34,781 research outputs found

    Formal certification and compliance for run-time service environments

    Get PDF
    With the increased awareness of security and safety of services in on-demand distributed service provisioning (such as the recent adoption of Cloud infrastructures), certification and compliance checking of services is becoming a key element for service engineering. Existing certification techniques tend to support mainly design-time checking of service properties and tend not to support the run-time monitoring and progressive certification in the service execution environment. In this paper we discuss an approach which provides both design-time and runtime behavioural compliance checking for a services architecture, through enabling a progressive event-driven model-checking technique. Providing an integrated approach to certification and compliance is a challenge however using analysis and monitoring techniques we present such an approach for on-going compliance checking

    Multilevel Contracts for Trusted Components

    Full text link
    This article contributes to the design and the verification of trusted components and services. The contracts are declined at several levels to cover then different facets, such as component consistency, compatibility or correctness. The article introduces multilevel contracts and a design+verification process for handling and analysing these contracts in component models. The approach is implemented with the COSTO platform that supports the Kmelia component model. A case study illustrates the overall approach.Comment: In Proceedings WCSI 2010, arXiv:1010.233

    Ontology-based modelling of architectural styles

    Get PDF
    The conceptual modelling of software architectures is of central importance for the quality of a software system. A rich modelling language is required to integrate the different aspects of architecture modelling, such as architectural styles, structural and behavioural modelling, into a coherent framework. Architectural styles are often neglected in software architectures. We propose an ontological approach for architectural style modelling based on description logic as an abstract, meta-level modelling instrument. We introduce a framework for style definition and style combination. The application of the ontological framework in the form of an integration into existing architectural description notations is illustrated

    Combining behavioural types with security analysis

    Get PDF
    Today's software systems are highly distributed and interconnected, and they increasingly rely on communication to achieve their goals; due to their societal importance, security and trustworthiness are crucial aspects for the correctness of these systems. Behavioural types, which extend data types by describing also the structured behaviour of programs, are a widely studied approach to the enforcement of correctness properties in communicating systems. This paper offers a unified overview of proposals based on behavioural types which are aimed at the analysis of security properties

    Composing features by managing inconsistent requirements

    Get PDF
    One approach to system development is to decompose the requirements into features and specify the individual features before composing them. A major limitation of deferring feature composition is that inconsistency between the solutions to individual features may not be uncovered early in the development, leading to unwanted feature interactions. Syntactic inconsistencies arising from the way software artefacts are described can be addressed by the use of explicit, shared, domain knowledge. However, behavioural inconsistencies are more challenging: they may occur within the requirements associated with two or more features as well as at the level of individual features. Whilst approaches exist that address behavioural inconsistencies at design time, these are overrestrictive in ruling out all possible conflicts and may weaken the requirements further than is desirable. In this paper, we present a lightweight approach to dealing with behavioural inconsistencies at run-time. Requirement Composition operators are introduced that specify a run-time prioritisation to be used on occurrence of a feature interaction. This prioritisation can be static or dynamic. Dynamic prioritisation favours some requirement according to some run-time criterion, for example, the extent to which it is already generating behaviour

    Pattern-based software architecture for service-oriented software systems

    Get PDF
    Service-oriented architecture is a recent conceptual framework for service-oriented software platforms. Architectures are of great importance for the evolution of software systems. We present a modelling and transformation technique for service-centric distributed software systems. Architectural configurations, expressed through hierarchical architectural patterns, form the core of a specification and transformation technique. Patterns on different levels of abstraction form transformation invariants that structure and constrain the transformation process. We explore the role that patterns can play in architecture transformations in terms of functional properties, but also non-functional quality aspects

    Refinement for user interface designs

    Get PDF
    Formal approaches to software development require that we correctly describe (or specify) systems in order to prove properties about our proposed solution prior to building it. We must then follow a rigorous process to transform our specification into an implementation to ensure that the properties we have proved are retained. Different transformation, or refinement, methods exist for different formal methods, but they all seek to ensure that we can guide the transformation in a way which preserves the desired properties of the system. Refinement methods also allow us to subsequently compare two systems to see if a refinement relation exists between the two. When we design and build the user interfaces of our systems we are similarly keen to ensure that they have certain properties before we build them. For example, do they satisfy the requirements of the user? Are they designed with known good design principles and usability considerations in mind? Are they correct in terms of the overall system specification? However, when we come to implement our interface designs we do not have a defined process to follow which ensures that we maintain these properties as we transform the design into code. Instead, we rely on our judgement and belief that we are doing the right thing and subsequent user testing to ensure that our final solution remains useable and satisfactory. We suggest an alternative approach, which is to define a refinement process for user interfaces which will allow us to maintain the same rigorous standards we apply to the rest of the system when we implement our user interface designs
    corecore