151,274 research outputs found

    On the Stabilizing Action of Protein Denaturants: Acetonitrile Effect on Stability of Lysozyme in Aqueous Solutions

    Get PDF
    Stability of hen lysozyme in the presence of acetonitrile (MeCN) at different pH values of the medium was studied by scanning microcalorimetry with a special emphasis on determination of reliable values of the denaturational heat capacity change. It was found that the temperature of denaturation decreases on addition of MeCN. However, the free energy extrapolation showed that below room temperature the thermodynamic stability increases at low concentrations of MeCN in spite of the general destabilizing effect at higher concentrations and temperatures. Charge-induced contribution to this stabilization was shown to be negligible (no pH-dependence was found); therefore, the most probable cause for the phenomenon is an increase of hydrophobic interactions at low temperatures in aqueous solutions containing small amounts of the organic additive. The difference in preferential solvation of native and denatured states of lysozyme was calculated from the stabilization free energy data. It was found that the change in preferential solvation strongly depends on the temperature in the water-rich region. At the higher MeCN content this dependence decreases until, at 0.06 mole fractions of MeCN, the difference in the preferential solvation between native and denatured lysozyme becomes independent of the temperature over a range of 60 K. The importance of taking into account non-ideality of a mixed solution, when analyzing preferential solvation phenomena was emphasized

    Chitosan-cellulose Composite Materials: Preparation, Characterization and Application for Removal of Microcystin

    Get PDF
    We developed a simple and one-step method to prepare biocompatible composites from cellulose (CEL) and chitosan (CS). [BMIm+Cl−], an ionic liquid (IL), was used as a green solvent to dissolve and prepare the [CEL + CS] composites. Since majority (\u3e88%) of IL used was recovered for reuse by distilling the aqueous washings of [CEL + CS], the method is recyclable. XRD, FTIR, NIR, 13C CP-MAS-NMR and SEM were used to monitor the dissolution and to characterize the composites. The composite was found to have combined advantages of their components: superior mechanical strength (from CEL) and excellent adsorption capability for microcystin-LR, a deadly toxin produced by cyanobacteria (from CS). Specifically, the mechanical strength of the composites increased with CEL loading; e.g., up to 5× increase in tensile strength was achieved by adding 80% of CEL into CS. Kinetic results of adsorption confirm that unique properties of CS remain intact in the composite, i.e., it is not only a very good adsorbent for microcystin but also is better than all other available adsorbents. For example, it can adsorb 4× times more microcystin than the best reported adsorbent. Importantly, the microcystin adsorbed can be quantitatively desorbed to enable the composite to be reused with similar adsorption efficiency

    Frontier exploration and the North Atlantic Igneous Province : new insights from a 2.6 km offshore volcanic sequence in the NE Faroe–Shetland Basin

    Get PDF
    Acknowledgements and Funding This work was funded by Chevron. The authors would like to acknowledge the Chevron West of Shetlands team along with the Joint Venture partners OMV, Faroe Petroleum and Indemitsu for access to data along with permission to publish this study. PGS is thanked for access to the Corona Ridge Regional Geostreamer (CRRG) data and permission to publish the seismic line. The paper was improved thanks to insightful reviews by S. M. Jones and A. Saunders, which substantially improved an earlier draft. J. Still and F. Thompson gave invaluable technical support at the University of Aberdeen, and K. Wall helped with real-time cuttings analysis.Peer reviewedPostprin
    corecore