis or verification. Toward this, we introduce a theory of timed actors whose notion of refinement is based on the principle of worst-case design that permeates the world of performance-critical systems. This is in contrast with the classical behavioral and functional refinements based on restricting sets of behaviors. Our refinement allows time-deterministic abstractions to be made of time-non-deterministic systems, improving efficiency and reducing complexity of formal analysis. We show how our theory relates to, and can be used to reconcile existing time and performance models and their established theories

    Hierarchical programming language for modal multi-rate real-time stream processing applications

    Get PDF
    Modal multi-rate stream processing applications with real-time constraints which are executed on multi-core embedded systems often cannot be conveniently specified using current programming languages. An important issue is that sequential programming languages do not allow for convenient programming of multi-rate behavior, whereas parallel programming languages are insufficiently analyzable such that deadlock-freedom and a sufficient throughput cannot be guaranteed.\ud \ud In this paper a programming language is proposed by which a sequential specification of the behavior of an application can be nested in a concurrent specification. Multi-rate behavior can be conveniently expressed using concurrent modules which have well-defined, but restricted interfaces. Complex control behavior can be expressed in the sequential specification of the body of a module. The language is not Turing complete such that a Compositional Temporal Analysis (CTA) model can be derived. It is shown that the CTA model can be used despite the presence of control statements and that the composition of black-box components is possible. Algorithms with a polynomial time complexity can be used to verify whether throughput and latency constraints are met and to determine sufficient buffer capacities.\ud \ud A Phase Alternating Line (PAL) video decoder application is used to demonstrate the applicability of the presented language and analysis approach
    • …
    corecore