9,123 research outputs found

    cphVB: A System for Automated Runtime Optimization and Parallelization of Vectorized Applications

    Full text link
    Modern processor architectures, in addition to having still more cores, also require still more consideration to memory-layout in order to run at full capacity. The usefulness of most languages is deprecating as their abstractions, structures or objects are hard to map onto modern processor architectures efficiently. The work in this paper introduces a new abstract machine framework, cphVB, that enables vector oriented high-level programming languages to map onto a broad range of architectures efficiently. The idea is to close the gap between high-level languages and hardware optimized low-level implementations. By translating high-level vector operations into an intermediate vector bytecode, cphVB enables specialized vector engines to efficiently execute the vector operations. The primary success parameters are to maintain a complete abstraction from low-level details and to provide efficient code execution across different, modern, processors. We evaluate the presented design through a setup that targets multi-core CPU architectures. We evaluate the performance of the implementation using Python implementations of well-known algorithms: a jacobi solver, a kNN search, a shallow water simulation and a synthetic stencil simulation. All demonstrate good performance

    GPU devices for safety-critical systems: a survey

    Get PDF
    Graphics Processing Unit (GPU) devices and their associated software programming languages and frameworks can deliver the computing performance required to facilitate the development of next-generation high-performance safety-critical systems such as autonomous driving systems. However, the integration of complex, parallel, and computationally demanding software functions with different safety-criticality levels on GPU devices with shared hardware resources contributes to several safety certification challenges. This survey categorizes and provides an overview of research contributions that address GPU devices’ random hardware failures, systematic failures, and independence of execution.This work has been partially supported by the European Research Council with Horizon 2020 (grant agreements No. 772773 and 871465), the Spanish Ministry of Science and Innovation under grant PID2019-107255GB, the HiPEAC Network of Excellence and the Basque Government under grant KK-2019-00035. The Spanish Ministry of Economy and Competitiveness has also partially supported Leonidas Kosmidis with a Juan de la Cierva Incorporación postdoctoral fellowship (FJCI-2020- 045931-I).Peer ReviewedPostprint (author's final draft
    • …
    corecore