4 research outputs found

    Computational Methods Generating High-Resolution Views of Complex Structure-Activity Relationships

    Get PDF
    The analysis of structure-activity relationships (SARs) of small bioactive compounds is a central task in medicinal chemistry and pharmaceutical research. The study of SARs is in principle not limited to computational methods, however, as data sets rapidly grow in size, advanced computational approaches become indispensable for SAR analysis. Activity landscapes are one of the preferred and widely used computational models to study large-scale SARs. Activity cliffs are cardinal features of activity landscape representations and are thought to contain high SAR information content. This work addresses major challenges in systematic SAR exploration and specifically focuses on the design of novel activity landscape models and comprehensive activity cliff analysis. In the first part of the thesis, two conceptually different activity landscape representations are introduced for compounds active against multiple targets. These models are designed to provide an intuitive graphical access to compounds forming single and multi-target activity cliffs and displaying multi-target SAR characteristics. Further, a systematic analysis of the frequency and distribution of activity cliffs is carried out. In addition, a large-scale data mining effort is designed to quantify and analyze fingerprint-dependent changes in SAR information. The second part of this work is dedicated to the concept of activity cliffs and their utility in the practice of medicinal chemistry. Therefore, a computational approach is introduced to search for detectable SAR advantages associated with activity cliffs. In addition, the question is investigated to what extent activity cliffs might be utilized as starting points in practical compound optimization efforts. Finally, all activity cliff configurations formed by currently available bioactive compounds are thoroughly examined. These configurations are further classified and their frequency of occurrence and target distribution are determined. Furthermore, the activity cliff concept is extended to explore the relation between chemical structures and compound promiscuity. The notion of promiscuity cliffs is introduced to deduce structural modifications that might induce large-magnitude promiscuity effects

    Composition and Topology of Activity Cliff Clusters Formed by Bioactive Compounds

    No full text
    The assessment of activity cliffs has thus far mostly focused on compound pairs, although the majority of activity cliffs are not formed in isolation but in a coordinated manner involving multiple active compounds and cliffs. However, the composition of coordinated activity cliff configurations and their topologies are unknown. Therefore, we have identified all activity cliff configurations formed by currently available bioactive compounds and analyzed them in network representations where activity cliff configurations occur as clusters. The composition, topology, frequency of occurrence, and target distribution of activity cliff clusters have been determined. A limited number of large cliff clusters with unique topologies were identified that were centers of activity cliff formation. These clusters originated from a small number of target sets. However, most clusters were of small to moderate size. Three basic topologies were sufficient to describe recurrent activity cliff cluster motifs/topologies. For example, frequently occurring clusters with star topology determined the scale-free character of the global activity cliff network and represented a characteristic activity cliff configuration. Large clusters with complex topology were often found to contain different combinations of basic topologies. Our study provides a first view of activity cliff configurations formed by currently available bioactive compounds and of the recurrent topologies of activity cliff clusters. Activity cliff clusters of defined topology can be selected, and from compounds forming the clusters, SAR information can be obtained. The SAR information of activity cliff clusters sharing a/one specific activity and topology can be compared

    Investigating phosphate structural replacements through computational and experimental approaches

    Get PDF
    Bioisosteric replacements are used in drug design during lead generation and optimization processes with the aim to replace one functional group of a known molecule by another while retaining biological activity. The reason to use bioisosteric replacements are typically to optimize bioavailability or reducing toxicity. Phosphate groups represent a paradigm to study bioisosteric replacements. Protein-phosphate interaction plays a critical role during molecular recognition processes, and for example kinases represent one of the largest families of drug targets. However, some challenges exclude phosphate as a promising lead-like building block: i) charged phosphates do not cross molecular membranes; ii) some widely expressed proteins such as phosphatases easily hydrolyze phosphoric acid esters, which lead phosphate-containing ligands to lose their binding affinities before reaching their biological targets; iii) introduction of phosphate groups to parent scaffold is not easy. In the first part of the thesis work, I designed and implemented a computational protocol to mine information about phosphate structural replacements deposited in the Protein Data Bank. I constructed 116, 314, 271, and 42 sets of superimposed proteins where each set contains a reference protein to either POP, AMP, ADP, or ATP as well as a certain number of non-nucleotide ligands. 929 of such ligands are under study. The chemotypes that came out as structural replacements are diverse, ranging from common phosphate isosteres such as carboxyl, amide and squaramide to more surprising moieties such as benzoxaborole and aromatic ring systems. I exemplified some novel examples and interpreted the mechanism behind them. Local structural replacements are circumstance dependent: one chemical group valid in certain set-up cannot necessarily guarantee the success of another. The data from the study is available at http://86.50.168.121/phosphates_LSR.php. In the second part, I synthesized fifteen compounds retaining the adenosine moieties and bearing bioisosteric replacements of the phosphate at the ribose 5'-oxygen to test their stability toward human macro domain protein 1. These compounds are composed of either a squaryldiamide or an amide group as the bioisosteric replacement and/or as a linker. To these groups a variety of substituents were attached: phenyl, benzyl, pyridyl, carboxyl, hydroxy and tetrazolyl. Biological evaluation using differential scanning fluorimetry showed that four compounds stabilized human MDO1 at levels comparable to ADP and one at level comparable to AMP. Virtual screening was also run to identify MDO1 binding ligands. Among 20,000 FIMM database lead-like molecules, 39 compounds were selected for testing and eleven compounds found active based on ADPr and Poly-ADPr competition binding assay. The assay is however not well validated and a second confirmatory assay was conducted using calorimetry. To the best of my knowledge, this is the first report of non-endogenous ligands of the human MDO1. Altogether, this thesis highlights the versatility of molecular recognition processes that accompanies chemical replacements in compounds; this in turns shows the limits of the concepts of molecular similarity and classical bioisosterism that are based on the conservation of molecular interactions.Bioisosteeristä korvausta käytetään lääkeainekehityksessä johtolankamolekyylien tuottamisessa ja optimoinnissa. Tarkoitus on vaihtaa molekyylin funktionaalinen ryhmä toiseksi biologisen aktiivisuuden muuttumatta. Yleensä tavoitteena on parantaa biologista hyötyosuutta tai vähentää toksisuutta. Fosfaattiryhmää on tässä työssä käytetty esimerkkiryhmänä bioisosteerisiä korvauksia tutkittaessa. Väitöskirjatyön ensimmäisessä osassa suunnittelin ja toteutin tiedonlouhintaprotokollan etsiäkseni Protein Data Bank -tietokannasta korvaavia rakenteita fosfaattiryhmälle. Kokosin 116, 314, 271 ja 42 proteiiniryhmää, joissa kussakin on vertailumolekyylinä fosfaattiryhmän sisältävä POP, AMP, ADP tai ATP, ja lisäksi ei-nukleotidisiä ligandeja. Yhteensä 929 ei-nukleotidistä ligandia tutkittiin. Niistä löydettiin monipuolisesti fosfaattiryhmän korvaavia rakenteita, muun muassa yleisesti tunnettuja fosfaatin bioisosteerejä kuten karboksyyli, amidi ja squaramidi, mutta myös erikoisempia ryhmiä kuten bentsoksaboroli ja aromaattisia rengasrakenteita. Työssäni esittelen muutamia uusia rakenteita ja tulkitsen niiden vaikutusmekanismeja. Rakenteiden korvaaminen riippuu tilanteesta; yhteen tapaukseen sopiva korvaava ryhmä ei välttämättä toimi toisessa. Työn toisessa osassa syntetisoin 15 adenosiiniyhdistettä, joiden riboosiosan 5'-hapessa oleva fosfaattiryhmä on korvattu vaihtelevalla bioisosteerisellä ryhmällä. Bioisosteerisenä ryhmänä tai linkkerinä oli joko squaramidi- tai amidiryhmä. Yhdisteiden vakaus testattiin ihmisen MDO1-makrodomeeniproteiinin kanssa.Julkaisussa virheellinen verkkoaineiston ISBN 978-951-51-0045-0
    corecore